где *К* – коэффициент запаса, он выбирается из максимально допустимого смещения центра пучка относительно центра грани.

Далее, исходя из рассчитанных ранее величин *L* и *m*, можно найти радиус вписанной окружности *R* в полученный многоугольник:

$$R = \frac{L}{2 \cdot tg\left(\frac{\pi}{m}\right)}.$$
 (6)

Для крепления ПД на ось вращения следует выполнить в его центре технологическое отверстие, радиус которого равен [1]:

$$r = \frac{\left(\frac{N}{57,3}\cdot 32,16\cdot S\right)^2}{W} - R^2,$$
 (7)

где *N* – предельная частота вращения, *S* – предел текучести материала, *W* – плотность материала ПД.

Расчеты параметров ПД при угле развертки строки сканирования $\sigma = \frac{\pi}{2}$, угле подачи излучения $\alpha = \frac{\pi}{3}$, диаметре пучка D = 2 мм и коэффициенте запаса K = 1,2 приведены в табл. 1.

Из табл. 1 видно, что при приближении количества граней к максимальному значению, увеличивается коэффициент полезного использования грани, но одновременно с этим происходит увеличение габаритных размеров ПД. Коэффициент *C* определяет также время перехода с одной грани на другую, то есть время перехода с одной строки сканирования на другую. При больших коэффициентах время перехода значительно сокращается, что может вызывать проблемы с кадровой разверткой. Другим недостатком такой системы является уменьшение коэффициента полезного использования грани с ростом угла развертки б. С другой стороны, в отличие от других систем сканирования, ПД способен обеспечить большие углы б и высокую скорость сканирования пространства.

таблица 1. гезультаты расчета параметров пд			
Количество	Коэффициент	Длина	Радиус
граней ПД	полезного ис-	грани,	вписан-
	пользования	MM	ной
	грани		окруж-
			ности,
			MM
3	0,375	3,695	1,067
4	0,5	4,619	2,309
5	0,625	6,158	4,238
6	0,75	9,238	8
7	0,875	18	19

Таблица 1. Результаты расчета параметров ПД

Литература

1. Gerald, F. M. Handbook of Optical and Laser Scanning, Second Edition / Gerald F. Marshall, Glenn E. Stutz. – Нью-Йорк : Marcel Dekker publishing, 2004. – P. 291.

УДК 535.24

ЭТАЛОННЫЙ СВЕТОДИОДНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ ДЛЯ КАЛИБРОВКИ РАДИОМЕТРОВ В УЛЬТРАФИОЛЕТОВОМ ДИАПАЗОНЕ СІЕ С Данильчик А.В.¹, Луценко Е.В.¹, Никоненко С.В.¹, Тарасова О.Б.²

¹ГНУ «Институт физики имени Б.И. Степанова НАН Беларуси» ²РУП «Белорусский государственный институт метрологии» Минск, Республика Беларусь

Аннотация. Разработан компактный эталонный источник излучения УФ С на основе светодиода для калибровки УФ-радиометров. Источник обеспечивает плотность мощности излучения до 400 мкВт/см² на площади 3×3 мм с неоднородностью 1,5 %. Излучение источника с максимумом 265 нм сконцентрировано на 97 % в УФ С области спектра. Использование источника для лазерных диодов ComboSource 6310 позволило прецизионно стабилизировать инжекционный ток и температуру светодиода. Ключевые слова: эталонный источник излучения УФ С, светодиоды УФ С, калибровка УФ-радиометров.

REFERENCE LED RADIATION SOURCES FOR CALIBRATION OF CIE C UV RADIOMETERS Danilchyk A.¹, Lutsenko E.¹, Nikanenka S.¹, Tarasova O.²

¹B.I. Stepanov Institute of Physics NAS of Belarus ²National Metrological Institute of the Republic of Belarus Minsk, Belarus

Abstract. A compact reference UV C radiation source based on LED for calibration of radiometers has been developed. The source provides a power density of radiation up to 400 μ W/cm² on area of 3×3 mm with inhomogeneity of 1.5 %. The radiation from source with a maximum of 365 nm is 97 % concentrated in the UV C region of the spectrum. The use of a source for laser diodes ComboSource 6310 made it possible to precisely stabilize the injection current and temperature of the LED.

Key words: reference UV C radiation source, UV C LEDs, calibration of UV-radiometers.

Адрес для переписки: Никоненко С.В., пр. Независимости, 68-2, г. Минск 220070, Республика Беларусь e-mail: s.nikonenko@dragon.bas-net.by

Пандемия коронавируса (COVID-19) вызвала острую необходимость в разработке новых и улучшении существующих методов и средств борьбы с распространением вирусной инфекции. Одним из наиболее успешных методов обеззараживания воды, воздуха и различных поверхностей является использование бактерицидных свойств ультрафиолетового (УФ) излучения в области от 200 до 280 нм, которая определяется СІЕ как диапазон излучения УФ С [1]. Для этого в последние годы начали интенсивно использовать светодиодные (СД) источники. Эффективность, качество и безопасность работ, выполняемых с использованием УФ-излучения (УФИ), во многом определяется качеством выполненных измерений и калибровки приборов. Однако в УФ-метрологии существует ряд проблем [2, 3]: существенное снижение точности передачи размера единиц величин от национальных эталонов оптических величин средствам измерения; необходимо использовать измеритель мощности с постоянной спектральной чувствительностью в УФ-диапазонах СІЕ и нулевой за его пределами, что проблематично из-за отсутствия качественных УФ-фильтров; точность измерения существенно снижается из-за различия спектральных распределений интенсивности излучения испытуемого и эталонного источников излучения.

Особенно значимое влияние эти проблемы оказывают на результаты измерений и калибровки в диапазоне УФИ СІЕ С. Наиболее распространенными на предприятиях Республики Беларусь являются УФ-радиометры ТКА-ПКМ, ТКА-АВС (ООО НТП «ТКА», Санкт-Петербург) и УФ-радиометры «Аргус-04», «Аргус-05» «Аргус-06» (ФГУП «ВНИИОФИ»). Метрологический контроль этих радиометров выполняется в Бел-ГИМ на установке для поверки УФ-радиометров УПР-02 и составляет от 150 до 200 шт. поверяемых приборов год. Количество приборов, не прошедших поверку составляет примерно 30-40 %, при максимально выявленном превышении относительной погрешности 40 % (производители используют калибровку на линии 254 нм ртутного источника низкого давления). Во многом это обусловлено тем, что применяемые в приборах приемники излучения имеют крайне низкую чувствительность ближе к границе спектрального диапазона УФИ СІЕ С 280 нм, что подтверждается практически нулевой чувствительностью некоторых радиометров к излучению предлагаемого эталонного светодиодного источника (ЭСДИ) с максимумом излучения 265 нм [4]. Поэтому измерение современных СД источников УФ С диапазона спектра должно проходить, согласно рекомендациям CIE, с помощью УФ-радиометров калиброванных с помощью референсных (эталонных) СД источников излучения.

Ранее нами было разработано несколько эталонных источников УФИ на основе светодиодов (СД) [3]. Однако их плотность мощности СД в дальнем поле в УФИ СІЕ В и С была недостаточной для исследования динамического диапазона УФ-радиометров. Быстрый прогресс в разработке УФ СД привел к значительному увеличению их мощности и эффективности. В настоящее время появились СД с различными коллимирующими линзами и достаточно высокой плотностью мощности УФ излучения.

В этой работе мы рассматриваем новый ЭСДИ СІЕ С и его характеристики. Конструкция РСДИ подробно описана в [4]. Источник разработан на основе УФ СД с 30 градусной коллимирующей линзой и оптической мощностью 40 мВт при длине волны ~265 нм, что достаточно для исследования динамического диапазона УФ С радиометров и позволяет их калибровать. Излучение светодиода собирается дополнительной коллимирующей линзой и для увеличения однородности освещения в дальнем поле излучения рассеивается голографическим фильтром.

Из рисунка видно, что 97,0 % мощности излучения ЭСДИ приходится на диапазон УФ С, 2,7 % – УФ В и 0,3 % – УФ А. Это позволяет применять ЭСДИ для калибровки в диапазоне УФ С, без использования светофильтров.

Рисунок 1 – Спектр излучения РСДИ. Вставка: плотность оптической мощности в зависимости от тока инжекции

Плотность оптической мощности УФ С – излучения ЭСДИ практически линейно зависит от тока инжекции (вставка рисунка). Максимальная плотность мощности составляет более 400 мкВт/см² в рабочей зоне радиометров (расстояние 600 мм от источника) при токе инжекции 700 мА. Максимальная квантовая эффективность источника УФ С наблюдается в диапазоне 200–500 мА. Мы рекомендуем использовать ЭСДИ УФ С именно в этом диапазоне инжекционных токов. В этом режиме работы обеспечивается наиболее эффективная излучательная рекомбинацию электронов и дырок в активной области СД, что сводит к минимуму тепловыделение из-за безызлучательной рекомбинации и, как следствие, увеличивает стабильность и срок службы СД источника.

Представленная конструкция ЭСДИ с голографическим фильтром (FWHM 0,5°) и дополнительной линзой обеспечивает равномерное (± 1,5 %) освещение рабочей области 30×30 мм на расстоянии 550 мм и более от источника, что обеспечивает удобство при калибровке. Рабочие расстояния 600–700 мм оптимальны для рутинных калибровок на калибровочной установке УФ-радиометров.

Показано, что тепловое равновесие ЭСДИ при рабочем токе 500 мА достигается через 600 секунд после включения (небольшое падение интенсивности на 1,5 %). После этого интенсивность излучения медленно падает со скоростью 0,17 % в час. Этот хороший результат получен благодаря как стабильности тока и температуры, обеспечиваемым источником питания Arroyo Instruments ComboSource 6310 (источник тока – стабильность < 10 ppm, 1 час, регулятор температуры – стабильность 0,002 °С, 1 час), так и в следствие очень медленной деградации УФ СД, что возможно только при малых температурах перегрева СД кристалла. Дополнительные измерения температуры СД кристалла с помощью тепловизора показали, что, перегрев составил всего лишь 25 °С при токе 500 мА. Такие низкие температуры перегрева обеспечиваются особенностями конструкции СД.

Таким образом создан компактный эталонный светодиодный источник излучения УФ С для калибровки и поверки УФ-радиометров, что обеспечивает высокую точность измерения начинающих широко внедряться новых типов СД излучателей УФ С.

Литература

1. CIE Position Statement on the Use of Ultraviolet (UV) Radiation to Manage the Risk of COVID-19 Transmission, May 2020.

2. Broadband Radiometric LED Measurements / G. P. Eppeldauer [et al.] // Proc. of SPIE, 2016. – Vol. 9954. – P. 99540J-01–99540J-15.

3. Nikanenka, S. V. Compact reference UVC LED source / S. V. Nikanenka, A. V. Danilchyk, E. V. Lutsenko // Ukrainian Metrological Journal. – 2020. – N_{2} 3A. – P. 140–144.

4. Nikanenka, S. V. Reference UVC LED Source / S. V. Nikanenka, A. V. Danilchyk, E. V. Lutsenko // New Developments and Applications in Optical Radiometry (NEWRAD 2021): Proc. 14th Internat. Conf., NIST, Boulder, USA, 21–24 June 2021. – Boulder: Local Organizing Committee, 2021. – P. 134–135.

УДК 621.3.038.825.2

СПЕКТРОСКОПИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛА Тb³⁺:YAl3(BO3)4 Демеш М.П.¹, Горбаченя К.Н.¹, Кисель В.Э.¹, Волкова Е.А.², Мальцев В.В.², Копорулина Е.В.² Кулешов Н.В.¹

¹Научно-исследовательский центр оптических материалов и технологий БНТУ Минск, Республика Беларусь ²Московский государственный университет имени М.В. Ломоносова Москва, Российская Федерация

Аннотация. Детально исследованы лазерно-спектроскопические свойства кристалла Tb³⁺:YAl₃(BO₃)₄. Зарегистрированы спектры поглощения и люминесценции в поляризованном свете. Определено время жизни возбужденного состояняи ⁵D₄. Рассчитаны коэффициенты ветвления люминеценции и спектры сечения стимулированного испускания.

Ключевые слова: тербий, ортоборат, поглощение, люминесценция.

SPECTROSCOPIC PROPERTIES OF Tb³⁺:YAl₃(BO₃)₄ CRYSTAL Demesh M.¹, Gorbachenya K.¹, Kisel V.¹, Volkova E.², Maltsev V.², Koporulina E.², Kuleshov N.¹

¹Center for Optical Materials and Technologies of BNTU Minsk, Belarus ²Lomonosov Moscow State University Moscow, Russia

Abstract. Spectroscopic properties of Tb^{3+} :YAl₃(BO₃)₄ crystal were investigated in detail. The polarized absorption and luminescence spectra were recorded, as well as a lifetime of the ⁵D₄ excited state is determined. Stimulated emission cross sections and luminescence branching ratios were found. **Key words**: terbium, orthoborate, absorbtion, luminescence.

Адрес для переписки: Демеш М.П., пр. Независимости, 65, г. Минск 220113, Республика Беларусь e-mail: maxim.demesh@bntu.by