УДК 621. 316

Электрические нагрузки кабельных линий напряжением 6-10кВ

Романов Р.В., Радкевич В.Н.

Белорусский национальный технический университет

Для оценки степени использования пропускной способности олементов электрических сетей используется максимальная получасовая токовая нагрузка, которая принимается в качестве расчётного тока I_P

$$I_p = I_c + \beta \cdot \sigma(I), \tag{1}$$

где I_C и $\sigma(I)$ — соответственно среднее значение получасового гока нагрузки и среднеквадратическое отклонение;

 β — коэффициент, зависящий от заданной доверительной нероятности.

Если за определённый период произведено количество измерений m, то среднее арифметическое значение тока нагрузки

$$I_c = \frac{1}{m} \sum_{i=1}^{m} I_i \,, \tag{2}$$

а среднеквадратическое отклонение, характеризующее рассеяние результатов измерений, определяется по формуле

$$\sigma(I) = \sqrt{\frac{1}{m} \sum_{i=1}^{m} (I_i - I_c)}, \qquad (3)$$

где I_i – ток нагрузки при i-м измерении.

В тех случаях, когда известны лишь максимальное (I_{max}) и минимальное (I_{min}) значения тока, при симметричном законе распределения нагрузок оценка рассеяния результатов измерения основываться предположении, может на интервал в шесть среднеквадратических отклонений обычно наблюдаемых иключает 99.7% всех значений. Тогда среднеквадратическое отклонение определить онжом по пыражению

$$\sigma(I) = Re/6 \,, \tag{4}$$

где R_B - вариационный размах тока нагрузки,

$$R_{_{\theta}} = I_{_{Max}} - I_{_{Min}}. \tag{5}$$

При этом средний ток оценивается приближённо по формуле

$$Ic = \left(I_{\text{max}} + I_{\text{min}}\right)/2 \ . \tag{6}$$

Определение $\sigma(I)$ и I_c по выражениям (4) и (6) позволяет произвести довольно грубую оценку расчётного тока линии, так как R_s практически не зависит от изменения токов, а крайние значения токов $I_{\text{мах}}$ и $I_{\text{міл}}$ могут иметь невысокую статистическую надёжность.

Изменение режима электропотребления в обобщённом виде можно охарактеризовать коэффициентом вариации тока нагрузки, который определяется как

$$\gamma = \sigma(I)/I_c. \tag{7}$$

С учётом (7) выражение (1)можно представить в виде

$$I_{p} = I_{c} (I + \beta \cdot \gamma). \tag{8}$$

От коэффициента β существенно зависит величина I_p . Особенно это влияние сказывается при значительных вариациях тока нагрузки. Коэффициент β выбирают таким, чтобы ошибка расчётного тока была минимальной. оценке определении расчётных нагрузок β принимают равным от 1,65 до 2,5. При этом целесообразно учитывать характер нагрузки потребителей, питающихся по рассматриваемой линии. При максимума нагрузки жилых домов значение В принимают равным 2, что соответствует доверительной вероятности 0,95, а общественных зданий, характеризующихся более однородными условиями работы, равным 1,65 доверительной вероятности 0,9. Расчёт нагрузок промышленных предприятий производиться при значении β равном (доверительная вероятность 0,99).

При оценке расчётного тока следует определить минимальное количество измерений, которое необходимо выполнить для получения достоверных результатов. С этой целью можно использовать следующее выражение:

$$m = (\beta \cdot \gamma \cdot 100 / \Delta)^2, \tag{9}$$

где Δ – допустимая ошибка расчёта, Δ =5-10%.

Если количество измерений известно, то соответствующая ему ошибка расчёта определяется по формуле

$$\Delta = \beta \cdot \gamma \cdot 100 / \sqrt{m} \ . \tag{10}$$

Для иллюстрации в таблице даны результаты расчёта I_p , I_c и $\sigma(I)$ произведенного по формулам (1), (2) и (3) на основе измерений получасовых токов в течение суток для двух линий городской сети напряжением 10 кВ. Одна линия выполнена грёхжильным кабелем марки ААБ 3х240-10, а вторая — тремя одножильными кабелями марки АПвП2г-1х300/50-10 с изоляцией из сшитого полиэтилена.

Таблица
Токи нагрузки кабельных линий напряжением 10 кВ

				T	PARCING		
Фаза	Значение тока, A			$\sigma(I)$,	$\mathit{Ip}, \mathit{A},$ при $\mathit{\beta}$		
линии	мах	мin	средн.	A	1,65	2	2,5
	Tpëx	жильны	й кабель	с буман	кной изол	іяцией	
LĪ	151,0	50,0	91,44	26,64	135,4	144,72	158,04
1.2	155,0	51,0	90,83	26,72	134,92	144,27	157,63
1.3	149,0	50,0	87,94	25,7	130,35	139,34	152,19
Одножильный кабель с пластмассовой изоляцией							
1.1	27,71	0	13,57	7,64	26,2	28,85	32,67
1.2	29,94	11,31	17,97	5,86	27.64	29,69	32,62
1.3	27,71	0	16,31	5,68	25,68	27,67	30,51

Анализ данных таблицы показывает, что обе линии имеют перавномерную нагрузку фаз. Это объясняется тем, что в городских сетях на формирование нагрузки существенное илияние оказывают однофазные электроприемники. Причём максимальное различие наблюдается для средних нагрузок выполненной одножильными пинии. кабелями (32%).Добавление к среднему току величины $\beta \cdot \sigma(I)$ несколько сглаживает неравномерность (до 4-7%), но не устраняет её. ('ледовательно, при неравномерной нагрузке выявление в электрической сети кабельных линий, работающих с нагрузкой, близкой к предельно допустимой, необходимо производить по максимальному току наиболее загруженной фазы. Отметим также крайне низкую загрузку одножильных кабелей с изоляцией из сшитого полиэтилена.