УЛК 532.135: 537.622: 546.05

ФЕРРИМАГНИТНЫЕ НАПОЛНИТЕЛИ ДЛЯ МАГНИТОРЕОЛОГИЧЕСКИХ МАТЕРИАЛОВ Гайдук Ю.С.¹, Коробко Е.В.², Журавский Н.А.², Усенко А.Е.¹, Свито И.А.¹, Паньков В.В.¹

¹Белорусский государственный университет ²ГНУ «Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси» Минск, Республика Беларусь

Аннотация. Синтезирован ряд ферритов со структурой шпинели и магнетоплюмита. Порошки исследованы методами рентгенофазового анализа, сканирующей электронной микроскопии, ИК-спектроскопии и магнитометрии. Исследованные материалы обладают высоким напряжением сдвига в суспензиях (~2500–3500 Па при 600 мТл), и могут быть использованы в качестве функционального наполнителя магнитореологических материалов.

Ключевые слова: феррит кобальта, феррит кобальта-цинка, магнитореологические материалы.

FERRIMAGNETIC FILLERS FOR MAGNETORHEOLOGICAL MATERIALS Haiduk Y.¹, Korobko E.², Kotsikau D.¹, Svito I.¹, Usenka A.¹, Pankov V.¹

¹Belarusian State University
²A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus
Minsk, Belarus

Abstract. A number of spinel and magnetoplumite ferrites have been synthesized. The powders were investigated by X-ray phase analysis, scanning electron microscopy, IR spectroscopy, and magnetometry. The investigated materials have a high shear stress in suspensions (~2500–3500 Pa at 600 mT), and can be used as a functional filler of magnetorheological materials.

Key words: cobalt ferrite, cobalt-zinc ferrite, magnetorheological materials.

Адрес для переписки: Гайдук Ю.С., ул. Ленинградская, 14-414, г. Минск 220030, Республика Беларусь e-mail: HaidukYS@bsu.by

Дисперсные ферримагнитные материалы широко применяются для создания управляемых магнитореологических жидкостей (МРЖ) как в качестве основного наполнителя, так и с дополнительным использованием различных функциональных добавок. Магнитные свойства порошков, которые могут быть компонентами таких жидкотекучих композиций, определяются химическим составом, типом кристаллической решетки, степенью ее дефектности, размером и формой частиц, морфологией, взаимодействием частиц между собой и с окружающей жидкостью [1, 2].

Методика эксперимента. Методом соосаждения с последующим обжигом на воздухе при 740 °С (8 ч) синтезированы образцы СоFe₂O₄ (1) и Co_{0.65}Zn_{0.35}Fe₂O₄ (2). Образец 3 (Mn_{0.3}Fe_{2.7}Fe₂O₄) получен методом соосаждения с последующим обжигом в аргоне (740 °C, 8 ч). Образец 4 (ВаFе₁₂О₁₉) получен соосаждением с последующим обжигом на воздухе при 960 °C (3 ч), образец 5 ($BaFe_{10}Al_2O_{19}$) – цитратным золь-гель методом с последующим обжигом на воздухе при 1000 °С (3 ч). Рентгенографические исследования проводили на дифрактометре ДРОН-3 $(Co_{K\alpha 1}$ -излучение, $\lambda = 0.179026$ нм). Микроструктуру образцов изучали при помощи сканирующего электронного микроскопа LEO 1420. Магнитные измерения проводились на установке Cryogen Free Measurement System Cryogenic Ltd. Зависимость напряжения сдвига (τ) суспензий (связующее Mobil 22) от величины магнитной индукции приложенного магнитного поля измеряли в режиме скоростей сдвига $\gamma = 2$, 8, 33 с⁻¹ при температуре T = 20 °C.

Обсуждение результатов. В таблице 1 приведены средние размеры частиц, оцененные по данным электронной микроскопии, и магнитные характеристики порошков. Данные РФА-анализа подтверждают формирование шпинельной структуры ферритов (пространственная группа Fd3m) для образцов 1—3 и гексагональной структуры типа магнетоплюмбита для образцов 4, 5. Образцы 1, 2 однофазные, в образцах 3—5 имелись рефлексы посторонних фаз.

Таблица 1. Размер и магнитные характеристики исследованных образцов, D — размер частиц, M_s — удельная намагниченность насышения. H_c — коэрцитивная сила

памагин тенноств насвящения, тт				
Обра-	Форма частиц	D, мкм	M_s ,	H_c ,
зец			$Aм^2\kappa\Gamma^{-1}$,	kOe,
			300 K	300 K
(1)	неправильная	0,08-8,0	73,2	0,27
(2)	неправильная	0,25-20,0	97,9	0,4
(3)	неправильная	0,15-21,0	74,26	0,16
(4)	неправильная	0,15-3,0	42,4	4,4
(5)	пластинчатая	0,3-3,0	20,4	5,0

С целью эффективного использования комплекса компонентов в составе МРЖ обычно ставится задача получения частиц наполнителя с наиболее высокой намагниченностью насыще-

ния и небольшим значением коэрцитивной силы. Величина намагниченности насыщения зависит от размера частиц, и для наночастиц имеет меньшие значения, чем для микронных частиц. Величина сопротивления сдвигу суспензии при заданном магнитном поле тем выше, чем выше намагниченность и фактор формы (анизотропность) частиц. Увеличение среднего размера частиц образцов 2 и 3 (см. таблицу), по сравнению с ранее исследованными порошками того же состава, но меньшим размером частиц [2], приводят к снижению вклада приповерхностного слоя величину удельной намагниченности. В результате, намагниченность частиц образцов 2 и 3 оказывается выше, и, как следствие, наблюдаются более высокие значения сопротивлению сдвига. На рис. 1 представлено СЭМизображение порошка образца 5, частицы которого имеют пластинчатую форму.

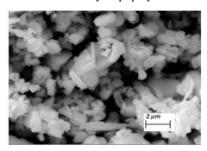


Рисунок 1 — СЭМ-изображение $BaFe_{10}Al_2O_{19}$ (образец 5)

Из рис. 2 видно, что напряжение сдвига магнитореологической суспензии, изготовленной на основе $CoFe_2O_4$ при B = 625 мТл (1), составляет ~ 2200 Па, суспензии, изготовленной на основе порошка $Co_{0.65}Zn_{0.35}Fe_2O_4$ (2) – ~ 2660 Па, а суспензии, изготовленной на основе порошка $Mn_{0.3}Fe_{2.7}O_4$ (3) — ~ 3500 Па. При этом напряжение сдвига суспензии на основе порошка $Mn_{0.3}Fe_{2.7}O_4$ со средним размером частиц 0,1 - 50 мкм, полученного методом соосаждения без последующей термообработки, составило всего ~300 Па, при удельной намагниченности $M_s = 63 \text{ Am}^2 \text{кг}^{-1}$ [2]. Аналогично для порош- $Co_{0.65}Zn_{0.35}Fe_2O_4$ (2, рис. 2) величина напряжения сдвига составила более 2500 Па. Это значение превышает напряжение сопротивлению сдвига суспензии, полученной на основе порошка $Co_{0,65}Zn_{0,35}Fe_2O_4$, с $M_s = 45$ $Am^2\kappa \Gamma^{-1}$, и размером частиц ~0,05 мкм, полученного методом распылительной сушки (т ~ 1000 Па) с последующим обжигом на воздухе в среде хлорида натрия [2]. Такое увеличение напряжения сдвига может быть связано с увеличением среднего размера частиц, происходящего в процессе высокотемпературного обжига в отсутствии инертной матрицы хлорида натрия.

Высокотемпературный обжиг ведет к небольшому увеличению размера частиц, степени кристалличности, изменению формы частиц от округлой к ограненной. При этом, возможно, увеличивается плотность и маслоемкость частиц. Такие морфологические изменения влияют на реологическое поведение порошков в суспензии, приводя к увеличению значений величины напряжения сдвига.

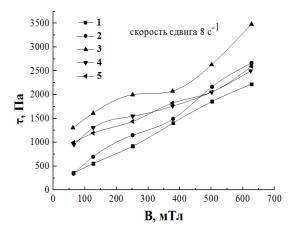


Рисунок 2 – Зависимость напряжения сдвига МРЖ, содержащей 20 мас. % наполнителя на основе порошков 1–5 в Mobil 22, от индукции магнитного поля

Обобщая результаты, относящиеся ко всем исследованным образцам, 1–5, следует также отметить, что размер и морфология частиц вносят, по-видимому, значительно более существенный вклад в величину напряжения сдвига по сравнению с удельной намагниченностью порошка, поскольку образцы 2–4, несмотря на большое различие в величине M_s , от 20,4 до 97,9 $Am^2k\Gamma^{-1}$, показали очень близкие и весьма высокие напряжения сдвига (2000–2500 Па при B = 625 мT).

Выводы. Высокое значение напряжения сдвига (2500 – 3500 Па) при сравнительно невысокой индукции магнитного поля (600 мТл) позволяет считать полученные и исследованные ферриты перспективными материалами для применения в качестве функционального наполнителя жидкотекучих магнитных материалов.

Литература

- 1. Modeling of Strain Kinetics of Damping Viscoelastic Magnetically Controlled Materials in Creep Mode/ E.V. Korobko [et al.] // Journal of Intelligent Material Systems and Structures. 2020. Vol. 31, № 2. P. 243–252.
- 2. Synthesis, structure and magnetic properties of cobalt-zinc nanoferrite for magnetorheological liquids / Yu.S. Haiduk [et al.] // Kondensirovannye sredy i mezhfaznye granitsy (Condensed Matter and Interphases). − 2020. Vol. 22, №2. P. 28–38.