УДК 621.311

БИОЭНЕРГЕТИКА BIOENERGY

В.Д. Тихно

Научный руководитель – С.В. Константинова, к.т.н, доцент Белорусский национальный технический университет, г. Минск V. Tichno

Supervisor – S. Konstantinova, Candidate of Technical Sciences, Docent Belarusian national technical university, Minsk

Аннотация: в данной статье рассмотрены процессы получения топлива и газа из биомассы, а также произведён анализ возможностей их использования для распределённой генерации в Республике Беларусь.

Abstract: this article discusses the processes of obtaining fuel and gas from biomass, and also analyzes the possibilities of their use for distributed generation in the Republic of Belarus.

Ключевые слова:распределённая генерация, альтернативные источники энергии, биомасса, биогаз.

Keywords: distributed generation, alternative energy sources, biomass, biogas.

Введение

Распределённое производство энергии подразумевает строительство источников электроэнергии в непосредственной близости от потребителей. Мощность таких источников выбирается исходя из ожидаемой мощности потребителя с учетом имеющихся ограничений (технологических, правовых, экологических и т.д.). При этом потребитель может работать как автономно, так и параллельно с энергосистемой.

Одним из наиболее перспективных видом источников энергии является биомасса (все органические вещества растительного и животного происхождения) и биогаз. Биомасса делится на первичную (растения, животные, микроорганизмы и т.д.) и вторичную (отходы при переработке первичной биомассы и продукты жизнедеятельности человека и животных).

Основная часть

Биомасса как альтернативный источник энергии имеет огромный потенциал, так как. может использоваться без значительных затрат и применяться во многих отраслях хозяйствования.

Можно выделить три основных источника биомассы (рисунок 1).

Большая часть биомассы перерабатывается с помощью термохимических процессов: прямым сжиганием, пиролизом или газификацией.

Газификация —получение газа из твердого и жидкого исходного сырья.

Пиролиз осуществляется при нагревании сырья в отсутствии кислорода с образованием жидкого топлива, газов и древесного угля. Большое распространение получило преобразование биомассы (твердые бытовые отходы, древесная кора и др) в жидкое топливо пиролизом со ступенчатым испарением.

Рисунок 1 Основные источники биомассы

Биогаз вырабатывается в процессе брожения биомассы. Сырьем для данного процесса могут являться отходы сельскохозяйственного производства (навоз, остатки после забоя животных, остатки растительных компонентов), а также промышленные и бытовые стоки. В таблице №1 представлены параметры биогаза из различного сырья.

Таблица 1 – Биогазовая ценность из различного сырья

Наименование сырья	Сожержа- ние сухого вещества, %	Сожержа- ние органичес- кого сухого вещества, %	Биогазовая ценность, м ³ биогаза из тонны	Содержа- ние метана, %	Длительность проведения испытаний, суток
Жир	45,03	93,56	881	62	60
Caxap	99,97	99,96	718	59	64
Отходы производства комбикормов	68,75	93,05	483	54	61
Мясные отходы	32	98,4	425	67	64
Птичий помет	66,38	80,17	334	55	60
Активный ил с очистных	21,84	87,87	124	62	60
Мусор	27,87	95,27	114	56	63
Промстоки	1,21	57,85	7	61	60

Сырьё загружают в реактор, где оно смешивается с живыми микроорганизмами. В процессе разложения участвуют гидролизные, кислотообразующие и метанобразующие бактерии. Они запускают анаэробное брожение, которое происходит в четыре этапа:

Далее биогаз собирается под куполом реактора в газгольдере, а затем поступает в когененрационную установку для получения электрической и тепловой энергии. Однако перед подачей газа в когенерационную установку его необходимо очистить, т.к. неочищенный биогаз содержит примеси, а количество метана варьируется от 45 до 70%.

Необходимо поддерживать определенные параметры влажности и температуры в реакторе для анаэробного брожения. Полная переработка отходов происходит при температуре 35-38 °C. Также необходима постоянная поставка сырья. Для перемешивания используют тихоходные мешалки специальной конструкции.

Получение биогаза из отходов является безотходным процессом и занимает 40-60 дней. После завершения брожения, остается сухой и жидкий продукт без запаха, содержащий большое количество минеральных веществ, которые можно использовать в качестве органических удобрений

Заключение

Таким образом биотопливо является доступным, экологичным способом получения энергии в различных областях промышленности и сельского хозяйства. Наиболее перспективные направлениями получения биотоплива для Беларуси:

- Первичное древесное топливо (лесосечные отходы....);
- Вторичное древесное топливо (гранулы, пеллеты, ...);
- Недревесные биомассы (солома, отходы растениеводства....).
- Биогаз из различной биомассы
- Жидкие виды биотоплива, например, биоэтанол,

Литература

- 1. Германович В., Турилин А. Альтернативные источники энергии и энергосбережение. Практические конструкции по использованию энергии ветра, солнца, воды, земли, биомассы. СПб.: Наука и Техника, 2014. 320 с.
- 2. Голицын М.В. Альтернативные энергоносители / М.В. Голицын, А.М. Голицын, Н.В. Пронина; Отв. ред. Г.С. Голицын. М.: Наука, 2004. 159 с. ISBN 5-02-033065-5 (в пер.)
- 3. Центр экологических решений [Электронный ресурс] Режим доступа: https://ecoidea.by/ru/article/2673. Дата доступа: 16.01.2020.