

а – микроструктура, *б* – распределение концентрации элементов

1 – є-фаза, 2 – γ-фаза

Рисунок 3 – Распределение хорд случайных секущих на включениях сплава Bi₁₇In₂₅Sn₅₉

Наибольшая доля хорд сечений приходиться на размерную группу от 1 до 2 мкм. Наибольшие хорды сечений ε- и γ-фаз не превышают 6 и 9 мкм, соответственно. Средние сечения длин хорд для сечений ε- и γ-фаз составляют 1,7 мкм и 2,6 мкм, соответственно. Удельная поверхность межфазных границ, рассчитанная из стереографического соотношения [4] равна 0,86 мкм⁻¹.

Изображение зеренной структуры фольги сплава $Bi_{17}In_{25}Sn_{59}$ приведено на рисунке 3.4. Средний размер зерна ε -фазы составляет 0,56 мкм, а γ -фазы – 4,3 мкм.

 $a - \varepsilon$ -фаза, б – γ -фаза

Рисунок 4 – Зеренная структура фаз фольги сплава Ві₁₇In₂₅Sn₅₉

Текстура фольги исследована методом обратных полюсных фигур. Значения полюсных плотностей дифракционных линий для ε-фазы и γфазы, снятых на стороне фольги, прилегающей к кристаллизатору. Наибольшее значение полюсной плотности γ-фазы принадлежит дифракционной линии 0001, т.е. наблюдается текстура (0001), при которой более 50 % площади зерен данной фазы ориентированно плоскостью (0001) параллельно поверхности фольги. Образование такой текстуры обусловлено тем, что плоскость (0001) является наиболее плотноупакованной. В ε-фазе не наблюдается преимущественной ориентировки зерен.

Литература

1. Diffusionless (chemically partitionless) crystallization and subsequent decomposition of supersaturated solid solutions in Sn-Bi eutectic alloy / O. V. Gusakova [et al.] // Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences. – 2019. – Vol. 377. – P. (2143): 20180204.

2. Шепелевич, В. Г. Влияние легирования сурьмой на микроструктуру и свойства быстрозавтвердевшего сплава Bi-60% (ат.) Sn / В. Г. Шепелевич, О. В. Гусакова // Материаловедение, 2019. – № 3.– С. 18–23.

УДК 621.3.049.774 ИЗМЕРЕНИЕ ВЛАЖНОСТИ В КОРПУСАХ ИС С ПОМОЩЬЮ АНАЛИЗАТОРА МКМ-1 Ширяева В.Д.¹, Щербакова Е.Н.²

¹ОАО«ИНТЕГРАЛ» – управляющая компания холдинга «ИНТЕГРАЛ» ²Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Представлены результаты исследования содержания воды в корпусах интегральных схем Исследования производились с использованием масс-спектрометрического комплекса МКМ-1. Ключевые слова: интегральные микросхемы, содержание воды.

MEASURING OF THE WATER CONTENT IN INTEGRATED CIRCUIT PACKAGE BY USING MKM-1 ANALYZER Shiryaeva D.¹, Shcherbakova N.²

¹JSC «INTEGRAL» – «INTEGRAL» Holding Managing Company ²Belarusian National Technical University Minsk, Belarus

Abstract. The results of the study of the water content in the housings of the integrated circuits are presented. The studies were carried out using the mass spectrometric complex MKM-1. **Key words**: Integrated circuits, water content.

Адрес для переписки: Щербакова Е.Н., пр. Независимости, 65, г. Минск 220013, Республика Беларусь e-mail: scherbakova@bntu.by

Эксплуатационная надежность интегральных схем (ИС) в герметичных корпусах в значительной мере зависит от содержания влаги в подкорпусном объеме [1].

Выделяют 2 вида источников влаги:

- 1. Внешние;
- 2. Внутренние.

К внешним источникам относится влага, которая натекает через поры или сквозные трещины, а также может диффундировать через объем полимерного материала.

К внутренними можно отнести выделение влаги из материалов (клей и стеклоприпой), которые контактируют с атмосферой объема корпуса ИС, а также влага, сорбирующая в порах и микронеровностях.

Рисунок 1 – Масс-спектрометрический комплекс МКМ-1

В настоящей работе для измерения объемной доли влаги газовой среды в подкорпусном пространстве устройств физической электроники. использовался анализатор влажности МКМ-1 (рис. 1). Данные измерения помогают выявить негодные микросхемы, проанализировать причины появления влаги и оценить мероприятия по снижению влаги в подкорпусном объеме для повышения надежности. Этот метод является разрушающим.

МКМ-1 обеспечивает выполнение требований ОСТ II 073.013-2008 (метод 222-1) и MIL-STD-883 (метод испытаний 1018). Время от начала измерения до конца составляет не более часа. Процесс измерения влаги состоит из четырех этапов: подготовка образца, загрузка образца, проведение измерений, выгрузка образца.

1. Подготовка образца.

Микросхема обезжиривается в этиловом спирте. Затем она закрепляется на предметном столике с помощью технологической оснастки так, чтобы под местом прокола не находился кристалл нашей микросхемы, и выдерживается в термокамере.

2. Загрузка образца.

С помощью пинцета образец, закрепленный на предметном столике, загружается в шлюзовую камеру. Важно, чтобы перемещение микросхемы из термокамеры в шлюзовую камеру составляло менее 3 минут. Включаются турбомолекулярный и фовакуумный насосы. По достижении давления менее 4·10⁻⁶ мм.рт.ст. (контролируется по датчику ZAGR, расположенном на приборе) открывается высококвакуумный затвор между камерами и с помощью магнитного транспортера образец перемещается в камеру вскрытия (рис. 2). Там он крепится на приемном столике, транспортер убирается назад в шюзовую камеру и затвор закрывается. Температура в камере вскрытия варьируется от 100 °С до 104 °С. Наблюдая в окно измерительного отсека, игла подводится к корпусу микросхемы в «ручном» режиме как можно ближе, но не должна его касаться.

3. Проведение измерений.

На компьютере контролируется изменение (вначале увеличение, а затем уменьшение) парциального давления паров H₂O. Через 20-30 минут оно стабилизируется. На панели шагового двигателя прокалывателя переходим из режима «ручной» в режим «автомат», нажимаем «старт». Алгоритм «прокалывания» задан автоматически и состоит из 128 циклов. Игла прокалывателя перемещается вниз до образования микротечи. Замер количества H₂O производится, когда величина напуска из микротечи окажется в диапазоне 1,2·10⁻⁶–1,8·10⁻⁶ мм.рт.ст.

Рисунок 2 – Камера вскрытия с микросхемой, закрепленной на предметном столике

4. Выгрузка образца.

Открываем высоковакуумный затвор. Переходим в «ручной» режим и пошагово медленно извлекаем иглу прокалывателя из микросхемы. Когда на экране контроллера высвечивается напись «turbo off», выключаем формвакуумный насос и производим напуск воздуха. Открываем шлюз и с помощью пинцета извлекаем образец.

На рис. 3 изображена микросхема с отверстием в крышке корпуса, которое образуется в результате измерения.Температура воздуха в помещении при проведении испытаний не должна превышать 25 °C.

Рисунок 3 – Внешний вид микросхемы после проведения измерений

Допустимый уровень H_2O , установленный в отраслевом стандарте [2], при температуре 100 °C должен быть не более 0,5 объемного процента (5000 ppm). Детали корпусов с кристаллами ИС перед герметизацией должны быть тщательно просушены, так как, если этим пренебречь, то результаты измерения могут превышать допустимые значения влаги в десятки или даже сотни раз.

Это было подтверждено экспериментально. Были взяты 12 микросхем и половина из них дополнительно прошла отжиг. Результаты приведены в табл. 1.

Таблица 1. Результаты измерения H₂O в корпусах микросхем

№	Содержание H ₂ O в мик- росхемах с дополни- тельным отжигом, об. %	Содержание H ₂ O в микро- схемах без дополнитель- ного отжига, об. %
1	0,03	0,05
2	0,04	0,04
3	0,05	0,11
4	0,08	0,10
5	0,11	0,10
6	0,04	0,08

Из измерений следует, что у четырех из шести микросхем, прошедших дополнительный отжиг, уменьшилось содержание влаги в подкорпусном объеме, у одной микросхемы содержание H₂O не изменилось, еще у одной количество H₂O составило больше, чем у той же микросхемы, которая не проходила дополнительый отжиг.

По результатам проведенного исследования мы можем предполагать, что дополнительный отжиг микросхем перед герметизацией в большинстве случаев улучшает их качество.

Литература

1. Чернышов, А. А. Контроль влажности в корпусах интегральных микросхем / А. А. Чернышёв, С. А. Крутоверцев, А. И. Бутурлин // Зарубежная электронная техника. –1987. – № 2. – С. 3–63.

2. Микросхемы интегральные. Система и методы операционного контроля в процессе производства. Технические требования к технологическому процессу при аттестации производства : ОСТ 11 20. 9903-86.

УДК 617.3 АВТОМАТИЗИРОВАННАЯ СИСТЕМА ВАКУУМНОЙ АБСОРБЦИИ И ЛЕЧЕНИИ РАНЕНИЙ Ющенко Е.В., Терещенко Н.Ф.

Национальный технический университет Украины «Киевский политехнический институт имени Игоря Сикорского» Киев, Украина

Аннотация. Раны, в том числе хронические, источник больших проблем в современном мире и медицине, где из-за многих факторов можно иметь разные травматические последсвия. Лечение требуется эффективное, недорогостоящее и комфортное для пациентов, которого можно достичь с помощью автоматизированной системы вакуумной абсорбции и лечения ранений (АСВАЛР). Она работает с помощью воздействия отрицательного давления, отсасывает таким образом лишнюю жидкость и очищает поверхность раны, стимулируя пролиферацию грануляционной ткани. Ключевые слова: рана, вакуум, лечение, очищение.