УДК 621.311

АНАЛИЗ СТАТИЧЕСКОЙ УСТОЙЧИВОСТИ СИСТЕМЫ С ГЕНЕРАТОРАМИ С АРВ ПД ПО КОРНЯМ ХАРАКТЕРИСТИЧЕСКОГО УРАВНЕНИЯ ANALYSIS OF THE STATIC STABILITY OF THE SYSTEM WITH GENERATORS WITH ARV PD BY ROOTS CHARACTERISTIC EQUATION

И.А. Соловьев, Е.Д. Чекотовская Научный руководитель – А.А. Волков, старший преподаватель Белорусский национальный технический университет, г. Минск I. Solovev, E. Chekotovskaia Supervisor – A. Volkau, Senior Lecturer Belarusian National Technical University, Minsk

Аннотация: проведены расчеты и анализ статической устойчивости электроэнергетической системы с генераторами с APB ПД по корням характеристического уравнения при разных коэффициентах усиления KU и углах δ .

Abstract: Calculations and analysis of the static stability of an electric power system with generators with ARV PD by the roots of the characteristic equation at different gains KU and angles δ have been carried out.

Ключевые слова: статическая устойчивость, регулятор возбуждения генератора, анализ системы, характеристическое уравнение, критерий Гурвица.

Keywords: static stability, generator excitation regulator, system analysis, characteristic equation, Hurwitz criterion.

Введение

Все генераторы современных систем снабжены автоматическими регуляторами возбуждения (АРВ) [1].

Различают автоматические регуляторы пропорционального типа (АРВ ПД) и автоматические регуляторы сильного действия (АРВ СД). АРВ ПД реагируют на отклонение одного или нескольких параметров режима от контролируемых значений. АРВ СД в свою очередь дополнительно реагируют на скорости и ускорения изменения параметров режима. Введение производных изменения параметров в законы регулирования не только стабилизируют систему регулирования, но и значительно повышает предельную передаваемую мощность (предел устойчивости). АРВ ПД обеспечивают устойчивость режима в меньшем диапазоне изменения угла и передаваемой мощности, по сравнению с АРВ СД [2].

Основная часть

Анализ статической устойчивости режима выполним для простейшей электрической системы с генератором, оснащенным автоматическим регулятором пропорционального действия по отклонению напряжения и

работающим на шины с неизменным напряжением (рисунок 1). Переходный процесс описывается системой уравнений, включающей в себя:

- уравнение относительного движения ротора генератора:

$$(T_J / \omega_0) \cdot d^2 \delta / dt^2 = P_0 - E_q U \sin \delta / x_d; \qquad (1)$$

- уравнение переходного процесса в роторе генератора:

$$T_{d0} \cdot dE'_q / dt + E_q = E_{q,e};$$
 (2)

- уравнение переходного процесса в цепи возбуждения генератора:

$$T_e \cdot dE_{q,e} / dt + E_{q,e} = U_p . \tag{3}$$

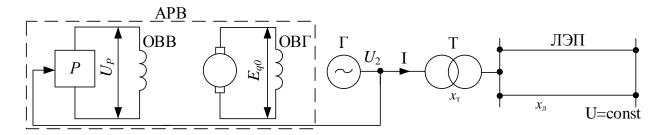


Рисунок 1 – Схема простейшей электрической системы с генератором с АРВ ПД

Величины, входящие в данные уравнения, означают:

- T_{d0} постоянная времени обмотки возбуждения генератора (ОВГ) при разомкнутой обмотке статора;
- T_{I} постоянная механической инерции генератора;
- x_d индуктивное сопротивление генератора в относительных единицах;
- E_q' и E_q переходная и синхронная продольные ЭДС;
- $E_{q,e}$ ЭДС в установившемся режиме (равна в относительных единицах измерения напряжению возбудителя);
- T_e постоянная времени обмотки возбуждения возбудителя (OBB);
- U_p установившееся значение напряжения OBB (равно в относительных единицах измерения напряжению на выходе регулятора).

Уравнение идеального автоматического регулятора напряжения пропорционального типа, мгновенно изменяющего напряжение на OBB пропорционально отклонению напряжения на зажимах генератора:

$$U_{p} - U_{p,0} = -K_{U} \cdot (U_{\Gamma} - U_{\Gamma,0})$$
(4)

Характеристическое уравнение имеет следующий вид [1]:

$$a_0 p^4 + a_1 p^3 + (a_2 + K_U \Delta_2) p^2 + a_3 p + a_4 + K_U \Delta_4 = 0,$$
(5)

где:

$$a_0 = \frac{T_J}{\omega_0} T_{d0} T_e \frac{\partial E_q'}{\partial E_q} \tag{6}$$

$$a_{1} = \frac{T_{J}}{\omega_{0}} \left(T_{e} + T_{d0} \frac{\partial E_{q}'}{\partial E_{q}} \right); \tag{7}$$

$$a_{2} = \frac{T_{J}}{\omega_{0}} + T_{d0}T_{e} \left(\frac{\partial E_{q}'}{\partial E_{q}} \cdot \frac{\partial P}{\partial \delta} - \frac{\partial E_{q}'}{\partial \delta} \cdot \frac{\partial P}{\partial E_{q}} \right); \tag{8}$$

$$a_{3} = T_{d0} \left(\frac{\partial E_{q}'}{\partial E_{q}} \cdot \frac{\partial P}{\partial \delta} - \frac{\partial E_{q}'}{\partial \delta} \cdot \frac{\partial P}{\partial E_{q}} \right); \tag{9}$$

$$a_4 = \frac{\partial P}{\partial \delta} \,; \tag{10}$$

$$\Delta_2 = \frac{T_j}{\omega_0} \cdot \frac{\partial U_{\Gamma}}{\partial E_q} \,; \tag{11}$$

$$\Delta_4 = \left(\frac{\partial U_{\Gamma}}{\partial E_q} \cdot \frac{\partial P}{\partial \delta} - \frac{\partial U_{\Gamma}}{\partial \delta} \cdot \frac{\partial P}{\partial E_q}\right). \tag{12}$$

Подставив в формулы (6)–(12) частные производные, получим:

$$a_0 = \frac{T_J}{\omega_0} T_d' T_e \tag{13}$$

$$a_1 = \frac{T_J}{\omega_0} \left(T_d' + T_e \right) \tag{14}$$

$$a_2 = \frac{T_J}{\omega_0} + T_d' T_e \left(\frac{E_q U}{X_d} \cos \delta + U^2 \frac{X_d - X_d'}{X_d X_d'} \sin^2 \delta \right); \tag{15}$$

$$a_3 = T_d' \left(\frac{E_q U}{X_d} \cos \delta + U^2 \frac{X_d - X_d'}{X_d X_d'} \sin^2 \delta \right) + T_e \frac{E_q U}{X_d} \cos \delta$$
(16)

$$a_4 = \frac{E_q U}{X_d} \cos \delta \tag{17}$$

$$\Delta_2 = \frac{T_j}{\omega_0} \cdot \frac{X_{\text{BH}}}{X_d} \,; \tag{18}$$

$$\Delta_4 = \left(\frac{E_q U}{X_d} \cos \delta + U^2 \frac{X_d - X_{BH}}{X_d X_{BH}} \sin^2 \delta\right) \frac{X_{BH}}{X_d}.$$
 (19)

где:

$$\begin{split} T_d' = & T_{d0} \frac{X_d'}{X_d}; \\ E_q = & \frac{E_{q0} + K_U \bigg(U_{\Gamma,0} - U_C \cos \delta \frac{X_d - X_{_{\rm BH}}}{X_d} \bigg)}{1 + K_U \frac{X_{_{\rm BH}}}{X_d}}; \\ X_{_{\rm BH}} = & x_{_{\rm T}} + \frac{x_{_{\rm J}}}{n_{_{\rm J}}}. \end{split}$$

Полученная система уравнений (13)–(19), являющаяся совокупностью корней характеристического уравнения (5), основой всего исследования.

Итоговые параметры электрической системы (рисунок 2), на базе которых производится исследование, сведены в таблицу 1 и 2.

В качестве генератора с АРВ ПД возьмем ТГВ-300-2У3 [3] с постоянной времени T_{d0} равной 7,0 с.

Рисунок 2 – Схема электрической системы

Таблица 1 – Параметры электрической системы

T_j , c	T_e , c	T'_d , c	$oldsymbol{U}$	E_{q0}	X_d	$X^{\prime\prime}{}_d$	$X_{\scriptscriptstyle m BH}$	ω ₀
12,5	2,0	2,08	1	2,909	2,076	0,617	0,411	314,0

В характеристическом уравнении (5), исходя из системы (13)–(19) видно, что коэффициенты a_0 – a_4 не зависят от регулирования возбуждения, а значит они определяют устойчивость режима нерегулируемой электрической системы. Единичные прибавки Δ_2 и Δ_4 к соответствующим по индексу коэффициентам характеристического уравнения, пропорциональные коэффициенту усиления, отображают воздействие устройства АРВ ПД. Для упрощенного применения (5) критерия Гурвица В заменим отношения коэффициентов соответствующими им Δ_i на эквивалент a'_i , который является коэффициентом, отражающим получаемое воздействие от регулятора возбуждения, и будем подставлять его при поиске определителя матрицы:

$$a_2' = a_2 + K_U \Delta_2; (20)$$

$$a_4' = a_4 + K_U \Delta_4 \,. \tag{21}$$

Из вышеперечисленного следует, что определители Гурвица будут иметь следующий вид:

$$\Delta_{\Gamma yp1} = a_1 \,; \tag{22}$$

$$\Delta_{\Gamma yp2} = \begin{vmatrix} a_1 & a_3 \\ a_0 & a_2' \end{vmatrix}; \tag{23}$$

$$\Delta_{\Gamma yp3} = \begin{vmatrix} a_1 & a_3 & 0 \\ a_0 & a'_2 & a'_4 \\ 0 & a_1 & a_3 \end{vmatrix}; \tag{24}$$

$$\Delta_{\Gamma yp4} = \begin{vmatrix} a_1 & a_3 & 0 & 0 \\ a_0 & a'_2 & a'_4 & 0 \\ 0 & a_1 & a_3 & 0 \\ 0 & a_0 & a'_2 & a'_4 \end{vmatrix}. \tag{25}$$

Результаты расчетов коэффициентов характеристического равнения при различных коэффициентах усиления и выбранных ранее углах δ , сведены в таблицы 2–4 соответственно.

Таблица 2 — Значения коэффициентов характеристического уравнения при $K_U = 0$

угол δ, °	a_0	a_1	a'2	<i>a</i> ₃	a' ₄
80	0,166	0,162	5,647	3,290	0,243
90	0,166	0,162	4,778	2,369	0
110	0,166	0,162	2,230	0,137	-0,479

Таблица 3 — Значения коэффициентов характеристического уравнения при $K_U = 30$

угол δ, °	a_0	a_1	a'2	a_3	a' ₄
80	0,166	0,162	6,517	3,912	9,306
90	0,166	0,162	5,014	2,369	6,780
110	0,166	0,162	-0,011	-2,293	-1,494

Таблица 4 — Значения коэффициентов характеристического уравнения при $K_U = 100$

угол δ, °	a_0	a_1	a'2	<i>a</i> ₃	a' ₄
80	0,166	0,162	7,140	3,982	30,410
90	0,166	0,162	5,566	2,369	22,60
110	0,166	0,162	0,264	-2,563	-3,841

T ~	_	2	ν Γ	•	TZ 0
Таблица	`	Кирапениа	определителей Г	ипвина ппи	K_{II} $-()$
таолица	J	JIIa ICIIIII	Опродолителент	урвица при	$\mathbf{I}(t) = \mathbf{U}$

угол δ, °	Δ Гур1	Δ Гур 2	Δ Гур3	Δ Гур4
80	0,162	0,369	1,207	0,293
90	0,162	0,381	0,902	0
110	0,162	0,339	0,059	-0,028

По полученным данным из таблиц 2–4 составлены определители Гурвица. Полученные значения определителей при K_U равных 30 и 100 и различных углах δ сведены в таблицы 5–7 соответственно.

Таблица 6 — Значения определителей Гурвица при $K_U = 30$

угол δ, °	$\Delta_{\Gamma yp1}$	$\Delta_{\Gamma yp2}$	$\Delta_{\Gamma yp3}$	$\Delta_{\Gamma ext{yp4}}$
80	0,162	0,406	1,345	12,521
90	0,162	0,419	0,815	5,524
110	0,162	0,379	-0,830	1,239

Таблица 7 — Значения определителей при Гурвица $K_U = 100$

угол δ, °	$\Delta_{\Gamma yp1}$	$\Delta_{\Gamma yp2}$	$\Delta_{\Gamma yp3}$	$\Delta_{\Gamma ext{yp4}}$
80	0,162	0,496	1,176	35,752
90	0,162	0,508	0,611	13,817
110	0,162	0,468	-1,099	4,222

Сравнительный анализ результатов расчета значений коэффициентов характеристического уравнения и определителей Гурвица показывает, что:

- при нулевом коэффициенте усиления (без APB ПД) при угле δ равном 90° наблюдается граница устойчивости. Это выражено коэффициентами $a_{4}^{'}$ и $\Delta_{\Gamma yp4}$, которые равняются нулю. При дальнейшем повышении угла δ система становится неустойчивой (таблицы 2 и 5);
- при коэффициенте усиления APB ПД K_U равном 30 проявление отрицательного знака у коэффициентов характеристического уравнения начинаются с a_2 , при угле δ равном 110° , а при $K_U = 100$ проявление отрицательного знака проявляется, начиная с a_3 при том же угле δ ;
- влияние угла δ распространяется на полиномы a_2 , a_3 и a_4 , т. к. согласно уравнениям (13)–(19) именно его изменение в большую или меньшую сторону изменяет значение данных коэффициентов характеристического уравнения.

Заключение

В ходе работы был проведен анализ статической устойчивости электроэнергетической системы с генератором ТГВ-300-2У3 с АРВ ПД по корням характеристического уравнения при коэффициентах усиления K_U равных 30 и 100, а также при различных углах δ .

Устройства АРВ позволяют увеличить предел передаваемой мощности и положительно влияют на устойчивость электроэнергетической системы.

При отсутствии у генератора APB предельный режим имеет место при угле $\delta = 90^{\circ}$, а при наличии возможности регулирования возбуждения устойчивость повышается:

- при $K_U = 30$ предел устойчивости достигается при угле $\delta = 100,3^{\circ}$;
- при $K_U = 100$ предел устойчивости достигается при угле $\delta = 97.5^{\circ}$.

Литература

- 1. Веников, В. А. Переходные электромеханические процессы в электрических системах: учебник для электроэнергетических специальностей вузов / В. А. Веников. Изд. 4-е. М.: Высш. шк., 1985. 536 с.
- 2. Переходные процессы в системах электроснабжения: учебник для вузов / Г. Г. Пивняк [и др.]. Изд. 3-е. М.: Энергокомиздат : Днепропетровск : НГУ, 2003. 548 с.
- 3. Неклепаев, Ю. Н. Электрическая часть электростанций и подстанций: справочные материалы для курсового и дипломного проектирования / Ю. Н. Неклепаев, И. П. Крючков. Изд. 4-е. М.: Энергостандарт, 1989.-608 с.