Критерий применимости адаптивных методов для измерений параметров объектов в неопределенных состояниях

Гусев О. К., Свистун А. И. Белорусский национальный технический университет

Постановка задачи. В ряде случаев нестабильность свойств объектов, разнообразие технологических процессов, условий измерений, измерительных воздействий вызывает переход объектов измерений в «неопределенные» состояния, при которых нарушается соответствие модели объекта, принятой для базового метода измерений, реальному состоянию его свойств в момент измерений. Это приводит к методическим погрешностям, а в ряде случаев — к грубым погрешностям результатов базовых методов измерений.

Методология измерений. На рис. 1 показана структура взаимодействия объекта и средства измерений (СИ). Состоянием объекта измерений назовем качественную характеристику объекта, отражающую наличие у него связи между измерительными воздействиями α_q , свойствами объекта x_i и измерительными сигналами Y. Если указанная связь определена и однозначна, состояние назовём *определенным*, а если она неизвестна или неоднозначна, то – *неопределенным*.

Рис. 1. Структурная схема взаимодействия объекта и СИ

Методология измерений параметров объектов измерений с неопределенными состояниями заключается в том, что в дополнение к операциям, выполняемым в рамках стандартной измерительной процедуры [1], выполняют операции, представленные схематически на рис.2. На этапе постановки измерительной задачи осуществляют:
1) установление совокупности различных состояний, в которых может находиться объект измерений; 2) выбор параметров базовых сигналов, позволяющих идентифицировать каждое состояние объекта измерений.

Создается односигнальная адаптационная модель измерений (рис.3). Пусть объект может находиться в m различных состояниях Ω' , где 1 < j < m. Значение x_i^j измеряемой величины x_i в j-м состоянии будет определяться значениями других параметров объекта x_p^j , влияющих величин ξ_k , а также конкретным состоянием Ω' в соответствии с математической моделью:

$$x_i^j = f_i^{0j}(x_1^j, x_2^j, ..., x_p^j, \Omega^j, \xi_1, \xi_2, ..., \xi_k).$$
 (1)

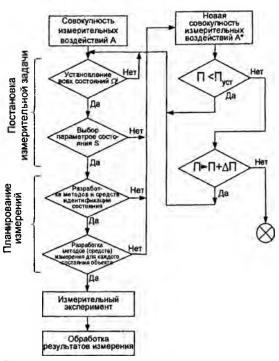


Рис.2. Структурная схема измерительной процедуры для объектов измерений в неопределенных состояниях

В измерительных задачах объект измерений может характеризоваться свойством $x_{i\,INT}$, зависящим от значений свойств $x_{i}^{\,\,\,\,\,\,\,\,}$ во всех m состояниях:

$$x_{i,INT} = f_{INT}(x_i^1, x_i^2, ..., x_i^m),$$
 (2)

где f_{INT} — функционал, описывающий определенные математические операции, производимые над величинами x_i^J .

Взаимодействие объекта и чувствительного элемента СИ характеризуется тем, что на вход первичного преобразователя средства измерений воздействует сигнал X^J , определяемый математической моделью объекта измерений:

$$X^{j} = F_{i}^{j}[x_{i}^{j}(t)], (3)$$

где $F_i{}^j$ — некоторый функционал, описывающий ряд определенных математических операций, производимых над измеряемой величиной $x^i{}_i$.

Предположим, что выходной сигнал Y^{J} , содержит, кроме информативного параметра $b_0^{J}[X^{J}]$, неинформативный параметр $b_3[\Omega^{J}]$,

$$Y^{j} = Y^{j} \{b_{0}^{j}[X^{j}], b_{1}, b_{2}, \dots b_{S}[\Omega^{j}], \dots b_{m}, S_{1}, S_{2}, \dots S_{L}, \xi_{4}, \xi_{2}, \dots \xi_{k}, \alpha_{1}, \alpha_{2}, \dots \alpha_{q}\} =$$

$$= F\{X^{j}\} = F\{X^{j}\{a_{0}[x_{j}(t)], a_{1}, a_{2}, \dots a_{S}(\Omega^{j}), \dots a_{n}, \alpha_{1}, \alpha_{2}, \dots \alpha_{q}\}, S_{1}, S_{2}, \dots S_{L}\}$$

$$(4)$$

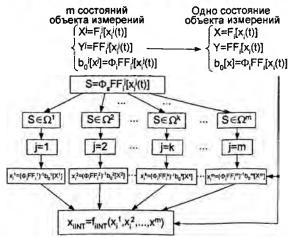


Рис.3.Обобщенная структура односигнальной адаптационной модели измерений

Параметр $b_S[\Omega']$ назовем параметром состояния объекта измерений S:

$$S = b_S[\Omega^J]. (5)$$

Пусть существуют по крайней мере два измерительных преобразования Φ_i и Φ_S В результате первого преобразования

$$\Phi_{i}Y^{j} = \Phi_{i}FF_{i}^{j}[x_{i}^{j}(t)] = b_{0}^{j}[X^{j}], \tag{6}$$

измеряемая физическая величина $x_i^J(t)$ преобразуется в непосредственно измеряемый параметр $b_0^J[X^J]$. Посредством обратного измерительного преобразования $(\Phi_i F F_i^J)^{-1}$ экспериментальное значение этого параметра преобразуется в значение измеряемой физической величины $x_i^J(t)$:

$$x_{i}^{j}(t) = (\Phi_{i}FF_{i}^{j})^{-1}b_{0}^{j}[X^{j}]. \tag{7}$$

Для получения измерительной информации для идентификации вида градуировочной характеристики $(\Phi FF_i^{\ j})^{-1}$, параллельно с первым измерительным преобразованием $\Phi_i Y^j$ осуществляется второе – $\Phi_S Y^j$:

$$\Phi_{S}Y^{j} = \Phi_{S}FF_{i}^{j}[x_{i}^{j}(t)] = b_{S}[\Omega^{j}] = S.$$
(8)

Посредством обратного измерительного преобразования $(\Phi_S F F_i^{\ j})^{\cdot l}$ измеренное значение параметра S преобразуется в значение индекса состояния объекта измерений f:

$$j = (\Phi_s F F_i^j)^{-1} b_s [\Omega^j]. \tag{9}$$

Критерием применимости адаптивных методов измерений является требование, чтобы математическая модель измерительного сигнала (4) допускала аддитивное разделение относительно параметров b_0 и b_s .

В результате формируется структурная схема измерительного эксперимента (рис.4), использующая два измерительных канала.

В канале идентификации одного из m возможных состояний объекта измерений Ω' идентификация осуществляется на основе измерительного преобразования $\phi_s ff_i$. Многозначная мера m[s] воспроизводит непосредственно измеряемую величину s заданного размера, а компаратор m[s] осуществляет сравнение однородных физических величин. Результат идентификации состояния объекта измерений достигается путем обратного преобразования $j = (\phi_s ff_i)^{-1} p[s]$.

В канале измерений физической величины $x_i^{\ j}$ объекта, осуществляется преобразования физической величины $x_i^{\ j}$ в измеряемую $b_0^{\ j} = \phi_i f_i^{\ j}$. Сравнение размера измеряемой величины $b_0^{\ j}$ с размером однородной физической величины $n[b_0]$, воспроизводимой мерой, осуществляется компаратором $w(b_0^{\ j} - n[b_0])$.

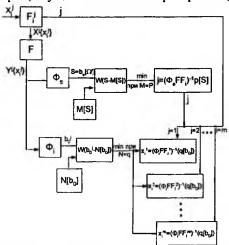


Рис.4. Обобщенная структурная схема СИ параметров объектов с неопределенными состояниями

При невозможности выбрать показатели состояния, либо разработать методы измерений в идентифицированных состояниях, либо разработать методы идентификации состояния объекта необходимо осуществить переход к новой системе метрологических состояний путем изменения совокупности измерительных воздействий на объект (в том числе и к иным принципам измерений) и организации в алгоритме процедуры циклирования.

Литература

1. Сергеев, А. Г. Метрология: Учеб. пособие для вузов. / А. Г. Сергеев, В. В. Крохин – М.: Логос, 2001. – 408 с., ил.