КОМБИНИРОВАННАЯ ПЕРЕРАБОТКА ОКИСЛЕННОЙ БАЛАНСОВОЙ МЕДНОЙ РУДЫ АО «АЛМАЛЫКСКИЙ ГМК»

Холикулов Д. Б. 1 , Болтаев О. Н. 1 , Ниязметов Б. Е. 2 , Давлатова М. Д. 1 Ташкентский государственный технический университет им. Ислама Каримова, 2 АО «Алмалыкский ГМК»

tstu_info@tdtu.uz

В мире наметилась тенденция к совершенствованию технологии и увеличению доли гидрометаллургических процессов в добыче меди из различных медсодержащих продуктов. Источником значительных запасов сырья, содержащего цветные металлы, являются окисленные руды месторождения Кальмакир, имеющий сложный минеральный состав не только вмещающих, но и рудных пород.

Известно, что окисленные и смешанные медные руды, находящиеся в верхних горизонтах на всех медных месторождениях, являются вторичными медными образованиями в результате окисления сульфидов меди. В них, как правило, одновременно присутствуют карбонаты (малахит и азурит), оксиды (куприт и тенорит), силикаты (хризоколла) и сульфаты (брошантит и халькантит) меди [1].

Целью данной научно-исследовательской работы является — разработка гидрометаллургической технологии комплексного извлечения цветных и драгоценных металлов из балансовой окисленной руды месторождения Кальмакир АО «Алмалыкский ГМК».

Задачи исследований — определение характеристики окисленной медной руды, выбор оптимальной крупности дробления, определение оптимального состава выщелачивающего раствора; разработка эффективного способа извлечения ценных компонентов из раствора; выдача исходных данных для проведения опытно-промышленных испытаний предлагаемой технологии.

Перед проведением опытов, пробы методически сокращались и были отобраны исходные пробы на анализ металлов по классам крупности (таблица 1).

Таблица 1. Результаты ситового анализа окисленной медной руды

Класс, mm	Количество, kg	Выход класса, %	Содержание элементов в классе, %			Распределения элементов, %		
			Cu	Au	Ag	Cu	Au	Ag
+100		5,22	0,8	0,7	4,1	6,23	6,89	5,78
-100 + 50		7,32	0,64	0,4	4,0	6,99	5,52	7,91
-50 + 25		11,35	0,73	0,51	3,8	12,36	10,90	11,65
-25 +10		18,75	0,69	0,5	3,4	19,31	17,69	17,23
-10 + 5		20,93	0,65	0,52	3,5	20,20	20,50	19,76
_5 +1		19,80	0,61	0,56	3,6	18,03	20,30	19,24
-1		16,63	0,68	0,58	4,1	16,88	18,2	18,43
Всего	962,0	100	0,67	0,53	3,7	100	100	100

Для изучения и определения характеристик выщелачивание окисленных медных руд класса -50 mm + 1 mm с извлечением меди планировалось провести исследовательские работы по агитационному выщелачиванию. Для извлечения меди в качестве растворителя на стадии выщелачивания использовали серную кислоту, так как данный реагент производится в подразделениях AO «Алмалыкский ГМК», кроме этого серная кислота имеет очень низкую стоимость, достаточно просто поддается обезвреживанию в отработанных растворах и менее агрессивен применяемого оборудование.

В ходе тестов поддерживали рН пульпы на требуемом уровне подачей серной кислоты и проводили отбор проб раствора для изучения динамики растворения меди (таблица 2).

Таблица 2. Результаты агитационного сернокислотного выщелачивания

Круп-	Drivon	Общее		Общее	Содержание		Извлечение	Расход серной кис-	
ность	Выход кека, %	содержание Си, %		извлече-	окисленной Си, %			TOTLI KOT	
руды,		в исход-	в кеке	ние Си,	в исходном	в кеке	окисленной - Си, %	пол-	с учетом
mm		ном		%				ный	остатка
-2	97,0	0,22	0,14	39,22	0,13	0,060	55,24	20,7	14,9
-2	97,3	0,22	0,14	36,83		0,058	56,61	21	15,2
-0,5	97,2	0,23	0,14	40,66		0,055	58,89	22,2	15,7
	97,0	0,23	0,14	41,15		0,055	58,97	22,3	15,9
-0,071	97,1	0,22	0,13	41,52		0,051	61,89	21,4	16,7
(80 %)	97,2	0,21	0,13	40,89		0,050	62,62	22,2	17,0
-0,071	96,6	0,22	0,13	41,67		0,049	63,59	21,9	15,2
(95 %)	96,6	0,21	0,13	40,92		0,050	62,83	20,9	15,4

Содержание меди в кеках выщелачивания составляет 0,11–0,14 %, из них 0,04–0,06 % приходится на окисленные медные минералы и 0,06–0,09 % на медь в сульфидных минералах. При увеличении концентрации серной кислоты в растворе существенно возрастает степень перехода примесей в раствор. В этой связи, выщелачивание руды следует проводить с минимально возможной концентрацией серной кислоты в растворе.

Литература

- 1. Исроилов А. Т., Ходжаев А. Р., Ниязметов Б. Е., Холикулов Д. Б. Обогащение забалансовых медных руд месторождения «Кальмакир» АО «Алмалыкский ГМК» // Материалы междунар. науч.-практической. конф. «Современные проблемы и инновационные технологии решения вопросов переработки техногенных месторождений Алмалыкского ГМК», г. Алмалык, 18–19 апреля 2019 г. С. 58–60.
- 2. Холикулов Д. Б., Нормуротов Р. И., Болтаев О. Н. Новый подход к решению проблемы очистки сточных вод медного производства // Горный вестник Узбекистана. 2019. № 3(78). С. 92–96.