
Springer Nature, Journal of signal processing systems for signal image and video technology 

Volume: 92, Issue: 10, Pages: 1091-1099,     DOI: 10.1007/s11265-020-01568-5 

 

Pipeline Synthesis and Optimization from Branched Feedback Dataflow Programs 
 

Anatoly Prihozhy1   Simone Casale-Brunet3   Endri Bezati2   Marco Mattavelli3 

 
Received: 18 April 2019 / Revised: / Accepted:  

 The Author(s) 2019 

Abstract 
Large dataflow designs are a result of behavioral specification of modern complex digital systems and/or a result of unfolding and 

transforming looped and branched programs. Since deep-submicron silicon technology provides large amounts of available 

resources, pipelining optimization without (or with minimal) resource sharing can give significant advantages in performance. 

High-level synthesis of CAL-programs is particularly popular in computation intensive applications (e.g., image and video 

processing, cryptography, wireless communication, etc.) where feedback actors with data flows at input and output ports represent 

loop-like behavior. In this work, we propose techniques for transforming, analysis, speculatively pipelining and optimizing large 

branched feedback dataflow programs. We develop an accurate algorithm and introduce fast dynamic and mixed static / dynamic 

heuristics that firstly minimize the number of pipeline stages for a given pipeline-stage time-period, and secondly minimize the 

overall pipeline registers size by means of appropriate assignment of feedbacks and instructions to pipeline stages. We also 

propose a genetic algorithm for tuning the heuristics for a particular design. The experimental results show the algorithms we 

propose give quickly solutions that are very close to accurate solutions and overcomes the earlier developed algorithms regarding 

computing time and pipeline parameters. 

Keywords   Dataflow   Feedback   Branching   Pipeline   High level synthesis   Optimization 
 
 

1 Introduction 

Pipelining is a certain type of transformation of a digital 
system behavioral specification into a set of partitions that 
represent pipeline stages and execute in time-sliced fashion on 
the input data flow [1-5]. Pipelining increases the operating 
frequency and throughput of data-intensive digital systems 
with long critical paths. The optimization of pipeline 
implementations is a hard-combinatorial problem in general 
case, and its exhaustive solution is not feasible in acceptable 
CPU time. For early silicon technologies, pipeline 
architectures intensively explored the sharing of 
computational resources Most of the known optimization 
algorithms generate pipelines executing several clock cycles 
per stage cycle and solve the problem of how to share 
functional units among operators and to share pipeline 
registers among variables. Works [6 - 9] propose techniques 
that optimize highly parallelized pipelines without sharing 
resources. 

Pipelining is a natural technique for dataflow designs, 
which organize data as flows over all parts of the designs. 
CAL is a key language for writing dataflow programs and 
modelling dataflow designs [10, 11]. It was developed and 
standardized to address the goal of high-level system 
specification and design, particularly addressing the wide field 
of streaming applications. A CAL-program is a network of 

                                                           
Anatoly Prihozhy  prihozhy@yahoo.com 

1 Computer and System Software Dpt., Belarusian National Technical 
University, Minsk, Belarus  

2 EPFL IC IINFCOM VLSC, École Polytechnique Fédérale de Lausanne, 

Switzerland 
3 EPFL SCI STI MM, École Polytechnique Fédérale de Lausanne, Switzerland 

actors, and an actor consists of one or more actions. The actors 
and actions accept tokens at input ports and produce tokens at 
output ports. Actions of an actor operate sequentially using a 
firing mechanism, and actors within a network operate 
concurrently. The most time-consuming actions determine the 
clock cycle period and slow down the hardware 
implementations synthesized from the dataflow CAL-
programs when the cycle period is large. Our approach for 
increasing the throughput of the whole system is to break up 
the critical paths of such actions into pipelined partitions, 
which reduces the clock cycle period of the system. Pipelines 
without sharing resources are a most promising and efficient 
solution in this case. The algorithms of analyzing and 
optimizing such dataflow pipelines are the main value of this 
paper. 

Pipelining the loop-like dataflow programs [10 - 11] 
represented in CAL differs pipelining the loops [12]. CAL 
models a loop as an actor with data tokens in input ports, one 
or more actions, one or more state variables, and feedback 
fragments that process the tokens and variables in the actions. 
As a result, the pipelining techniques and optimization 
algorithms are different for the loops and loop-like actors. 
Therefore, we should revise such known pipeline optimization 
techniques as modulo scheduling [12] and extend them for 
dataflow large-size CAL-programs. 

Works [7 - 9] have already proposed some techniques for 
pipelining optimization of CAL-programs: the ASAP and 
ALAP algorithms minimize the number of pipeline stages; the 
optimal least cost search branch and bound algorithm 
(LCSBB) and the algorithm based on pipeline optimization 
dynamic heuristics (HADD) minimize the overall pipeline 
registers size. This article is an extended version of the paper 
[9]. We can summarize the novel contribution of the present 
work with respect to [9] in the following points: 

mailto:prihozhy@yahoo.com


 modelling of loops using branched feedback dataflow 
programs represented in CAL 

 transformation of actions of a CAL-program to a single 
basic block model 

 analysis of a transformed CAL-program with respect to 
mutually exclusive instructions, data dependences, 
critical paths and feedback fragments 

 speculative pipelining of branched feedback dataflow 
CAL-programs by means of extended ASAP, ALAP and 
LCSBB algorithms 

 generalization and extension of the dynamic heuristic 
optimization algorithm HADD to speculative pipelining 
of branched feedback dataflow CAL-programs 

 development of a genetic algorithm for tuning heuristic 
factors to efficiently optimize a particular design. 

This paper has the structure as follows. Section II analyzes 
related work. Section III describes modelling, transformation 
and analysis of branched feedback dataflow programs in CAL. 
Section IV formulates a problem of speculative pipelining of 
branched feedback dataflow programs. Sections V and VI 
present pipelining optimization algorithms on dynamic and 
mixed static/dynamic heuristics, and on a genetic algorithm. 
Section VII reports experimental results, and the last section 
concludes the paper. 

2 Related work 

Numerous languages aim at describing pipelines: C, 

System-C and VHDL languages [13 - 15], data flow graphs 

[16], signal flow graphs [17], transactional specifications [18], 

binaries [19], CAPH [20], and other notations. Sehwa [1] is 

one of the first pipeline synthesis program. It minimizes the 

latency using a modified list-scheduling algorithm and a 

resource allocation table. The force directed scheduling that 

has been proposed in [17, 21] performs a time-constrained 

functional pipelining. Retiming moves registers in a circuit to 

decrease the length of longest paths while preserving the 

circuit behavior [22]. The ASAP (As Soon As Possible) and 

ALAP (As Late As Possible) algorithms that are developed in 

[8] on an operator conflict graph are similar to the downward 

and upward direction traversal algorithms [6]. 

Pipelining is an effective method for optimizing loops. 

Work [3] proposes the loop winding method that performs 

pipelining of data flow graphs without recurrences. The 

percolation-based scheduling [23] deals with the loop winding 

by starting with an optimal schedule that is obtained without 

considering resource constraints. The PLS pipelining is 

another effective method [4] to optimize loops for DSP. Work 

[16] introduces the rotation scheduling for loop pipelining by 

means of retiming formulation. Work [13] proposes the 

vectorization method based on pipelining of innermost loops 

by removing vector dependences in a loop nest. The 

speculative loop pipelining [19] generates a pipeline netlist at 

compile time and modifies it according to the result of runtime 

analysis. An integer linear programming formulation of the 

pipeline optimization problem is presented in [24] as an 

efficient approach for the design space exploration. 

Modulo scheduling [25 - 27] is one of the most popular 

techniques to perform loop pipelining since it can achieve 

high-quality solutions with relatively low overhead in 

resources. Since finding an optimal modulo schedule is NP-

hard in general, various heuristics have been proposed and 

implemented. Iterative modulo scheduling [28] schedules 

operations with backtracking. In work [29], the list scheduling 

and iterative modulo scheduling are used for the design space 

exploration based on slow, but area efficient modules, and 

fast, but area consuming modules. Swing modulo scheduling 

[30] reduces the register requirements by placing each 

operation close to either its predecessors or successors. Slack 

modulo scheduling [31] orders operations on a priority 

function and performs bidirectional choosing of time slots to 

minimize the conflicting variable lifetimes.  

Work [12] proposes a method of modulo scheduling based 

on a system of difference constraints. Its authors have given a 

linear programming formulation to particularly solve a min-

lifetime problem by an integer linear polynomial program and 

have proved that the constraint matrix is totally unimodular. 

Their assumption is each variable in the loop has only one 

producer, which significantly restricts the set of loop 

descriptions their method can optimally pipeline. Therefore, 

only heuristic algorithms are capable of solving the problem of 

pipelining optimization of branched feedback large-size nested 

loops, given constraints on resources. 

3 Modelling of branched feedback dataflow 
programs 

3.1 Dataflow modelling in CAL 

Work [32] introduces the concept of actors as means of 

modeling distributed knowledge-based algorithms. Nowadays, 

actors are widely used in embedded systems, where actor-

oriented design is a natural match to the heterogeneous and 

concurrent nature of such systems. In this paper, we utilize the 

CAL dataflow language [10, 11] that supports this concept to 

specify parallelism explicitly. CAL is suitable to model a 

variety of applications [33-44] from a wide range of domains 

(e.g., cryptography, multimedia processing, network 

processing, control systems, reconfigurable systems, power 

optimization, monitoring of HW and SW, and others).  

An actor consists of input and output ports, state variables, 

actions, and a scheduler. Actors run in parallel. Actions 

execute over firing mechanism. Only one action of the actor 

fires at any moment in time. An actor scheduler specifies the 

sequence of actions firing. The scheduler operates accounting 

for the data tokens in input port buffers, the state of guards, 

priority conditions, and the presence of a finite state machine.  

In this paper, in favor of high flexibility of pipeline 

synthesis and optimization, we focus on pipelining of one 

action, which fires depending on the tokens flow at input ports 

of an actor that may have many actions. Figure 1 depicts such 

sample CAL actor that will help us to illustrate techniques we 

propose. Although this actor has no scheduler, it represents a 

loop with branched body due to modeling feedbacks over two 

state variables s1 and s2. 



 
Figure 1 A CAL actor sample with action beh that uses state variables, and 

consumes and produces multiple tokens from its input and output ports.  

3.2 Transformation of CAL-programs 

Before pipelining optimizations of a CAL program, 
preliminary transformations convert it to an appropriate form. 
To illustrate these transformations, we perform transition from 
the sample CAL-actor (Figure 1) to the equivalent transformed 
actor shown in Figure 2.  

The first transformation replaces all conditional 
expressions with Boolean variables in branching statements, 
and splits expressions so as no more than one operator would 
occur in the right part of any assignment. For instance, 
variable t0 replaces expression “b<7”, and variable t1 replaces 
expression “i2>i4” in two conditional instructions. 

Afterwards, it moves assignments over the action code to 
place all producers of one variable in mutually exclusive 
branches of nested conditional statements. For instance, 
assignment “d:=77;” moves into the else-part of the first 
conditional statement, and assignment “o2:=c<<3;” moves 
into the else-part of the second conditional statement. 
Additional variables may need to accomplish such a 
transformation in case of sophisticated data dependences. For 
example, in sequence “x:=m+n; y:=x/2; if c then x:=m-n; end” 
moving of “x:=m+n;” into the else-part of the conditional 
statement would force the assignment “y:=x/2;” to move into 
both conditional branches. This is a costly solution. It is better 
to introduce an additional variable z and to transform the code: 
“z:=m+n; y:=z/2; if c then x:=m-n; else x:=z; end”. 

Next transformation concerns state variables. An action 
that fires reads the value of a state variable, processes it, and 
finally writes a new value into the variable. The 
transformation introduces single load instruction before the 
first consumer, and introduces single store instruction after the 
last producer of each state variable s. It adds a new local 
temporal variable st in the action. Variable st propagates the 
value of s to all consumers. 

The speculative (eager) execution is an optimization 
technique where a computer system performs some task that 
may not be needed [19]. Speculative execution refers to 
branching statements. We need this technique to speed up 

pipelined dataflow implementations. Speculative execution is 
very expensive, as amount of resources grows exponentially, 
and the overall pipeline registers size increases rapidly. 
Therefore, we solve the problem of finding out, what branches 
should execute eagerly, in parallel with solving the pipeline 
optimization problem. To do this, we have developed a 
recursive procedure that split all nested conditional statements 
into a sequence of simple if-then instructions with only one 
assignment inside. As a result, this transformation merges 
many basic blocks that are associated with various branches, 
to a single basic block [15]. For example, the procedure 
transforms two nested conditional statements  

if z4 then a:=0; else  if z5 then a:=1; else a:=2; end end 

to the single basic block as follows: 

b6:=not z4;   b7:=not z5;   t8:=b6 and z5;   t9:=b6 and b7; 
if z4 then a:=0; end     if t8 then a:=1; end    if t9 then a:=2; end 

It has introduced four additional Boolean variables b6, b7, t8, 
and t9. In the single basic block model, simple instructions 
have larger mobility over pipeline stages, thus increasing 
capabilities for the pipeline optimizations. 
 

 

Figure 2 CAL action beht that is transformed to single basic block model. 

 
In general terms, the transformed CAL-program specifies a 

set V of variables and a set P of operators (statements or 
instructions). Set V includes input tokens, local variables and 
output tokens. For each operator p it specifies variable subsets 

inputs(p)  V and outputs(p)  V. For each variable v of bit-

size size(v), it specifies subsets prod(v)  P of operators-

producers and cons(v)  P of operators-consumers.  
It is also a source for computing a direct precedence 

relation Rdirect on the set P of operators. Very often, it is 
difficult to find out the precedence between two if-then 
statements, for instance, between “if t0 then a:=0; end” and 
“if t1 then b:=a; end”. In case, conditional variables t0 and t1 

https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Computer_system


take value true simultaneously, the first statement precedes the 
second one. At the same time, in case, t0 and t1 never take 
value true simultaneously, they do not precede each other.  

3.3 Analysis of CAL-programs 

Let T = {t1,…tn} be a set of conditional Boolean variables. 
Let Z = {z1,…,zk} be a set of primary Boolean variables, 
which are not expressed over other Boolean variables using 
Boolean operators. Sets T and Z may intersect, as a primary 
variable can be at the same time a conditional one. Let 
H = {h1(r),…,hn(r)} be a set of Boolean functions that 
evaluate the conditional variables of T over vector z of 
primary variables. Let F = { f(zi, zj) | i, j = 1,…,k, i < j } be a 
set of feasible Boolean functions for values of pairs of primary 
variables. 

We define two Boolean variables ti and tj of T as 

orthogonal if they never take value 1 simultaneously. We 

define a subset E  T of variables as orthogonal if all pairs of 

variables of E are orthogonal. Boolean equations as follows 

describe the orthogonal condition for two conditional variables 

ti and tj: 

 )()( zzz    (1) 

where  

),()(
}...1{,

ji

ji
kji

zzfANDz




  (2) 

and 

)()()( zhzhz ji   (3) 

In (1) – (3),  is universal quantifier,  is Boolean 

implication,  is Boolean disjunction, and  is Boolean 

negation. Boolean function (z) characterizes the set of vector 
values of primary variables, which are feasible during program 

execution. Boolean function (z) takes value 1 when ti and tj 
are orthogonal and takes value 0 otherwise.  

Equation (1) describes a partial tautology. We have to 

prove (z) = 1 when (z) = 1, and we do not need a proof of 

(z) = 1 when (z) = 0. The procedure of traversing all vector 

values of z and checking out the satisfiability of (z)(z) at 
each value has high computational complexity, therefore we 
reformulate this tautology problem to a satisfiability (SAT) 
one and solve it automatically with a contradiction tool. 

We define an orthogonal subset E of variables as complete 

if the equation as follows holds:  














 


i

i

e
Ee

hzz )(  (4) 

At any moment of program execution, exactly one variable of 

complete subset E takes value 1, and others take value 0. 
For example, the CAL-code shown in Figure 2 uses set 

Z = {t0, t2} of primary variables and set T = {t0, t1, t2, t3} of 
conditional variables. Sets R and T intersect. Vector 

r = (t0, t1), and function (r) is Boolean constant 1. Functions 

h0 = t0, h1 = t1, h2 = t0 and h3 = t1 evaluate the variables 
of T. Let us prove the variables t0 and t2 be orthogonal: 

1  (r) = 1  t0  (t0) = t0  t0 = 1. Moreover, 

according to (4), 1t0  t0 = 1. Therefore, orthogonal 
variables t0 and t2 constitute the complete subset. Similarly, 
subset {t1, t3} is also completely orthogonal. 

The second example code is the result of transform of two 
nested conditional instructions to the single basic block from 
Section 3.2. The set of primary variables is Z = {z4, z5}, and 
the set of conditional variables is T = {z4, t8, t9}. Sets Z and T 
intersect. In vector z = (z4, z5), variables z4 and z5 are 

independent, therefore function  = 1. According to (1) – (3), 

variables z4 and t8 are orthogonal: 1   = 1  z4   

(z4 z5) = 1. Similarly, z4 and t9 are orthogonal: 

1   =1  z4  (z4z5) = 1. Variables t8 and t9 are 

also orthogonal: 1   = 1  (z4 z5) (z4z5) = 1. 

Moreover, according to (4), 1  z4  t8  t9 = 1  z4   

(z4 z5) (z4 z5) = 1. Therefore, z4, t8 and t9 constitute 
the complete orthogonal subset. 

The third example code contains relational operators: 

t10:=x>y; t11:=x<=y; if t10 then a:=0; end  if t11 then a:=1; end 

The set Z = T = {t10, t11} of conditional variables is the 
same as the set of primary variables. Boolean function 

 = f(t10, t11) = t10  t11 (exclusive or) determines feasible 
values of pairs of primary variables t10 and t11. On values 00, 
01, 10, 11 of the vector arguments, it takes values 0, 1, 1, 0 
respectively. According to (1) -(3), the orthogonal condition is 

(t10  t11)  (t10  t11) = 1. Moreover, according to (4), 

(t10  t11)  t10  t11 = 1. Therefore, t10 and t11 constitute 
the complete orthogonal subset. The same procedure proves, 
that replacing “t10:=x>y;” with “t10:=x>=y;” makes variables 
t10 and t11 to be non-orthogonal. 

In our work, we investigate the orthogonal condition for 
various CAL operators (including relational operators) and 
various operands of these operators. 

The inputs and outputs of operators and the orthogonal 
relation between conditional variables provide evaluation of 
the operators direct precedence relation: Rdirect = { (0,1), (1,2), 
(1,3), (2,0), (4,12), (5,7), (5,10), (5,15), (6,7), (7,8), (7,9), 
(8,12), (8,19), (9,6), (10,11), (10,12), (11,13), (12,14), (13,14), 
(14,18), (15,18), (16,17), (16,18), (17,19) }. It describes a 
directed cyclic direct precedence graph. Rdirect without the 
feedback pairs (i.e. pairs (2,0) and (9,6) in our example) is a 
source of calculating its transitive closure R. Computing an 
anti-transitive relation from R allows to calculate a set succ(p) 
of all direct successors and a set pred(p) of all direct 

predecessors of each operator pP. 
We use relative delays of operators and an additive model 

to calculate the delays along the longest paths in the acyclic 
graph that we derive from relation R. Figure 3 presents a 
matrix G of all operator pairs longest paths lengths. Its rows 
and columns correspond to operators. The elements on the 
principal diagonal are operators’ relative delays. During 
pipeline synthesis, we also take into account delays associated 
with if-then instructions in case at least two of them are 
producers of the same variable. According to Figure 3, the 
critical path length equals 9.54. 

Another goal of analysis is determining feedback regions 

of state variables. A feedback region Fbr(s)  P of variable s 
is a subset of operators that include the successors of load 
instructions of s and predecessors of store instructions of s: 
















































)()(

)(

qpredpsucc

storeloadsFbr

ss storeqloadp

ss



 (5) 

where loads  P is a subset of read operators of s, and 

stores  P is a subset of write operators of s. the sample CAL-
actor has two state variables, s1 and s2. For s1, loads1 = {0}, 
stores1 = {2}, succ(0) = {1, 2, 3} and pred(2) = {0, 1}. 
According to (5), Fbr(s1) = {0, 1, 2}. For s2, loads2 = {6}, 
stores2 = {9}, succ(6) = {7, 8, 9, 12, 14, 18, 19}, and 
pred(9) = {5, 6, 7}. According to (5), Fbr(s2) = {6, 7, 9}. 

The longest path in region Fbr(s1) connects operators 0, 1 
and 2, therefore element (0,2) of matrix G in Figure 3 is the 
path length of 1.3. Similarly, the length of the longest path in 
region Fbr(s2) that connects operators 6, 7 and 9 is 2.32. As 
all operators of each feedback region must belong to one 
pipeline stage, the pipeline stage time may not be less than the 
maximum length over all regions. Therefore, inequality 

Tstage  2.32 must hold for the example CAL actor. 

 4 Speculative pipelining of a branched 
feedback dataflow program 

Given a dataflow program describing a system behavior, 
the objective is to minimize the number of pipeline stages 
denoted as S, and to find a best assignment of each operator p 
to a stage denoted as stage(p). 

4.1 Conflicts between operators in pipeline 

Given the delays of operators, matrix G of longest path 
lengths between the pairs of operators, and a constraint Tstage 
on the pipeline-stage time-period, we calculate the operator 
conflict relation C as: 

  
stageij TGandjijiC  |,  (6) 

In pair (i, j)C, operators i and j may not belong to the 
same pipeline stage. An operator nonconflict relation Cn is 

computed as Cn=R \ C. In pair (i, j)Cn, operator j may not be 

assigned to a stage that precedes the stage which operator i is 
assigned to. We may use set R instead of set Cn. To speed up 
the optimization process, we use instead of C and Cn their 
anti-transitive versions. Thus, for Tstage=4.0 and for matrix G 
shown in Figure 3, the operator conflict relation is C={(4,18), 
(5,8), (5,12), (5,19), (6,8), (6,12), (6,19), (7,8), (7,12), (7,19), 
(8,14), (8,18), (10,18), (11,18), (12,18), (13,18)}. 

For each pair (i, j)  C, inequality stage(i) < stage(j) holds, 

and for each pair (i, j)  Cn, inequality stage(i)  stage(j) 

holds. We evaluate the set cdpred(p)  P of direct 
predecessors on the relation (graph) C, and the set 

ncdpred(p)  P of direct predecessors on relation (graph) Cn 

for each operator p. We also evaluate the set cdsucc(p)  P of 

direct successors on C, and the set ncdsucc(p)  P of direct 
successors on Cn. 

4.2 ASAP and ALAP branched feedback program 
scheduling 

In a dataflow program without feedbacks, the downward 
and upward direction dataflow traversal algorithms, ASAP 
and ALAP [6-8] can generate asap and alap pipeline 
schedules on the conflict graph C. The algorithms do not meet 
the requirements of the dataflow programs that guarantee valid 
processing of feedbacks. We have extended these algorithms 
to map all operators of one feedback region to one stage, and 
called them FASAP and FALAP. Applying the extended 
algorithms to the sample action at Tstage=4.0 yields fasap and 
falap pipeline schedules shown in Figures 4 and 5. A function 

stage(p), pP maps the operators onto the set S of pipeline 
stages, and formally describes the schedule. 

Both FASAP and FALAP algorithms process conditional 
instructions in the same way: they distribute if-then 
instructions on pipeline stages according to relations C and Cn, 
and according to their operation strategies. They can distribute 
if-then instructions that produce the same variable in different 
manner. Thus, in Figure 4 (fasap), both instructions 12 and 13 
produce values of the same variable d, but FASAP assigns 
instruction 13 to stage 1, and assigns instruction 12 to stage 2. 

 
 











































































82.2

001.0

0094.2

011.0010.0

011.194.310.100.1

0094.20001.0

0094.200001.0

0004.400011.120.0

0014.400021.1030.0

0014.400021.130.0010.0

0024.500031.240.140.120.110.1

0000000000000.1

0096.600003.4012.300082.2

082.218.800025.5034.40022.204.422.1

014.428.800035.5044.40032.214.432.110.0

040.554.90037.161.676.240.556.246.258.340.558.2036.1

0014.400021.1030.0000000001.0

0000000000000000080.0

0000000000000000000.1

0000000000000000000.120.120.0

0000000000000000010.130.130.010.0

G

 

Figure 3 Longest paths lengths matrix G for action in Figure 2. 



 

Figure 4 Example 3-stage pipeline fasap with overall registers size of 147 bit.  

 

 

Figure 5 Example 3-stage pipeline falap with overall registers size of 156 bit.  

 

 

Figure 6 Stage instructions and registers between stages in fasap pipeline. 

 
As a result, it releases operator 13 from if-then in the form 

“d_:=77;”, and replaces instruction 12 with “if t0 then d:=a|c; 
else d:=d_; end”. Similarly, FASAP replaces operator 19 with 
“o2_:=c<<3;”, and replaces instruction 18 with “if t1 then 
o2:=e*f; else o2:=o2_; end”. FALAP assigns instructions 12 
and 13, as well as instructions 18 and 19, to the same stage 
(Figure 5). Our scheduling tool has merged the instructions in 
these pairs, resulting in if-then-else instructions as shown in 
Figure 1. It has removed instructions 11 and 17 in both fasap 
and falap. 

The fasap and falap schedules play key role in the pipeline 
synthesis and optimization. Firstly, they determine the 
minimal number of stages in pipeline; it is equal to three in 
our sample action. Secondly, they allow the evaluation of each 
operator mobility over pipeline stages and allow the 

evaluation of the mobility of each feedback fragment. For 
example, operator 10 has mobility of two, as it can execute in 
stage 1 at earliest (Figure 4) and can execute in stage 2 at 
latest (Figure 5). Feedback fragment Fbr(s1) has the mobility 
of three; it executes in stage 1 according to fasap, and 
executes in stage 3 according to falap. Feedback fragment 
Fbr(s2) has the mobility of one.  

Figure 6 shows an assignment of the instructions to the 
stages, and an assignment of variables to registers in schedule 
fasap. Our tool generates a CAL-representation of the 
pipeline. It represents each stage as a separate actor and 
represents all registers as ports. 

4.3 Overall pipeline registers size 

Once the minimal number of stages has been determined, 
moving operators and feedback fragments of operators from 
one stage to previous or next stages produces a space of all 
pipeline schedules for the given stage-time period Tstage. As 
shown in works [7, 8], the space size grows exponentially. For 
the given number of stages and for the generated stage(p), 

pP, we can calculate the overall registers size RSize as 





Vv

vlifetimevsizestageRSize )()()(  (7) 

)(min)(max)(
)()(

pstageqstagevlifetime
vprodpvconsq 

  (8) 

Applying (7) and (8) to the pipeline schedules fasap and 
falap yields to RSize = 147 bit and RSize= 156 bit respectively 
(Figure 4 and 5). Figures 6 shows that in the fasap schedule 
the size of registers between the first and second stage equals 
90 bit, and equals 57 bit between the second and third stage. 

4.4 Optimal scheduling of branched feedback 
programs 

In this paper, we extend the FLCSBB algorithm [8] for the 
branched feedback dataflow programs and call it FLCSBB. 
The key step in the extension is evaluating the mobility of 
feedback regions over pipeline stages in addition to the 
mobility of separate instructions. We determine the earliest 
and latest stages of each region, and construct a conflict 
relation (graph) on the set of regions, that is similar to the 
conflict relation (graph) C. The new graph provides a 
generation of valid assignments of feedback regions to 
pipeline stages. This is a master procedure, for which former 
LCSBB is a slave procedure. 

For the sample actor, FLCSBB has produced three 
combinations of assignments of feedback regions Fbr(s1) and 
Fbr(s2) to three pipeline stages: (1, 1), (2, 1), (3, 1). For each 
combination, it has generated a best pipeline, and obtained 
using (7) and (8) three values of Rsize: 126, 125, and 137 bit. 
Among them, the 3-stage pipeline flcsbb that is shown in 
Figure 7 has given a minimum of RSize = 125 bit.  

At the same assignment of the feedback regions, FASAP 
has given larger RSize of 148 bit against FLCSBB that has 
given 126 bit, and FALAP has given 156 bit against 137 bit by 
FLCSBB. This example proves that FLCSBB is capable of 
significant reduction of RSize. At the same time, FLCSBB can 
handle only small designs. 

 



 

Figure 7 Example 3-stage pipeline flcsbb with overall registers size of 125 

bit.  

5 Pipeline optimization based on heuristics 

The key task of a pipeline optimization technique without 
sharing resources is to choose for each instruction an 
appropriate stage. To obtain an optimal solution, we need a 
backtracking mechanism. To obtain a heuristic solution, we 
take iteratively two decisions: what operator (feedback 
fragment) is to be scheduled next, and what is the pipeline 
stage the operator has to be assigned to. In this Section, we 
propose two Feedback dataflow optimization Heuristic 
Algorithms: FHADD uses Dynamic heuristics for choosing 
the operator and Dynamic heuristics for choosing the stage; 
FHASD uses Static heuristics for choosing the operator and 
uses Dynamic heuristics for choosing the stage. These 
algorithms explores a concept of partially generated pipeline 
schedule. 

5.1 Optimization flow 

This Section gives an overview of how FHADD works. 
Firstly, it recognizes the feedback fragments of instructions, 
computes a precedence relation on the set of fragments, and 
determines their lifetime intervals over the pipeline stages. In 
the sample CAL-action, there are two feedback fragments, 
Fbr(s1) and Fbr(s2). In 3-stage pipelines, Fbr(s1) lives over 
the stages from 1 to 3, and Fbr(s2) lives within stage 1 (see 
Figures 4 and 5). FHADD performs a traversal of all 
combinations of stages for fragments, assigns the instructions 
of these fragments to corresponding stages, and searches for 
an optimal assignment of other instructions (that are out of the 
fragments) to the stages. Bellow, we consider the assignment 
of Fbr(s1) to stage 2 and consider the assignment of Fbr(s2) to 
stage 1. 

On our sample CAL-actor, Figures 8 and 9 depict a 
systematic pipeline heuristic optimization flow that FHADD 
implements. In the initial state (Figure 8a), FHADD assigns 
operators 0, 1, 2 of Fbr(s1) to stage 2, and assigns operators 
6, 7, 9 of Fbr(s2) to stage 1. Then it associates a range of 
stages with each operator p that is out of the feedback 
fragments. We determine this range by running the FASAP 
and FALAP algorithms. 

We denote a lower bound of the operator’s range as 
early(p) and denote an upper bound as late(p). When the range 
includes one stage, the corresponding operator p has mobility 
one, is assigned to this stage, and equality 

stage(p) = early(p) = late(p) holds. When FHADD has 
assigned only a part of operators on stages, it cannot calculate 
the accurate value of Rsize. Instead, it estimates a lower bound 
of the overall pipeline registers size (rslb). In this Section, we 
report only values of rslb, and describe details of the 
estimation in the next Section. 

In Figure 8a there are five operators, i.e. 5, 8, 12, 14 and 
18, that have mobility one and are initially assigned to stages 
1, 2, 2, 3 and 3 respectively. Other operators have a mobility 
larger than one. Such operators (i.e. 3, 4, 10, 13, 15, 16, 19 
and 20) are assigned to stages depending on rslb, as the size of 
operator’s inputs is not equal to the size of operator’s outputs. 
Figure 8a reports the value of rslb for each such operator and 
each available stage. Operators 11 and 17 that have the same 
size of inputs and outputs may move over stages without 
changing rslb. FHADD assigns such operators to stages at the 
end of scheduling process. 

For each operator p whose range of available stages 
satisfies inequality early(p) < late(p), FHADD evaluates a 

weight (p), the larger value of which indicates its prominence 
for good scheduling. It selects an operator p with a maximum 

of a heuristic parameter (p) and assigns it to a stage(p), 
which provides a minimum of rslb. In this Section, we only 

report values of (p), and introduce a method of their 
computation in Section 5.3. 

Thus, at the scheduling steps from a) to h) (Figure 8), 
FHADD chooses operators p = 3, 16, 10, 4, 13, 19, 20 and 15 

with maximum weights of (p) = 0.2495, 0.2267, 0.2244, 
0.1939, 0.1794, 0.1939, 0.1568 and 0.1648, and assigns them 
to stages 2, 2, 1, 2, 2, 2, 2 and 3 respectively. The assignment 
of an operator to a stage can make tighter a stage range of 
other operators. The lower bound of the overall pipeline 
registers size can only grow during systematic assignment of 
operators to stages (Figure 9): rslb = 80, 81, 82, 82, 82, 90, 
102 and 126. This growth is due to the increase of the lower 
bound of variables lifetimes. Thus, variables t1, t0, o2, o3 and 
b has increased their lifetime at scheduling steps b), c), f), g) 
and h) (Figure 9).  

5.2 Lower and upper bounds of registers size 

Assume that the lower bound early(p) of operator p has 
been updated to early’(p). Then we can calculate a new lower 
bound early’(q) of successor q of operator p applying (9) to 
the current early(q) and the new early’(p). 
























.),(

),(')(

)(),('

,1)(')(

)(,1)('

)('

otherwiseqearly

pearlyqearly

andpncdsuccqifpearly

pearlyqearly

andpcdsuccqifpearly

qearly

   (9) 

Assume that the upper bound late(p) of operator p has been 

updated to late’(p). Then we can calculate a new upper bound 

late’(q) of a predecessor q of the operator p applying (10) to 

the current late(q) and the new late’(p). 

 
 
 
 



 
Figure 8 Assignment of operators to stages in example 3-stage pipeline; operator 11 and 17 are assigned to stage 2 at the end of optimization process and are 

removed after reconstruction of conditional instructions 

 

Figure 9 Lower bound of variables lifetimes over pipeline stages in example 3-stage pipeline 
 

 
























.),(

),(')(

)(),('

,1)(')(

)(,1)('

)('

otherwiseqlate

plateqlate

andpncdpredqifplate

plateqlate

andpcdpredqifplate

qlate

 (10)

 

The lower bound rslb of the overall pipeline registers size is 

a key heuristic parameter for pipeline optimization. We 

evaluate it using (11) and (12). 

 



Vv

vlifestimvsizerslb )(  (11) 

 )()()( vearlyvlateposvlifestim   (12) 

In (12), pos(x) = 0 if x  0 and pos(x) = x otherwise. The 

upper bound early(v) is the earliest stage of producers of 

variable v, and lower bound late(v) is the latest stage of 

consumers of v. The initialization of FHADD assigns a 

minimum of falap(p) on all pprod(v) to early(v), and assigns 

a maximum of fasap(p) on all pcons(v) to late(v). Whenever 

the upper bound late(p) has been updated to late’(p) for any 

pprod(v), a new upper bound early’(v) is calculated applying 

(13) to the current early(v) and the new late’(p). 















otherwisevearly

platevearly

andpoutputsvifplate

vearly

),(

),(')(

)(),('

)('
 (13)

 

Similarly, whenever the lower bound early(p) has been 

updated to early’(p) for any pcons(v), a new lower bound 

late’(v) is calculated applying (14) to the current late(v) and 

the new early’(p). 

















otherwisevlate

pearlyvlate

andpinputsvifpearly

vlate

),(

),(')(

)(),('

)('
 (14) 

FHADD explores (9) – (14) at each step of pipeline 

optimization flow. 

5.3 Heuristics of choosing operators and stages 

Now our focus is on the operators (instructions) that have 
mobility larger than one. At each step of optimization flow, 
FHADD uses heuristics for choosing a next-scheduled 
operator (instruction) and uses heuristics for choosing an 
available stage for the operator assignment. As FHADD does 
not perform backtracking, these two decisions significantly 
influence the final pipeline parameters. 

To take the first decision, we introduce for operator p a 

heuristic weight (p) whose maximal value indicates a 
preferable operator for scheduling: 








1

)()(
i

ii pp  (15) 

where i(p) is a heuristic parameter; i is a heuristic factor 

such that 1
...1

  ki i ; k is the number of parameters. Each 

parameter i(p) varies its value from 0 to 1. A higher value of 
the parameter implies better properties of pipeline. In this 

paper, we explore four heuristic parameters 1  4. Parameter 

1 evaluates the operator mobility, and parameter 4 evaluates 
the difference between the size of the operator inputs and the 

size of its outputs. Parameter 2 evaluates rslb-difference over 

operator’s available stages, and parameter 3 evaluates rslb-
difference over non-scheduled operators.  

To take the second decision, we use rslb as heuristics 
whose minimal value indicates a preferable stage to assign the 
operator. 

5.4 Heuristic algorithms FHADD and FHASD for 
feedback dataflow programs 

Algorithm 1 assigns the feedback fragments to the pipeline 
stages, and maps other instructions onto the stages by means 
of calling algorithm HADD or algorithm HASD depending on 
the value of mode. It generates various valid combinations of 
fragments assignment by means of using a precedence relation 
on the set of feedback fragments, available early and late 
stages for each fragment, and a mobility of each fragment over 
the stages. HADD explores dynamic heuristics, and HASD 
explores both static and dynamic heuristics. They use the 
mapping of the fragments onto the stages as input and 
generate the mapping stage of other operators onto the stages.  

5.5 Heuristic algorithm HADD 

Algorithm 2 summarizes HADD as follows. Firstly, it 
initializes the optimization state by calculating the initial 
values of early and late for all operators and calculating initial 
values of early, late and rslb for all variables. Secondly, in a 
loop, it iteratively assigns nonscheduled operators of Q to the 
most preferable pipeline stages. In order to choose the best 
operator for scheduling, HADD computes a value of rslb(q, s), 

 

which is evaluated by function UpdateOptimizationState in 
case the nonscheduled operator q was assigned to the available 
pipeline stage s in the current optimization state. 

Then it estimates the vector (q) of dynamic heuristic 
parameters executing function heuristicsEvaluateD, and 

calculates the operator’s weight (q). After that, it selects the 

best operator operBest yielding a maximum of  and the best 
stage stageBest yielding a minimum of rslb and recalculates 
the optimization state after the assignment of operBest to 
stageBest by executing function UpdateOptimizationState. 
The actual value true of the first parameter means that the 
function computes and returns a new value of the arrays stage, 
early and late for the operators of Q, a new value of the arrays 
earlyv, latev and rslb for the variables of V, and finally returns 
a value of RSize. The arrays earlyv and latev contain early(v) 

and late(v) for all vV. When the first parameter is equal to 
false, the function only computes and returns the value of rslb.  

5.6 Updating the optimization state 

Algorithm 3 describes the OptimizationStateUpdate 
procedure that uses two lists. It works when HADD assigns 
operator q to stage s. List Pupd includes operator q or other 
operator p whose bounding stages early(p) and/or late(p) are 
updated due to updating the state of q. List Vupd includes 
variable v whose bounding stages early(v) and/or late(v) are 
updated due to updating the state of q. 

Firstly, the algorithm sorts list Pupd on ascending and then 
iteratively extracts the first operator f from the list. It computes 
a new value of early’(p) for each successor p of operator f. If 
early’(p) is unequal to early(p), the algorithm considers p as 
updated and includes it in Pupd. After that it computes a new 

value of late’(v) for each vinput(f). If late’(v) is unequal to 
late(v), v is included in Vupd. Secondly, the algorithm sorts list 
Pupd on descending and iteratively extracts the first operator f 
from the list. It computes a new value of late’(p) for each 
predecessor p of operator f. If late’(p) is unequal to late(p), it 
considers p as updated and includes it in Pupd. Then it 

computes a new value of early’(v) for each voutput(f). 

 
Algorithm 1: FHADD-FHASD 

 

Input: A mode{FHADD, FHASD} of algorithm operation 

Input: A set F of feedback fragments 
Input: A set S of pipeline stages 

Input: A precedence relation PF on set F 

Input: An earliest stage earlyf(f)S of fragment fF 

Input: A latest stage latef(f)S of fragment fF 

Output: A best function stageFB(f) of mapping F onto S 

Output: A best function stageB(p) of mapping operators P onto S 
Output: A global optimum GRSize of overall pipeline registers size  

Intermediate: Current mapping stagef of F onto S 

Intermediate: Current mapping stage of P onto S 

GRSize   

while New assignment of fragments to stages exists do 

stagef  GenerateNewAssignment(F, S, PF, earlyf, latef) 
if mode=FHADD then  

RSize  HADD (F, stagef, stage) 

else  

RSize  HASD (F, stagef, stage) 

if GRSize > RSize then  

GRSize  Rsize     stageFB  stagef    stageB  stage 
return stageFB, stageB, GRSize 

 

 



  

 
Algorithm 2: HADD 

 
Input: A set F of feedback fragments 

Input: A function stagef(f) which maps fragments F onto stages S 
Input: A set V of variables 

Input: A set P of operators 

Input: A set S of pipeline stages 

Input: A set inputs(p)V of variables for operator pP 

Input: A set outputs(p)V of variables for operator pP 

Input: A set producers(v)P of operators for variable vV 

Input: A set consumers(v)P of operators for variable vV 

Input: A set cdpred(p)P of predecessors of operator pP on conflict 

graph C 

Input: A set cdsucc(p)P of successors of operator pP on conflict 

graph C 

Input: A set ncdpred(p)P of predecessors of operator pP on 
nonconflict graph Cn 

Input: A set ncdsucc(p)P of successors of operator pP on nonconflict 

graph Cn 

Input: An initially earliest stage fasap(p)S of operator pP 

Input: An initially latest stage falap(p)S of operator pP 

Input: A vector  of heuristic factors 
Output: A function stage(p) which maps operators P onto stages S 

Output: An overall pipeline registers size RSize 

RSize  0 

for pP do 

early(p)  fasap(p)     late(p)  falap(p) 

for vV do 

early(v)  |S| 

for pproducers(v) do if early(v) > falap(p) then early(v) falap(p) 

late(v)  0 

for pconsumers(v) do if late(v) < fasap(p) then late(v)  fasap(p) 

rslb(v)  size(v)  pos(late(v)  early(v)) 

RSize  RSize + rslb(v) 

Q  P 

while Q   do 

for qQ do 

if early(q) = late(q) then 

stage(q)  early(q)     Q  Q / {q}     continue 

for s  early(q) to late(q) do 

rslb(q, s)  OptimizationStateUpdate(false, Q, q, s, V, S, 
inputs, outputs, cdpred, cdsucc, ncdpred, 

ncdsucc, stage, early, late, earlyv, latev, rslb) 

if Q =  then break 

weightMax  1 

for qQ do 

if qf and fF then operBest  q  break 

else 

(q)  heuristicsEvaluateD(Q, early, late, rslb,  

inputs, outputs) 

(q)  0 

for k  1 to || do 

(q)  (q) + k  k(q) 

if weightMax < (q) then  

operBest  q     weightMax  (q) 

if qf and fF then  stageBest  stagef(f) else 

rslbMin   

for s  early(operBest) to late(operBest) do 

if rslbMin > rslb(operBest, s) then 

stageBest  s     rslbMin  rslb(operBest, s) 

stage(operBest)  stageBest 

RSize  OptimizationStateUpdate(true, Q, operBest, stageBest, V, S, 
inputs, outputs, cdpred, cdsucc, ncdpred, 

ncdsucc, stage, early, late, earlyv, latev, rslb) 

Q  Q \ {operBest} 
return stage, RSize 

 

 

 
Algorithm 3: OptimizationStateUpdate 

 
Input: Mode of algorithm operation 
Input: A set Q of nonscheduled operators 
Input: An operator q that is being scheduled 
Input: A stage s that q is assigned to 
Input: A set V of variables 
Input: A set S of pipeline stages 
Input: An overall pipeline registers size RSize 

Input: An array inputs of sets inputs(p)V of variables for pP 

Input: An array outputs of sets outputs(p)V of variables for pP 

Input: An array cdpred of sets cdpred(p)P of predecessors of pP on 
conflict graph C 

Input: An array cdsucc of sets cdsucc(p)P of successors of pP on 
conflict graph C 

Input: An array ncdpred of sets ncdpred(p)P of predecessors of pP 
on nonconflict graph Cn 

Input: An array ncdsucc of sets ncdsucc(p)P of successors of pP on 
nonconflict graph Cn 

InOut: A function stage(p) which maps operators of Q onto stages of S 

InOut: An array early of stages early(p)S for pQ 

InOut: An array late of stages late(p)S for pQ 

InOut: An array earlyv of stages early(v)S for vV 

InOut: An array latev of stages late(v)S for vV 

InOut: An array rslb of pipeline registers sizes rslb(v) for vV 
Output: An updated overall pipeline registers size RSize’ 

Pupd       Vupd       RSize’  RSize     early’(q)  late’(q)  s 

if  early(q)  early’(q)  then 

Pupd  {q} 

while  Pupd    do 

f  getFirstOperator(Pupd) 
if  Mode  then  

early(f)  early’(f) 

if  early(f) = late(f)  then  stage(f)  early(f) 

for  p  cdsucc(f)  ncdsucc(f)  do 

if  p  cdsucc(f)  and  early(p) < early’(f) + 1  then  

early’(p)  early’(f) + 1 

if  p  ncdsucc(f)  and  early(p) < early’(f)  then  

early’(p)  early’(f) 

if  p  Pupd  and  early’(p)  early(p)  then   
InsertAscending(p, Pupd) 

for vinput(f) do 
if  late(v) < early’(f)  then 

late’(v)  early’(f)     early’(v)  early(v) 

Vupd  Vupd  {v} 

if  late(q)  late’(q)  then 

Pupd  {q} 

while  Pupd    do 

f  getFirstOperator(Pupd) 
if  Mode  then  

late(f)  late’(f) 

if  early(f) = late(f)  then  stage(f)  early(f) 

for  p  cdpred(f)  ncdpred(f)  do 

if  p  cdpred(f)  and  late(p) > late’(f)  1  then  

late’(p)  late’(f)  1 

if  p  ncdpred(f)  and  late(p) > late’(f)  then  

late’(p)  late’(f) 

if  p  Pupd  and  late’(p)  late(p)  then  
InsertDescending(p, Pupd) 

for voutput(f) do 
if  early(v) > late’(f)  then 

early’(v)  late’(f)     late’(v)  late(v) 

Vupd  Vupd  {v} 

for  v  Vupd  do 

rslb’(v)  size(v)  pos(late’(v)  early’(v)) 

RSize’  RSize’ + rslb’(v)  rslb(v) 
if  Mode  then  

early(v)  early’(v)   late(v)  late’(v)   rslb(v)  rslb’(v) 
return   RSize’ 

 

 



If early’(v) is unequal to early(v), v is included in Vupd. 

Finally, the algorithm computes new values of rslb’(v), vVupd 
and RSize’. It returns a value of RSize’ and updates the values 
of early’(p), late’(p), early’(v), late’(v) and rslb’(v) when 
Mode equals true. 

5.7 Heuristic algorithm HASD 

To speed up the optimization process, we have developed 
an algorithm HASD (alternative to HADD), which uses static 
heuristics for ordering operators before their assignment to 
pipeline stages and uses dynamic heuristics for choosing a 
stage at each step of optimization process. Algorithm 4 
summarizes HASD as follows. Firstly, it initializes the 

optimization state. Secondly, it computes vector (p) of static 
heuristic parameters by means of calling function 

heuristicsEvaluateS, and estimates a static weight (p) of each 

operator pP. HASD sorts operators of P on descending of , 
and generates an order on P by means of calling function 
operatorsOrdering. It puts the operators of feedback 
fragments F in the beginning of the sorted list. Function 
orderInverse generates an inverse order1. Then in a loop on 
variable i, HASD iteratively chooses an operator 
operBest = order1(i) and assigns it to stagef(f) in case the 

operator is in a feedback fragment fF. Otherwise, it 
computes a value of rslb(operBest, s) using function 
UpdateOptimizationState, assuming the nonscheduled 
operator operBest were allocated on an available pipeline 
stage s. The stageBest whose rslb(operBest, stageBest) is 
minimal is selected for the allocation of operBest. Function 
UpdateOptimizationState whose first parameter takes value 
true recalculates the optimization state after assignment of 
operBest to stageBest. 

6 Genetic algorithm for tuning heuristics 

The heuristic weight (p) determines the dynamic ordering 
of operators during pipeline optimization. The generated order 
significantly influences the overall pipeline registers size. The 
next operator choice depends not only on the heuristic 

parameters , but also on the heuristic factors . A high value 

of i shows importance of the corresponding parameter i in 

the weight (p). A low value of i is taken when the 

corresponding parameter i poorly recognizes best solutions. 

Finding an optimal value of vector  is a complex problem, as 
the pipeline registers size has many local minima in the 
multidimensional solution space. In this paper, we develop a 
genetic algorithm (GA) for efficiently solving this problem.  

6.1 Basics of the genetic algorithm 

An individual  = (1,…,k) is a vector of heuristic 

factors. A gen i is a heuristic factor. A population is a set of 
individuals that exist during the genetic algorithm operation. A 
generation is a set of individuals that exist during one iteration 

of the genetic algorithm. A fitness function F() of individual 

 represents quality of the corresponding pipeline solution. In 
the pipeline optimization problem, this function is determined 

over the objective function that is a minimum of RSize() 

obtained by HADD or HASD. Fitness function F() is a 

difference between a maximum of RSize(worst) of the worst 

individual and RSize() of individual . 

 

6.2 Genetic operations 

The fitness proportionate selection (FPS) normalizes each 

fitness value F() by dividing it by the sum of all fitness 
values. The sum of normalized values equals 1, and the values 
can be considered as probabilities. The worst parent selection 

 
Algorithm 4: HASD 

 
Input: A set F of feedback fragments 

Input: A function stagef(f) which maps fragments F onto stages S 
Input: A set V of variables 

Input: A set P of operators 

Input: A set S of pipeline stages 

Input: A set inputs(p)V of variables for operator pP 

Input: A set outputs(p)V of variables for operator pP 

Input: A set producers(v)P of operators for variable vV 

Input: A set consumers(v)P of operators for variable vV 

Input: A set cdpred(p)P of predecessors of operator pP on conflict 

graph C 

Input: A set cdsucc(p)P of successors of operator pP on conflict 

graph C 

Input: A set ncdpred(p)P of predecessors of operator pP on 
nonconflict graph Cn 

Input: A set ncdsucc(p)P of successors of operator pP on nonconflict 

graph Cn 

Input: An initially earliest stage fasap(p)S of operator pP 

Input: An initially latest stage falap(p)S of operator pP 

Input: A vector  of heuristic factors 
Output: A function stage(p) which maps operators P onto stages S 

Output: An overall pipeline registers size RSize 

RSize  0 

for pP do   early(p)  fasap(p)     late(p)  falap(p) 

for vV do 

early(v)  |S| 

for pproducers(v) do if early(v) > falap(p) then early(v) falap(p) 

late(v)  0 

for pconsumers(v) do if late(v) < fasap(p) then late(v)  fasap(p) 

rslb(v)  size(v)  pos(late(v)  early(v)) 

RSize  RSize + rslb(v) 

for p  1 to |P| do 

(p)  heuristicsEvaluateS(fasap, falap, inputs, outputs) 

(p)  0 

for k  1 to || do   (p)  (p) + k  k(p) 

order  operatorsOrdering(P, F, stagef, ) 

order1  orderInverse(order) 

Q  P 

for i  1 to |P| do 

operBest  order-1(i) 

if early(operBest) = late(operBest) then 

stage(operBest)  early(operBest) 

else 

if qf and fF then  stageBest  stagef(f) else 

rslbMin   

for s  early(operBest) to late(operBest) do 

rslb  optimizationStateUpdate(false, Q, operBest, s, 

V, inputs, outputs, cdpred, cdsucc, ncdpred, 
ncdsucc, stage, early, late, earlyv, latev, rslb) 

if rslbMin > rslb then   stageBest  s    rslbMin  rslb 

stage(p)  stageBest 

RSize  optimizationStateUpdate(true, Q, operBest, stageBest, 

V, inputs, outputs, cdpred, cdsucc, ncdpred, ncdsucc, 

stage, early, late, earlyv, latev, rslb) 

Q  Q / {operBest} 

return stage, RSize 

 

 



(WPS) chooses a parent with the worst fitness value and 
replaces it in the next generation with the best offspring in 
case the fitness value of the offspring is larger than the fitness 
value of a parent. The worst individual selection (WIS) 
chooses the individual with the worst fitness value in the 
current generation, and replaces it with the best offspring in 
case the fitness value of this offspring is larger than fitness 
value of the individual.  

The half uniform crossover (HUX) randomly chooses a 
half of gen indices that are represented with a subset K1 of set 
K = 1,…,k. HUX is a partially matched crossover. The simple 
recombination of parent's gens is not sufficient for obtaining a 
valid offspring, as for new individual the sum of heuristic 
factors may appear unequal to 1. We differentiate two cases as 
follows for two parents.  

Case 1. The fitness values of 1 and 2 are approximately 
equal. In this case, HUX tries to save the genotype of parent 

1 in the first offspring and the genotype of parent 2 in the 

second offspring. It constructs the first offspring 3 of original 

gens of parent 1 that are indexed with iK1, and of 

normalized gens of parent 2 that are indexed with iK\K1. It 

constructs the second offspring 4 of original gens of parent 

2 that are indexed with iK\K1 and of normalized gens of 

parent 1 that are indexed with iK1. HUX performs the gen 
normalization with the ratios as follows:  





1

1

Ki

ia   (16) 





1

2

Ki

ib   (17) 

   ba  111  (18) 

ab2  (19) 

Ratio 1 aims at normalizing the gens of 2 in offspring 3: 

3
i=12

i for iK\K1. Ratio 2 aims at normalizing the gens 

of 1 in offspring 4: 4
i=21

i for iK1.  

Case 2. The fitness value of 1 significantly exceeds the 

fitness value of 2, In this case, HUX tries to save the 

genotype of parent 1 in both offspring. The first offspring is 

the same as 3. HUX constructs the second offspring 5 of the 

original gens of parent 1 that are indexed with iK\K1, and of 

the normalized gens of 2 that are indexed with iK1. The gen 

normalization is performed as 5
i=2

i/2 for iK1.  

The single offspring crossover (SOX) takes two parents, 1 

and 2 and produces one individual. Firstly, it computes the 

heuristic factor weights  and  as:  

 )()(/)( 211  FFF   (20) 

 1  (21) 

Secondly, it computes the single offspring  as a vector of 
weighted sum of parent gens:  

21

iii         for i=1…k. (22) 

The two gens mutation (TGM) alters two heuristic factor 

values in one parent 1 from its initial state. It selects heuristic 

factors 1
i and 1

j randomly, and calculates corresponding 

factor values in the single offspring  using a mutation factor 

 whose value satisfies inequality 0<<1:  

1

i   (23) 

  1

ii
 (24) 

  1

jj
 (25) 

Algorithm 5 summarizes GA. It consists of an initialization 
stage and a loop that repeatedly updates the population by 
means of genetic operations in such a way as to find a pipeline 
schedule with a minimal overall registers size. The exit 
condition can be defined over the maximum number of 
iterations, or over a CPU time constraint. To determine the 
operation that will be performed next, either crossover or 
mutation, we use probabilities pcross and pmut. We can exploit 
GA in two modes: 1) while actually solving the optimization 
problem in real time, and 2) during accumulation of 
knowledge on the best heuristics factors. We can apply GA to 
both HADD and HASD.  

 

 

7 Results 

We have developed a pipelines synthesis and optimization 
tool and have integrated it with the CAL HLS flow based on 
Xronos [45]. We have conducted experiments on several test 
benches, including Bayer filter, forward discrete cosine 
transform, inverse discrete cosine transform, random TB1000-
TB5000 benchmarks [7 - 9] and others. We report results 
obtained on Intel® Core™ i3 CPU 550 @ 3.20 GHz 3.19 
GHz, 4 GB. 

7.1 Results for FHADD 

In the design TB1000 of 1000 operators, we use relative 
delays of operators. The maximum delay equals 3.0 and the 
sum of all delays equals 906. The delay over the critical path 
in the data flow graph equals 89.7. Table 1 and Figure 10 

 
Algorithm 5: Genetic algorithm for tuning heuristics 

 
Produce initial population by repeatedly generating k - 1 random numbers 

i; i = 1,…, k-1 of the range [0,1], order the numbers on ascending, and 

compute an individual as  = (1, 2 -1,…,k-1 - k-2, 1 - k-1), and add 

it to the population. 

Perform HADD() or HASD() for each individual , find the worst 

individual, compute fitness function F() for all individual, and reorder 

the individuals on descending of F(). 
while not Exit_Condition do 

Randomly choose crossover or mutation using probabilities pcross 

and pmut. 

Randomly choose parents using selection operation FPS.  

Perform crossover HUCX or SOCX and mutation TGM 

operations, and obtain offsprings i; i=1,…,m. 

Perform HADD(i) or HASD(i) and produce F(i) for each 

offspring i.  

Perform selection operation WPS or WIS to update population. 

return HADD(best) or HASD(best) 

 

 



report results for FHADD and for various number of stages. 
Increasing in the stage number from 2 to 14 implies 
decreasing in the stage-time period from 45.43 to 7.33. 
Multiplying the number of stages by the stage-time period 
yields the all-stages-time (columns 1-3) that fluctuates from 
90.87 to 109.21. The non-ideal packing of neighbor operators 
in one stage explains these fluctuations. 

 
Table 1 

Results for FHADD on TB1000, from 2 to 14 pipeline stages 

Stages 

Stage 

time 

period 

All 

stages 

time 

Registers 

size, bit 

Run 

time, s 

Size of 

list Pupd 

Size of 

list Vupd 

2 45.43 90.87 477 0.004 1.46 1.32 

3 30.71 92.14 854 0.162 1.04 0.97 

4 23.78 95.14 1288 0.701 1.10 1.04 

5 19.45 97.27 1861 0.952 1.07 1.01 

6 15.99 95.94 2329 1.261 1.16 1.09 

7 14.26 99.81 2550 1.818 1.21 1.16 

8 12.53 100.21 3090 3.498 1.31 1.27 

9 11.66 104.94 3595 12.337 1.87 1.86 

10 10.79 107.94 4095 10.976 1.96 1.95 

11 9.93 109.21 4474 6.866 1.70 1.70 

12 9.06 108.74 5081 3.486 1.56 1.55 

13 8.20 106.55 5537 9.248 1.87 1.88 

14 7.33 102.62 6328 3.161 1.55 1.55 

 On average: 1.45 1.41 
 

 

 
Figure 10 Number of iterations in FHADD (solid), total number of mobility-

one-operators (dash), number of static mobility-one-operators (square dot), 
number of dynamic mobility-one-operators (round dot), and average number 

of operator’s predecessors/successors (wide dash) vs. stage count. 

 
While increasing the number of stages from 2 to 14, the 

overall pipeline registers size grows from 477 to 6328 bit near 
linearly. The FHADD runtime grows rapidly for the stages 
count until 9. Then it fluctuates. We can explain such behavior 
in the way as follows. Firstly, the FHADD runtime directly 
depends on the number of iterations in its main loop (Figure 
10, solid). This number grows from 76 to 714, and then it 
wavers near 700. Secondly, the number of iterations is larger 
when the number of scheduled mobility-one-operators is 
smaller (Figure 10, dash). There are two sources for such 
mobility: 1) the equality of the stages that ASAP and ALAP 
have assigned to the operator (static mobility-one); 2) the 
reduction of the operator mobility to one due to the 
assignment of other operators to stages (dynamic mobility-
one). While the stage count increases from 2 to 9, the number 
of static mobility-one-operators falls in TB1000 from 890 
down to 32 (square dot), and the number of dynamic mobility-
one-operators remains small but increases (round dot). 
Consequently, the FHADD runtime grows from 0.004 s to 

12.337 s. Thirdly, after 9 stages the number of static mobility-
one-operators begins to grow due to the stage time period 
approaches to the maximal operator delay. In this case, it is 
difficult to obtain ideal packing of neighbor operators in one 
stage. The number of dynamic mobility-one-operators is close 
to that of the static ones. Both do not reduce the number of 
iterations, therefore the FHADD runtime remains high. 
Fourthly, the FHADD runtime significantly depends on the 
runtime of OptimizationStateUpdate. In its turn, this runtime 
crucially depends on the size of lists/sets Pupd, Vupd, cdsucc, 
cdpred, ncdsucc and ncdpred. According to Table 1, lists Pupd 
and Vupd include a very small number of operators and 
variables, the maximum runtime occurs when Pupd, Vupd have 
the maximal size. Fifthly, the heuristic factors that the genetic 
algorithm finds can significantly vary the overall registers size 
and vary the number of dynamic mobility-one-operators. The 
factors that produce the lowest registers size often generate the 
smaller number of dynamic mobility-one-operators, thereby 
increasing the FHADD runtime. 

Figure 10, wide dash shows the size of cdsucc and cdpred 
vs. stage count. The size of 267 is maximal for 3 stages, and 
then it monotonically falls to 111 at 14 stages. The total size of 
sets ncdsucc and ncdpred is small and equals 3.63 on average.  

Table 2 shows another source of the reducing the FHADD 
runtime, i.e. the transition from the operators’ conflict relation 
to its minimal anti-transitive analogue. The analogue reduces 

the number of operator pairs by 36.69%  42.74% and 

decreases the runtime by 21.2%  29.3%.  
Table 3 compares the new FHADD algorithm against the 

best-known HT technique [8] on five benchmarks of different 
size. FHADD’s gain is 10.63% over HT regarding the quality 
of pipelines and its gain is 9.5x on average regarding the 
runtime. 

 

 

 

Table 2 

Influence of anti-transitivity on FHADD runtime for 4-stage pipelines 

Parameter 
Test bench size 

1000 2000 3000 4000 5000 

FHADD runtime (sec) 0.94 2.59 8.50 13.43 10.48 

Reduction of conflict relation 

size (%) 
42.74 36.69 38.61 38.40 42.51 

FHADD runtime after 
relation size reduction (sec) 

0.69 2.04 6.33 9.50 7.62 

Decrease in FHADD runtime 

(%) 
26.6 21.2 25.5 29.3 27.3 

 

Table 3 

Results for FHADD and HT on TB1000-TB5000, 4 stages 
 

Design 

Size 

Pipeline registers size CPU time 

FHADD 
(bit) 

HT 
(bit) 

% 
FHADD 

(sec) 
HT 

(sec) 
times 

1000 1288 1469 14.05 0.687 12.00 17.5 

2000 1529 1712 11.97 2.044 8.00 3.9 

3000 2016 2192 8.73 6.326 29.00 4.6 

4000 2735 3067 12.14 9.499 62.00 6.5 

5000 3123 3318 6.24 7.615 115.00 15.1 

On average 10.63  9.5 
 



7.2 Results for FHASD 

Table 4 reports results obtained for FHASD on TB1000 at 
various stage count. RSize grows from 481 to 6393 near 
linearly with increasing the number of stages from 2 to 14. For 
each number, FHASD gives RSize higher to FHADD. The 
gain of FHADD is 6.07% on average. At the same time, 
FHASD is much faster to FHADD, with the gain of 345.3 
times on average.  

 

7.3 Results for genetic algorithm 

Our numerous experiments prove that the heuristic 
algorithm FHADD gives about 70 % of the reduction 
regarding a minimum of the overall pipelines registers size, 
and the genetic algorithm that tunes the heuristic factors in 
FHADD gives the rest 30 % of the reduction. 

GA provides generating the best heuristic factor values for 
various designs and various number of pipeline stages. Figure 
11 shows cumulative distribution probability functions (CDFs) 
generated on the best heuristic factors that result from 
numerous optimization runs on designs TB1000-TB5000. The 
best average values of heuristic factors are as follows: 

1=0.292 (mobility of operators), 2=0.466 (rslb over stages), 

3=0.056 (rslb over operators) and 4=0.186 (difference 
between inputs size and outputs size of operator). Each factor 

takes value in a restricted interval. Thus, 2 should be between 

0.15 and 0.9, 1 should be between 0.0 and 0.6, 4 should be 

between 0.0 and 0.55 and 3 should be between 0.0 and 0.25. 
CDFs are an efficient facility for the generation of initial  

 

 
Figure 11 Cumulative probability distribution functions for best heuristic 

factors: 1 (dash), 2 (solid), 3 (round dot), 4 (dash dot). 

 
Figure 12 Overall registers size (bit) of 3-stage pipeline optimized by 

crossover HUX (solid), SOX (round dot) and CDF-HUX (dash) vs. population 
size (average on 5 run of TB1000 for each crossover). 

 
population in GA. They randomly produce quick solutions in 
case FHADD can perform few runs in acceptable CPU time. 

Figure 12 compares two crossovers HUX and SOX with 
respect to high performance of GA. Starting conditions for 
SOX (884.8) appear preferable over starting conditions for 
HUX (885.8). But very quickly HUX began to give the 
registers size much lower than SOX and the difference had 
been increased. Therefore, SOX is preferable on a restricted 
population size, and HUX is preferable when GA can generate 
many individuals in the population. Figure 12 also shows that 
the replacement of the uniform probability distribution with 
CDFs significantly speeds up the reduction of registers size in 
a low-size population but can give a worse result in a high-size 
population. 

7.4 Tuning the pipeline optimization tool 

Figure 13 summarizes the preferable usage regions of four 
configurations of pipeline optimization algorithms: FLCSBB, 
GA-on-FHADD, CDFs-on-FHADD and FHASD. We have 
constructed the regions at the requirement that the runtime of 
the configurations except FLCSBB does not exceed 120 
seconds on Intel® Core™ i3 CPU. The ability of optimizing 
large pipelines with many stages grows from FLCSBB to 
FHASD, which induces the increase in the algorithm’s 
inaccuracy. We have measured the algorithm inaccuracy by 
conducting computational experiments and by the comparison 
of neighbor configurations on several test-benches, whose size 
is suitable for the left configuration in the pair (Figure 13).  

 

 

2 

5 

12 

20 

500 1000 5000 0 

FLCSBB 

(exact) 

GA-on-FHADD 

(dynamic heuristics) 

inaccuracy 2% 

CDFs-on-FHADD 

(dynamic heuristics) 

inaccuracy 5% 

FHASD 

(mixed heuristics) 

inaccuracy 10% 

Design size 

Stages 

 
Figure 13 Preferable regions of pipeline optimization algorithms in “design 

size / pipeline stages” solution space.  

Table 4 

Results for FHASD and its comparison against FHADD on TB1000 

Stages 

Overall 

registers 
size (bit) 

CPU time 

(millisecond) 

Registers size 

FHASD over 
FHADD (%) 

CPU time 

FHADD over 
FHASD (times) 

2 481 1.0 0.84 4.0 

3 916 2.6 7.26 62.3 

4 1482 4.6 15.06 152.4 

5 2080 5.1 11.77 186.7 

6 2526 6.3 8.46 200.2 

7 2768 7.6 8.55 239.2 

8 3396 10.0 9.90 349.8 

9 3747 16.6 4.23 743.2 

10 4099 13.8 0.10 795.4 

11 4758 13.9 6.35 494.0 

12 5269 10.4 3.70 335.2 

13 5629 15.0 1.66 616.5 

14 6393 10.2 1.03 309.9 

 On average 6.07 345.3 
 



Thus, we compared FLCSBB and GA-on-FHADD on 
designs of up to 100 instructions. The inaccuracy of GA-on-
FHADD regarding the registers size is about 2 % on average 
against the optimal values given by FLCSBB. The inaccuracy 
of CDFs-on-FHADD is about 3% against GA-on-FHADD and 
therefore 5 % on average against FLCSBB on designs of up to 
1000 statements. The inaccuracy of FHASD is about 8% 
against GA-on-FHADD and therefore about 10 % on average 
against FLCSBB on designs of up to 5000 statements and 
larger.  

8 Conclusion 

This paper proposes algorithms for transforming, analysis, 
speculatively pipelining and optimizing large branched 
feedback dataflow CAL-programs, which represent loop-like 
behavior. The exhaustive algorithm that optimally assigns 
feedbacks and instructions to pipeline stages is very slow; 
therefore, the paper presents fast dynamic and mixed 
static / dynamic heuristics, and the genetic approach to speed 
up the optimization process and to produce solutions that are 
close to optimal ones. We summarize our findings as follows: 

1. The proposed techniques of CAL-actor transformation and 
analysis allow us to perform speculative pipelining and 
optimizing of branched feedback dataflow programs. 

2. Pipelining of time-consuming CAL-actors that lie on 
critical paths of a dataflow program reduces the clock 
time-period and increases the throughput of the concurrent 
system implementations. 

3. The extended pipelining algorithms FASAP, FALAP and 
FLCSBB perform speculative optimization of loop-like 
branched dataflow programs with feedbacks. 

4. Our dynamic heuristics overcome mixed static / dynamic 
heuristics regarding pipeline quality, but the latter is orders 
of magnitude faster. 

5. Our genetic algorithm performs tuning of heuristic factors 
to obtain higher quality solutions. 

6. The proposed set of algorithm configurations can handle 
both a small dataflow design with a small number of 
pipeline stages resulting in optimal solution, and a large 
design with many stages resulting in increased inaccuracy 
against optimal solutions. 

Overall, we conclude that the developed algorithms and 
tool show that the pipelining technology can be extended for 
dataflow programs and successfully used in existing CAL-
based design flows. 

References 

[1] N. Park and A. C. Parker, “Sehwa: A software package for synthesis of 

pipelines from behavioral specifications,” IEEE Trans. on CAD of ICs, 

vol. 7, pp. 356–370, March 1988. 
[2] K. S. Hwang, A. E. Casavant, C.-T. Chang, and M. A. d’Abreu, 

“Scheduling and hardware sharing in pipelined data paths,” in Proc. 

ICCAD-89, November 1989, pp. 24–27. 

[3] E. M. Girczyc, “Loop winding  a data flow approach to functional 

pipelining,” in Proc. of the IEEE ISCAS, May 1987, pp. 382–385. 

[4] C.-T. Hwang, Y.-C. Hsu, and Y.-L. Lin, “Pls: A scheduler for pipeline 
synthesis,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 12, no. 9, pp. 

1279–1286, September 1993. 

[5] H.-S. Jun and S.-Y. Hwang, “Design of a pipelined datapath synthesis 

system for digital signal processing,” , IEEE Trans. VLSI Syst., vol. 2, 

no. 3, pp. 292-303. Sep 1994. 

[6] S. Bakshi and D. D. Gajski, “Component selection for high-performance 

Pipelines,” IEEE Trans. VLSI Syst., vol. 4, no. 2, pp. 181-194, June 
1996. 

[7] Ab Rahman, A.A., Prihozhy, A. & Mattavelli, M. Pipeline synthesis and 

optimization of FPGA-based video processing applications with CAL. J 
Image Video Proc. 2011, 19 (2011). https://doi.org/10.1186/1687-5281-

2011-19 

[8] A. Prihozhy, E. Bezati, A.-H. Ab Rahman, M. Mattavelli. “Synthesis 
and Optimization of Pipelines for HW Implementations of Dataflow 

Programs,” IEEE Transactions on CAD, vol. 34, no. 10, pp. 1613–1626, 

2015.  
[9] A. Prihozhy, S. Casale-Brunet, E. Bezati and M. Mattavelli. “Efficient 

Dynamic Optimization Heuristics for Dataflow Pipelines,” IEEE 

International Workshop on Signal Processing Systems, IEEE, pp. 337-
342, October 2018. 

[10] J. Eker and J. Janneck, CAL Language Report: Specification of the CAL 

Actor Language. University of California-Berkeley, December 2003. 

[11] M. Mattavelli, I. Amer, M. Raulet, “The Reconfigurable Video Coding 

Standard“ [Standards in a Nutshell], Signal Processing Magazine, IEEE 

27 (3) (2010) 159 –167. 
[12] Z. Zhang, B. Liu. “SDC-Based Modulo Scheduling for Pipeline 

Synthesis,” IEEE/ACM International Conference on Computer-Aided 

Design (ICCAD), pp. 211-218, November 2013. 
[13] M. Weinhardt and W. Luk, “Pipeline vectorization,” Trans. Comp.-

Aided Des. Integ. Cir. Sys., vol. 20, no. 2, pp. 234–248, Feb. 2001. 
[14] G. Demicheli, “Hardware synthesis from C/C++ models,” in Design, 

Automation and Test in Europe Conference and Exhibition 1999, pp. 

382–383. 
[15] A. Prihozhy. “High-level synthesis through transforming VHDL 

models,” System-on-Chip Methodologies & Design Languages, Kluwer 

Academic Publishers, Springer, Boston, MA, 2001, pp. 135-146. 
[16] L.-F. Chao, A. LaPaugh, and E.-M. Sha, “Rotation scheduling: a loop 

pipelining algorithm,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 16, 

no. 3, pp. 229–239, Mar 1997. 
[17] W. F. J. Verhaegh, P. E. R. Lippens, E. H. L. Aarts, J. H. M. Korst, J. 

Van Meerbergen, and A. van der Werf, “Improved force-directed 

scheduling in high-throughput digital signal processing,” Trans. Comp.-
Aided Des. Integ. Cir. Sys., vol. 14, no. 8, pp. 945–960, Aug 1995. 

[18] E. Nurvitadhi, J. Hoe, T. Kam, and S. Lu, “Automatic pipelining from 

transactional datapath specifications,” Trans. Comp.-Aided Des. Integ. 
Cir. Sys., vol. 30, no. 3, pp. 441–454, March 2011. 

[19] S. Oh, T. G. Kim, J. Cho, and E. Bozorgzadeh, “Speculative loop 

pipelining in binary translation for hardware acceleration,” Trans. 
Comp.-Aided Des. Integ. Cir. Sys., vol. 27, no. 3, pp. 409–422, March 

2008. 

[20] J. Serot, F. Berry and S. Ahmed, "Implementing Stream-Processing 
Applications on FPGAs: A DSL-Based Approach," 2011 21st 

International Conference on Field Programmable Logic and 

Applications, Chania, 2011, pp. 130-137. 
[21] P. G. Paulin and J. P. Knight, “Force-directed scheduling for the 

behavioral synthesis of ASIC’s,” IEEE Trans. Computer-Aided Design 

of Integrated Circuits and Systems, vol. 8, No. 6, 1989, pp. 661–679. 
[22] N. Shenoy, “Retiming: Theory and practice,” VLSI Journal Integr., vol. 

22, no. 1-2, pp. 1–21, 1997. 

[23] R. Potasman, J. Lis, A. Aiken, and A. Nicolau, “Percolation based 
synthesis,” in Proc. 27th Design Automation Conf., 1990, pp. 444–449. 

[24] H. Javaid, A. Ignjatovic, and S. Parameswaran, “Rapid design space 

exploration of application specific heterogeneous pipelined 
multiprocessor systems,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 

29, no. 11, pp. 1777–1789, November 2010. 

[25] B. R. Rau and C. D. Glaeser. “Some Scheduling Techniques and an 
Easily Schedulable Horizontal Architecture for High Performance 

Scientific Computing,” ACM SIGMICRO Newsletter, 12(4):183–198, 

1981. 
[26] J. Codina, J. Llosa, and A. Gonz´alez. “A Comparative Study of Modulo 

Scheduling Techniques,” Int’l Conf. on Supercomputing, pp. 97–106, 

June 2002. 

https://ieeexplore.ieee.org/document/8598386/
https://ieeexplore.ieee.org/document/8598386/
https://ieeexplore.ieee.org/author/37279628100
https://ieeexplore.ieee.org/author/37279628100


[27] Y. Ben-Asher, D. Meisler, and N. Rotem. Reducing Memory Constraints 

in Modulo Scheduling Synthesis for FPGAs. ACM Trans. on 

Reconfigurable Technology and Systems, 3(3), 2010. 

[28] B. R. Rau. “Iterative Modulo Scheduling: An Algorithm for Software 

Pipelining Loops,” Int’l Symp. on Microarchitecture, pp. 63–74, 
November 1994. 

[29] W. Sun, M. Wirthlin, and S. Neuendorffer, “FPGA pipeline synthesis 

design exploration using module selection and resource sharing,” Trans. 
Comp.-Aided Des. Integ. Cir. Sys., vol. 26, no. 2, pp. 254–265, Feb 

2007. 

[30] J. Llosa, E. Ayguad´e, A. Gonzalez, M. Valero, and J. Eckhardt. 
“Lifetime-Sensitive Modulo Scheduling in a Production Environment,” 

IEEE Trans. on Computers, 50(3), March 2001. 

[31] R. A. Huff. “Lifetime-Sensitive Modulo Scheduling,” ACM SIGPLAN 
Conf. on Programming Languages Design and Implementation, pp. 258–

267, June 1993. 

[32] C. Hewitt. “Viewing control structures as patterns of passing messages. 
Journal of Artificial Intelligence,” 8(3):323{363, June 1977. 

[33] M. Wipliez, G. Roquier, and J. Nezan, “Software Code Generation for 

the RVC-CAL Language,” Journal of Signal Processing Systems, 

63(2),·May 2011, pp. 1–9. 

[34] E. Bezati, S. Casale-Brunet, M. Mattavelli, and J. Janneck, “Synthesis 

and optimization of high-level stream programs,” in The 2013 Electronic 
System Level Synthesis Conference, 2013, pp. 1–6. 

[35] M. Mattavelli, S. Casale-Brunet, A. Elguindy, E. Bezati, R. Thavot, G. 

Roquier, and J. Janneck, “Methods to explore design space for MPEG 
RVC codec specifications,” Signal processing Image Communication, 

Elsevier, 2013. 
[36] E. Bezati, S. Casale-Brunet, M. Mattavelli, J. W. Janneck: Clock-Gating 

of Streaming Applications for Energy Efficient Implementations on 

FPGAs. In: IEEE Trans. on CAD of Integrated Circuits and Systems 
36(4): 699-703, 2017. 

[37] Palumbo, F., Sau, C., Fanni, T., Meloni, P., Raffo, L.: Dataflow-based 

design of coarse-grained reconfigurable platforms. In: 2016 IEEE 

International Workshop on Signal Processing Systems, SiPS 2016. 

[38] Sau, C., Fanni, L., Meloni, P., Raffo, L., Palumbo, F.: Reconfigurable 

coprocessors synthesis in the MPEG-RVC domain. In:2015 International 
Conference on ReConFigurable Computing and FPGAs, ReConFig 

2015. 

[39] Ren, R., Juarez, E., Sanz, C., Raulet, M., Pescador, F.: Energy-aware 
decoder management: a case study on RVC-CAL specification based on 

just-in-time adaptive decoder engine. IEEE Trans. Consumer Electronics 

60(3), 499-507, 2014. 
[40] Palumbo, F., Sau, C., Raffo, L.: DSE and profiling of multi-context 

coarse-grained reconfigurable systems. In: 8th International Symposium 

on Image and Signal Processing and Analysis, ISPA 2013. 
[41] Gorin, J., Yviquel, H., Preteux, F.J., Raulet, M.: Just-in-time adaptive 

decoder engine: a universal video decoder based on MPEG RVC. In: 

Conference on Multimedia, 2011. 
[42] Beaumin, C., Sentieys, O., Casseau, E., Carer, A.: A coarse-grain 

reconfigurable hardware architecture for rvc-cal-based design. In: 

Design and Architectures for Signal and Image Processing, DASIP 

2010. 

[43] Amer, I., Lucarz, C., Mattavelli, M., Raulet, M., Nezan, J., Deforges, O.: 

Reconfigurable video coding on multicore: an overview of its main 
objectives. In: IEEE signal Processing Magazine, 26(6), 113-123, 2009. 

[44] Roquier, G., Wipliez, M., Raulet, M., Janneck, J.W., Miller, I.D., 

Parlour, D.B.: Automatic software synthesis of dataflow program: An 
MPEG-4 simple profile decoder case study. In: IEEE Workshop on 

Signal Processing Systems, SiPS 2008. 
[45] M. Canale, S. Casale-Brunet, E. Bezati, M. Mattavelli, J. Janneck: 

"Dataflow Programs Analysis and Optimization Using Model Predictive 

Control Techniques", Journal of Signal Processing Systems, 2016, Vol: 
84, No. 3, Pages 371—381. 

 

 

Table of acronyms 

No Acronym Full name 

1 CAL Concurrent algorithmic language 

2 ASAP As soon as possible pipeline scheduling algorithm 

3 ALAP As late as possible pipeline scheduling algorithm 

4 P A set of operators (statements, instructions). 

5 V A set of variables 

6 inputs(p) A set of input variables of operator p 

7 outputs(p) A set of output variables of operator p 

8 size(v) A bit-size of variable v 

9 prod(v) Operators-producers of variable v 

10 cons(v) Operators-consumers of variable v 

11 T  A set of conditional Boolean variables 

12 Z A set of primary Boolean variables 

13 H A set of Boolean functions that evaluate the conditional variables over the primary variables  

14 F A set of feasible Boolean functions for values of pairs of primary variables 

15  A Boolean function that characterizes the feasible set of vector values of primary variables 

16  A Boolean function that takes value 1 when two conditional variables are orthogonal 

17 Rdirect Operators direct precedence relation 

18 R Transitive closure of Rdirect 

19 succ(p) Operators-successors of operator p 

20 pred(p) Operators-predecessors of operator p 

21 G A matrix of all operator pairs longest paths lengths 

22 Fbr(s) A subset of operators in a feedback region of variable s 

23 S A set of pipeline stages 

24 stage(p) An assignment of operator p to a stage 

25 Tstage A constraint on the pipeline-stage time-period 



26 C An operator conflict relation (graph) 

27 Cn An operator nonconflict relation (graph) 

28 cdpred(p) A set of direct predecessors of operator p on graph C  

29 ncdpred(p) A set of direct predecessors of operator p on graph Cn 

30 cdsucc (p) A set of direct successors of operator p on graph C  

31 ncdsucc (p) A set of direct successors of operator p on graph Cn 

32 asap A pipeline schedule that ASAP algorithm generates on conflict graph C 

33 alap A pipeline schedule that ALAP algorithm generates on conflict graph C 

34 Rsize(stage) An overall pipeline registers size of the schedule described by the operators vector assignment stage 

35 lifetime(v) Lifetime of variable v over pipeline stages 

36 FASAP Extension of ASAP for branched feedback programs 

37 FALAP Extension of ALAP for branched feedback programs 

38 fasap A pipeline schedule that FASAP algorithm generates on conflict graph C 

39 falap A pipeline schedule that FALAP algorithm generates on conflict graph C 

40 LCSBB Least cost search branch and bound algorithm of pipeline optimization  

41 FLCSBB Extension of LCSBB for branched feedback dataflow programs 

42 flcsbb A pipeline schedule that FLCSBB algorithm generates on conflict graph C 

43 FHADD Feedback dataflow optimization Heuristic Algorithm using dynamic heuristics for operators and stages  

44 FHASD Feedback dataflow optimization Heuristic Algorithm using static heuristics for operators and dynamic 

heuristics for stages 

45 early(p) A lower bound of a range of available stages for operator p 

46 late(p) A upper bound of a range of available stages for operator p 

47 lifestim(v) A lower bound of lifetime of variable v over pipeline stages 

48 early(v) An upper bound of the earliest stage of producers of variable v 

49 late(v) A lower bound of the latest stage of consumers of variable v 

50 pos(x) A function whose value equals 0 if x  0, and equals x otherwise 

51 (p) A heuristic weight of operator p whose maximal value indicates that p is preferable for scheduling 

52  A vector of heuristic factors 

53 (p) A vector of heuristic parameters of operator p 

54 GA Genetic algorithm for tuning heuristics 

55 F() A fitness function of individual  that represents quality of the corresponding pipeline solution 

56 FPS A fitness proportionate selection operation 

57 WPS A worst parent selection operation 

58 WIS A worst individual selection in the current generation 

59 HUX A half uniform crossover operation 

60 SOX A single offspring crossover operation 

61 ,  Heuristic factor weights  

62  A mutation factor  

63 pcross Probability of choosing the crossover  

64 pmut Probability of choosing the mutation 

 

 
Anatoly Prihozhy received his Diploma of Electrical Engineering from the State Polytechnic, Minsk, 

Belarus in 1975, his PhD degree in computer-aided design from the National Academy of Sciences 

Minsk, Belarus in 1984, and his Doctor Habilitation degree in computer sciences from Ukraine, Kyiv and 

Belarus, Minsk in 1999. He was Visiting Professor at the Swiss Federal Institute of Technology, 

Lausanne, Switzerland in 2001, 2004, 2010 and 2013, 2015 and 2016 and at the Freiburg University, 

Germany in 2000. He is currently full professor at Computer and System Software Department of the 

Belarusian National Technical University. He has several books and more than 250 publications in 

Eastern and Western Europe, USA and Canada His research interests include programming, hardware and 

system description languages, compilers and tools, system-, high- and logic-level computer aided design 

and optimization of parallel and incompletely specified digital systems. 

 

Simone Casale-Brunet is a software/hardware scientist in the Vital-IT group of the Swiss Institute of 

Bioinformatics (SIB). He received a B.S. degree in Electrical Engineering and an M.S. degree in 

Mechatronics Engineering, both with honors, from the Politecnico di Torino, Italy, in 2008 and 2010, 

respectively, and the Ph.D. degree in Electrical Engineering from the École Polytechnique Fédérale de 

Lausanne (EPFL), Switzerland, in 2015. His research interests include FPGA-accelerated systems for 

bioinformatics algorithms and genomic data compression algorithms. 

 

 



 

 

Endri Bezati is a software/hardware scientist in the VLSC laboratory of the Swiss Federal Institute of 

Technology (EPFL). He received his master’s degree in electrical engineering and computer science from 

Institut National des Sciences Appliquées of Rennes (INSA) in 2010, France and his Ph.D. Degree in 

Microsystems and Microelectronics at EPFL in 2015. He is a member of the Institute of Electrical and 

Electronics Engineers (IEEE), and of European Network on High Performance and Embedded Architecture 

and Compilation (HIPEAC). His research interests include high-level synthesis of dataflow programs, 

hardware-software co-design and massively parallel processing for bioinformatics algorithms. 

 

 

 

Marco Mattavelli started his research activity at the "Philips Research Laboratories" of Eindhoven in the 

framework of EUREKA-95 HDMAC project. Since 1991 he joined EPFL where he got his PhD in 1996. 

Since then, he has been involved in several research projects and didactic activities. He has been Chairman 

of the Implementation Study Group of ISO/IEC MPEG for more than 10 years. For his work he received 

the ISO/IEC Award in 1997, 2003, 2011, 2013 and 2015. He is at the origin of the introduction of dataflow 

programs as specifications for MPEG video compression and graphic standards, ISO/IEC 23001-4 and 

23002-4. Since 2006 he is leading the “Multimedia Architectures Research Group" of EPFL. His major 

research activities include: signal processing system implementations, methodologies for high level 

specification and modeling of complex systems, architectures and systems for video coding, high speed 

image acquisition and video processing, applications of combinatorial optimization to signal processing. He 

holds patents in the multimedia and video processing fields. He is the author of more than 200 publications and has served as 

invited editor for several conferences and associated editor to IEEE publications. Since 2014 he is leading the MPEG-G ISO/IEC 

23092 standardization project applying digital media technologies to the emerging field of genomic data compression and 

processing. 

 


