2. Методы измерения твердости материалов (обзор) / Е. И. Орешко [и др.] // Труды ВИАМ. – 2020. – № 1. – С. 101–117.

3. Структура и оптические свойства покрытий алмазоподобного углерода / Н. М. Чекан [и др.] // Изв. НАН Беларуси. Сер. Физ.-тех. наук. – 2018. – Т. 63. – № 3. – С. 280–289.

4. Княжев, Ф. Р. Обзор возможностей применение алмазоподобных пленок в различных отраслях / Ф. Р. Княжев, М. М. Сергеевна // Материалы конференций ГНИИ «НАЦРАЗВИТИЕ» апрель 2021. – 2021. – С. 28.

УДК 621.315.592 ИССЛЕДОВАНИЕ СФЕРАОБРАЗНЫХ НАНОСТРУКТУР, СФОРМИРОВАННЫХ В ОБЪЕМЕ ПЛАСТИН МОНОКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ Францкевич А.В., Францкевич Н.В., Мартинович В.А.

Белорусский национальный технический университет Минск, Республика Беларусь

Аннотация. Основная идея представляемой работы – исследовать условия получения и свойства сфера образных наноструктур, формируемых в объеме пластин монокристаллического кремния. Стандартные пластины Cz-Si, п типа имплантировались ионами водорода при разных температурах и разными дозами. Формирование объемных наноструктур, происходило в результате обработки образцов в DC плазме водорода, при температуре не выше 300 °C. Полученные структуры исследовались методами СЭМ и комбинационного рассеяния. СЭМ-исследование проводилось как в режиме вторичных электронов (SE), так и в режиме поверхностно-индуцированного потенциала (SEBIV). Исследования показали, что в приповерхностном слое кремниевых пластин формируются сфера образные (пузырьковые) наноструктуры. Данные комбинационного рассеяния позволяют предположить о накоплении, в полученных структурах, газообразного водорода.

Ключевые слова: кремний, сфера образные наноструктуры, водород.

STUDY OF THE SPHERE OF SHAPED NANOSTRUCTURES FORMED IN THE VOLUME OF MONOCRYSTAL SILICON PLATES Frantskevich A., Frantskevich N., Martinovich V.

Belarusian National Technical University Minsk, Belarus

Annotation. The main idea of this work is to investigate the conditions for the preparation and properties of sphere-shaped nanostructures formed in the bulk of single-crystal silicon wafers. Standard Cz-Si, n type plates were implanted with hydrogen ions at different temperatures and different doses. The formation of bulk nanostructures occurred as a result of processing the samples in DC hydrogen plasma at a temperature not higher than 300 °C. The resulting structures were investigated by SEM and Raman scattering methods. The SEM study was carried out both in the secondary electron (SE) mode and in the surface-induced potential (SEBIV) mode. Studies have shown that sphere-shaped (bubble) nanostructures are formed in the near-surface layer of silicon wafers. Raman scattering data suggest the accumulation of hydrogen gas in the resulting structures. **Key words:** silicon, spherical nanostructures, hydrogen.

e-mail: N_Frantskevich@bntu.by

Введение. Эффект образования протяженных дефектов в конструкционных материалах, при содержании в них водорода или гелия с концентрацией 5–10 атомных процента известен достаточно давно [1]. В микроэлектронной технологии практическое применение данного эффектаотщепление тонких слоев кристаллических материалов по технологии Smart-Cut [2]. Авторами статьи, была показана принципиальная возможность создания структур типа кремний\оксид кремния на месте протяженных дефектов [3]. Данные структуры можно формировать на определенной глубине, в виде систем вертикальных нанотрубок, или конических структур на поверхности. Одно из возможных практических применений указанных выше структур – это увеличение эффективности солнечных элементов. Но на пути успешной коммерческой реализации данной технологии есть следующее препятствие – сравнительно высокие дозы имплантированного водорода или гелия, что в значительной степени влияет на себестоимость конечного изделия. В связи, с этим актуальным вопросом в разрабатываемой технологии было снижении дозы имплантированных ионов. Решение данного вопроса возможно за счет частичной замены сравнительно дорогостоящей технологической операции – имплантации, на более дешевую – плазменную обработку, при двух стадийном процессе. На первом этапе имплантацией водорода или гелия, при дозах имплантации 1·10¹⁴–5·10¹⁵ ат.\см² формируется слой первичных дефектов. На слой первичных дефектов, производится геттерирование водорода, вводимого в кремний из DC плазмы. В дальнейшем, введенный дополнительно водород, формирует протяженные дефекты с необходим распределением по объему или поверхности. Экспериментальное исследование возможных условий обработки, при которых реализуется предложенный подход, а так же получаемые наноструктуры, изучались в данной работе.

Эксперимент. В первой серии образцов использовались стандартные пластины *п*-типа 4,5 Ω·ст Cz Si. Данные образцы имплантировались протонами при комнатной температуре с энергией 100 keV флюенсом 1·10¹⁶, 2·10¹⁶ или 4 10¹⁶ ат.\см². Во второй серии образцов, пластины кремния анологичные используемым в первой серии, имплантировались протонами при температурах 150, 300, 400 или 500 °С. Флюенс ионов составлял 1·10¹⁴, 1·10¹⁵ или 5·10¹⁵ ат.\см² для каждой из температур. После создания первичного дефектного слоя, водород вводился в кремний из DC плазмы при 150 °C. Спектры комбинационного рассеяния снимались при комнатной температуре с использованием газового Ar⁺ лазера с длинной волны 488 нм и выходной мощностью 20 мВт. Образ поверхности образцов, а так же глубинных наноструктур, был получен в СЭМ, в режиме вторичных электронов (SE) и в режиме поверхностно индуцированного потенциала (SEBIV), сответсвенно.

Результат. На рис. 1, a и δ представлен типичый образ поверхности и структура сфера образных нано-структур, полученные в СЭМ, в режиме SE (a) и SEBIV (δ), от образцов кремния из первой серии.

Рисунок 1 – Типичный образ поверхности, для первой серии образцов, полученный в СЭМ, в режиме SE (*a*) и SEBIV (*б*)

При проведении эксперимента, для установления однозначной зависимости, что сфера образные наноструктуры, формируются именно в области с предварительно созданным дефектным слоем, использовались образцы содеращие две области, не имплантированную, и имплантированную. Как видно из результатов представленных на рис. 1, δ , наблюдаются две области, содержащие сфера образные структуры, и без них. Доказательством того, что данные структуры образуются именно в имплантированных областях, является то что, в исходных, не имплантированных образцах, подобных структур не наблюдалось. Кроме этого, размер образований зависит от флюенса предимплантированных протонов. С увеличение флюенса, диаметр сфер увеличивается.

Для перевой и второй серии образцов, а так же исходных, не имплантированных но обработанных в плазме водорода образцов. проводилось снятие спектров комбинационного рассеяния. Проведенные исследования показали, что для исследуемых образцов форма и положение основной линии кремния (521 см⁻¹) практически не зависят от температуры образцов во время имплантации. Для образцов имплантированных дозами 1 10¹⁴, 1 10¹⁵ или 5 10¹⁵ при температуре 300 °С и обработанных в плазме водорода при 150 °C, спектры комбинационного рассеяния, нормализованные по основной линии кремния, для спектрального диапазона в областях LVM сопостовляемых SiH связям (a) и водородной молекуле H₂ (3800-4400 cm⁻¹), представлены на рис. 2 (a, δ) .

Рисунок 2 – Спектры комбинационного рассеяния в областях LVM сопоставляемых SiH связям (*a*) и водородной молекуле H₂ (*б*), для Cz Si п-типа пластин, имплантированных протонами при 300 °C, дозами 1·10¹⁴ см⁻² (*1*), 1·10¹⁵ см⁻² (*2*) и 5·10¹⁵ (*3*) см⁻² и обработанных в плазме водорода при 150 °C

Как видно из представленных результатов, на спектрах комбинационного рассеяния, наблюдается зависимость формы и местоположения LVM сопостовляемых SiH связям и H₂ молекулы, в зависимости от флюенса предимплантированных протонов. А именно, с увеличением дозы предимплантированных протонов интенсивность сигнала LVM от H₂ молекулы уменьшается. Поскольку именно при флюенсе $(0,5-1)\cdot10^{16}$ см⁻² предимплантированных протонов, на результатах SEBIV начинает наблюдаться образование сфера образного объемного нанослоя, это позволяет предположить о возможности накопления газообразного водорода в этом слое.

Благодарности. Работа выполнена в рамках программы «Наноматериалы и нанотехнологии» (ГПНИ 2.24).

Литература

1. Terreault, B. Physica status solidi / B. Terreaul. – 2007. – Vol. 204. – P. 2129.

2. Bruel, M. Nucl. Instr. Meth. Phys. Res. B, 1996. - Vol. 313.

УДК 620.178.1

ТРИБОТЕХНИЧЕСКИЕ СВОЙСТВА ВАКУУМНО-ДУГОВОГО НИКЕЛЕВОГО ПОКРЫТИЯ, ЛЕГИРОВАННОГО ФОСФОРОМ

Хабарова А.В.¹, Лапицкая В.А.^{1, 2}, Кузнецова Т.А.^{1, 2}, Куприн А.С.³, Чижик С.А.^{1, 2}, Трухан Р.Э.¹, Конеру А.⁴

Коперу А

¹ГНУ «Институт тепло- и массообмена имени А.В. Лыкова НАН Беларуси» ²Белорусский национальный технический университет Минск, Республика Беларусь ³ННЦ Харьковский физико-технический институт НАН Украины Харьков, Украина ⁴Somnio Global Новай, США

Аннотация. Приведены результаты исследований свойств вакуумно-дугового никелевого покрытия, легированного фосфором (NiP), толщиной 2 мкм после триботехнических испытаний методом атомносиловой микроскопии. Испытания проводились при нагрузке от 3,45 до 6,89 мкН за 40 циклов. В результате определены основные характеристики триботехнических свойств – коэффициент $k_{\rm rp}$ и сила трения $F_{\rm rp}$, глубина износа *h* и удельный объемный износ ω . Установлено, что с увеличением нагрузки коэффициент и сила трения снижаются.

Ключевые слова: вакуумно-дуговое покрытие, NiP, атомно-силовая микроскопия, триботехнические испытания, коэффициент трения.

TRIBOTECHNICAL PROPERTIES OF VACUUM-ARC NICKEL COATING DOPED WITH PHOSPHORUS

Khabarava A.¹, Lapitskaya V.^{1,2}, Kuznetsova T.^{1,2}, Kuprin A.³, Chizik S.^{1,2}, Trukhan R.¹, Koneru A.⁴

¹A.V. Luikov Heat and Mass Transfer Institute of NAS of Belarus ²Belarusian national technical university Minsk, Republic of Belarus ³NSC Kharkov Institute of Physics and Technology of the National Academy of Sciences of Ukraine Kharkov, Ukraine ⁴Somnio Global Novi, USA

Abstract. The results of studies of the properties of a vacuum-arc nickel coating doped with phosphorus (NiP), 2 μ m thick after tribotechnical tests by atomic force microscopy are presented. The tests were carried out at a load of 3.45 to 6.89 mkN for 40 cycles. As a result, the main characteristics of the tribotechnical properties were determined – the coefficient k_{fr} and the friction force F_{fr} , the wear depth h, the specific volumetric wear ω . It was found that with an increase in the load, the coefficient and the friction force decrease.

Key words: vacuum arc coating, NiP, atomic force microscopy, tribotechnical tests, coefficient of friction.

Адрес для переписки: Хабарова А.В., ул. П. Бровки, 15, г. Минск 220072, Республика Беларусь e-mail: AV.Khabarova@mail.ru

Введение. Вакуумно-дуговые никелевые покрытия характеризуются хорошей износо- и корозионностойкостью, высокой твердостью. Легирование фосфором приводит к повышению физикомеханических и триботехнических свойств таких покрытий. Наличие на поверхности вакуумнодуговых никелевых покрытий окисных пленок и различных фаз может создавать хорошие условия для формирования трибопленок [1]. Микротвердость таких покрытий может варьироваться от 2 до 17 ГПа [2]. Однако их применение ограничено недостаточным изучением свойств [1].

3. Frantskevich N. V., Frantskevich A. V., Fedo-

tov A. K., Mazanik A. V. // Journal: Solid State Phenome-

na. - 2009. - Vol. 156-158. - P. 91-94.

Целью работы является определение триботехнических свойств вакуумно-дугового никелевого покрытия, легированного фосфором, методом атомно-силовой микроскопии.

Материалы и методы исследования. Покрытия толщиной 2 мкм с концентрацией фосфора 2 ат. % нанесены на диск из нержавеющей стали 08X18H10T вакуумно-дуговым методом на