
40 ЗАЩИТА ИНФОРМАЦИИ

UDC 004.272.2 (075.8)

PRIHOZHY A. A.

OPTIMIZATION OF DATA ALLOCATION
IN HIERARCHICAL MEMORY FOR BLOCKED

SHORTEST PATHS ALGORITHMS
Belarusian National Technical University

This paper is devoted to the reduction of data transfer between the main memory and direct mapped cache for blocked 
shortest paths algorithms (BSPA), which represent data by a D[M×M] matrix of blocks. For large graphs, the cache size S = 
δ×M2, δ < 1 is smaller than the matrix size. The cache assigns a group of main memory blocks to a single cache block. BSPA 
performs multiple recalculations of a block over one or two other blocks and may access up to three blocks simultaneously. 
If the blocks are assigned to the same cache block, conflicts occur among the blocks, which imply active transfer of data 
between memory levels. The distribution of blocks on groups and the block conflict count strongly depends on the allocation 
and ordering of the matrix blocks in main memory. To solve the problem of optimal block allocation, the paper introduces 
a block conflict weighted graph and recognizes two cases of block mapping: non-conflict and minimum- conflict. In first case, 
it formulates an equitable color- class-size constrained coloring problem on the conflict graph and solves it by developing 
deterministic and random algorithms.  In second case,  the paper  formulates a problem of weighted defective color- count 
constrained coloring of the conflict graph and solves it by developing a random algorithm. Experimental results show that 
the equitable random algorithm provides an upper bound of the cache size that is very close to the lower bound estimated 
over the size of a complete subgraph, and show that a non-conflict matrix allocation is possible at δ = 0.5 for M = 4 and at 
δ = 0.1 for M = 20. For a low cache size, the weighted defective algorithm gives the number of remaining conflicts that is up 
to 8.8 times less than the original BSPA gives. The proposed model and algorithms are applicable to set-associative cache 
as well.

Keywords: shortest paths algorithm, hierarchical memory, direct mapped cache, performance, block conflict graph, data 
allocation, equitable coloring, defective coloring.

Introduction

The shortest paths search problem in weight-
ed graphs is formulated in different settings [1–4].
The all-pair shortest paths problem (APSP) has
many application domains: from the city traffic
optimization to computer games. Although the
APSP algorithms (including the Floyd- Warshall
one) have polynomial computational complexity
and have been studied for a long time, their reali-
zation on modern multi- processor computing sys-
tems is still an attractive research area since actual
graphs can reach very large sizes.

The parallel APSP algorithm execution time
mostly depends on how it distributes the work
among the processor cores and what is the through-
put and load of each core. The hierarchical memory
is also a key contributor in the execution time [5, 6].
Caches are intermediate level between the CPU and
main memory, which accelerate the data access. If
a program accesses data and the data is not in cache,
a miss has occurred. The key step in improving the
cache performance is reducing the miss rate [7–9].

The hierarchical memory employs three strat-
egies of mapping main memory blocks to cache
blocks: direct mapping, set-associative mapping
and full-associative mapping. Usually the cache
stores a small number of blocks against the main
memory. That is why the main memory blocks are
grouped when mapping to a cache block. When
executing an algorithm, blocks of the same group
compete for the cache block. Conflicts may occur
among the blocks simultaneously requested. Op-
timizing the distribution of the set of blocks on
the set of groups may greatly reduce the conflict
count and the data miss rate.

The temporal and spatial localities [11] asso-
ciated with data accesses the executed algorithm
generates allow a reduction of data misses in the
cache. The locality can also help in the efficient
allocation of data in the main memory. The pa-
per considers a complement for the locality ap-
proach, which allocates data [12–14] of a blocked
algorithm in such a way that maps the conflict-
ing blocks of the slow main memory to different

INFORMATION SECURITY 41

3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

block locations of the fast cache. The placement
order of the main memory blocks determines
a group associated with each cache block.

The paper formulates the data allocation
problem for blocked shortest paths algorithms,
proposes a block conflict weighted graph model,
and develops efficient extensions of equitable and
defective coloring algorithms targeting the mini-
mization of cache size, decreasing the number of
remaining conflicts among blocks, and reduction
of the algorithm execution time.

Blocked all pairs shortest paths algorithms

Let G = (V, E) be a directed weighted graph,
where V={0,…, N-1} and E ⊆ {(i, j) | i, j ∈ V}
are the vertex and edge sets respectively. A weight
function assigns a weight wij to an edge (i, j) ∈
E. Matrix W represents the function, in which
W(i, j) = 0 if i = j, W(i, j) = wij if (i, j) ∈ E, and
W(i, j) = ∞ if (i, j) ∉ E.

The all-pair shortest paths problem is for-
mulated as to find the paths of the shortest
length between all pairs of vertices, i, j ∈ V. The
Floyd–Warshall (FW) algorithm [1, 2] uses
a matrix D that describes the all-pair shortest
path lengths. The algorithm computational com-
plexity is Ο(N3). For large matrices, the execu-
tion time of FW is high, and a significant part
of the time is due to the hierarchical memory
operation.

Let the matrix D[N×N] be blocked resulting in
a M×M matrix of smaller matrices Bij, 0 ≤ i, j <
B, where B = N / M. Algorithm 1 known as the
blocked Floyd–Warshall (BFW) [3], iteratively
calls a function BCA (B1, B2, B3) realized by Al-
gorithm 2 of calculating block B1 over blocks B2 
and B3. Figure 1 illustrates the behavior of BFW
on matrix D[4×4]. In an Iteration, BFW calcu-
lates the diagonal D0 block, blocks C1 and C2 of
cross, and peripheral blocks P3, and moves the
cross from the left-top corner to the right- bottom
one. Work [4] extended BFW to the heterogene-
ous four-type-block algorithm HBFW. BSPA de-
notes both BFW and HBFW. The computational
complexity of BSPA and FW is the same. BSPA’s
advantage is the ability to localize data and com-
putations within blocks, which is important for
efficient cache operation, and for the organization
of parallel computation of blocks [7–9]. BSPA
does not worry about allocating data in hierarchi-
cal memory.

Formulation of data allocation problem
In blocked algorithms that processes big

data the overall size of blocks is larger than the
available cache size, therefore several blocks are
mapped to the same slots of the direct mapped
cache (Fig.2). Thus, the main memory blocks 0,
4, … are assigned to the slot group 0 of cache.
A problem arises when the executed program
accesses simultaneously blocks 0 and 4. In this
case, the blocks are in conflict, the cache flaking
takes place, and the program execution slows
down significantly. An appropriate allocation of
blocks in the main memory can solve the prob-
lem. The conflicting blocks have to be assigned
to different cache slots. This leads to reordering
of blocks in the main memory. The exhaustive
analysis of the executed algorithm is a way to

 0 1 2 3 0 1 2 3

0 D0 C2 C2 C2 0 P3 C1 P3 P3

1 C1 P3 P3 P3
1

C2 D0 C2 C2

2 C1 P3 P3 P3 2 P3 C1 P3 P3

3 C1 P3 P3 P3 3 P3 C1 P3 P3

Fig. 1. Illustration of BFW operation

Algorithm 1: Blocked Floyd–Warshall (BFW)

Input: A number N of graph vertices
Input: A matrix W of graph edge weights
Input: A size B of block
Output: A matrix D of lengths of all-pair shortest paths
M ← N / B     D[M×M] ← W[N×N]
for m ← 0 to M -1 do

BCA (Bm,m, Bm,m, Bm,m) // D0
for i ← 0 to M -1 do

if i ≠ m then
BCA (Bi,m, Bi,m, Bm,m) // C1
BCA (Bm,i, Bm,m, Bm,i) // C2

for i ← 0 to M -1 do
if i ≠ m then

for j ← 0 to M -1 do
if j ≠ m then

BCA (Bi,j, Bi,m, Bm,j) // P3
return D

Algorithm 2: Block calculation algorithm (BCA)
Input: B – size of block
Input: B1 – first input block
Input: B2 – second input block
Input: B3 – third input block
Output: B1 – recalculated block

for k ← 0 to B -1 do
for i ← 0 to B -1 do

for j ← 0 to B -1 do
sum ← B2

ik + B3
kj

if B1
ij > sum then B1

ij ← sum;
return B1

42 ЗАЩИТА ИНФОРМАЦИИ

the construction of a non-conflict or minimum-
conflict block allocation. The paper proposes
a model of weighted block- conflict graph, which
allows for BSPA to find a block placement with
a minimum number of conflicts.

Weighted block‑ conflict graph

Figure 3 shows an enumeration and initial
row-major memory layout of 16 blocks of matrix
D[4×4] in the main memory. Fig. 4 depicts a ma-
trix of block conflict ternary relation. In the ma-
trix, every filled cell indicates a tuple (i, j, w) of
the relation where w is a conflict count between
the blocks i and j. For BSPA, w ∈ {1, 2}. For
instance, the cell (0, 5) indicates the absence of
conflicts between blocks 0 and 5 and does not de-
scribes a tuple. The cell (0, 12) describes a tuple

(0, 12, 2) that indicates the presence of 2 conflicts
between blocks 0 and 12.

In Fig. 4, two right columns edge and weight
describe for each block the number of other con-
flict blocks and the overall conflict count respec-
tively. For instance, block 0 has six other conflict
blocks with the overall conflict count of 12.

A weighted undirected graph GT = (T, C),
where T is a set of blocks and C is a set of weight-
ed edges (Fig. 5), is an alternative representation
of the conflict relation. An edge (i, j) ∈ C has
a weight (conflict count) w(i, j). In Figure 5, the
edges represented by solid lines have the weight
of 2, and the dash-line edges have the weight of 1.

Assertion 1. Graph GT has a complete sub-
graph whose chromatic number is 2×M‑1.

A proof of the assertion is based on the consid-
eration of a subgraph constructed of the vertices,
which correspond to the 2×M‑1 blocks of a cross. It
shows that all the vertices are adjacent in the graph.

The number 2×M‑1 is a lower bound of the
conflict graph chromatic number χ(GT). Thus, the

Fig. 2. Mapping memory blocks to slot groups
of direct mapped cache

Fig. 4. Block conflict relation for D[4×4]

Fig. 3. Initial placement of blocks of matrix D[4×4]
in main memory

INFORMATION SECURITY 43

3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

graph for matrix D[4×4] has a chromatic number
lower bound of 7.

Non‑conflict allocation of matrix blocks

In work [15], the authors proposed a graph
coloring technique for minimizing the storage
consumed by an algorithm. The technique models
and evaluates the lifetime of each variable and as-
signs two variables to the same memory location
if their lifetimes are not intersected.

A proper coloring of the graph GT is a map-
ping µ: T → Rµ of a set T of vertices to a set Rµ
of colors so that for two adjacent vertices ti, tj ∈
T the inequality µ(ti) ≠ µ(tj) holds. A color class
Tµ(r) ⊆ T is a set of vertices labeled by a single
color r∈Rµ. In a properly colored graph, each
color class is an independent vertex set. Let the
color classes Tµ(1) ∪…∪ Tµ(χ) = T represent the
coloring µ where χ = |Rµ|. Let Ω be a set of all
proper colorings of graph GT. Then the chromatic
number of GT is
 () minTG Rµµ∈Ω

χ = (1)

The chromatic number χ(GT) determines the
size of direct mapped cache that is sufficient for
non-conflict allocation of matrix D[M×M]. Let
ο(GT) be a maximum color class size in the µ col-
oring. Then (2) determines the number ρ(GT) of
blocks needed for proper allocation of the matrix
in the main memory.
 () () ()T T TG G Gρ = χ ×ο (2)

The inequality ρ(GT) ≥ M 2 must hold, and
η = ρ(GT) – M 2 is the number of garbage blocks
that are added to matrix D.

Fig. 6 shows a result of applying the coloring
technique to the block conflict graph GT depict-
ed in Fig. 5. The graph chromatic number χ(GT)
equals 7. The maximum color class size ο(GT)
equals 4. The number of blocks equals 16. As
many as 28 main memory blocks are needed for
the non-conflict allocation of D[4×4]. Fig. 6a de-
picts the mapping of 16 block- vertices to 7 colors.
Fig. 6b depicts the assignment of blocks to the
cache slot groups and the placement of the blocks
in main memory. A filled cell represents a garbage
block denoted by ‘x’. Since the color classes have
different size, the placement 0, 1, 2, 3, 4, 8, 9, 5,
11, 7, 6, 14, 13, 12, 10, x, x, x, x, x, x, 15, x, x,
x, x, x, x provides a big fragmentation of main
memory.

Optimization of non‑conflict block allocation

The section targets two goals: first to mini-
mize the size of cache that supports a non-con-
flict block allocation, and second to reduce the
main memory fragmentation. Fig. 6b shows that
the known coloring algorithm has introduced
too many garbage blocks. This is because the
algorithm minimizes the number of colors by
generating a color class of possibly maximal
size for each color, which leads to high value
of ο(GT) and to misbalancing of cache slot load.
As a result, the cache size and main memory
fragmentation are large. The algorithm is not ca-
pable of generating a satisfactory block matrix
placement.

Work [16] introduces equitable coloring,
which aims at balancing the size of color class-
es. It assign colors to vertices in such a way that
no two adjacent vertices have the same color, and

Fig. 5. Block conflict graph GT for D[4×4]:
edges of weight 2 are solid and edges of weight 1 are dash

a b
Fig. 6. Coloring technique application:
a) colors of blocks in matrix D[4×4];

b) assignment of blocks to slot groups of cache

44 ЗАЩИТА ИНФОРМАЦИИ

the numbers of vertices in any two color class-
es differ by at most one. The Hajnal–Szemerédi
theorem [17] proves that any graph with max-
imum degree Δ has an equitable coloring with
Δ + 1 colors. The theorem applied to the graph
with Δ = 11 (Fig. 5) gives the color count of 12,
which is much larger than the graph chromatic
number of 7 (Fig. 6). It means the theorem pro-
vides a too pessimistic solution that is not practi-
cally acceptable.

We introduce a color- class-size constraint
CSC and formulate a new csc-coloring problem
on graph GT to find a constrained chromatic num-
ber γ(GT):
 minimize () minTG Rµµ∈Ω

γ = (3)

subject to
 ()T r CSCµ ≤ , µ∈Ω and r∈Rµ (4)

The CSC constraint describes a requirement
for the number of blocks assigned to the same slot
group in cache. The formulation aims at both ob-
taining a low fragmentation of main memory and
minimizing the cache size.

Color‑class‑size
constrained coloring algorithms

Since the graph chromatic number problem is
NP-hard, we propose two heuristic color- class-
size constrained coloring algorithms: Algorithm 3
is a constrained deterministic graph coloring
(CDGC), and Algorithm 4 is a constrained ran-
dom graph coloring (CRGC).
CDGC traversals all vertices and chooses an

earlier introduced proper color if any; otherwise,
it adds a new color and assigns it to the current
vertex. The color is proper if it does not label an
adjacent vertex and its vertex class size does not
exceed CSC. CRGC randomly generates many
proper csc-colorings and returns the best of them
as output. While generating the next coloring, it
randomly selects an uncolored vertex and ran-
domly selects an earlier introduced proper color if
any; otherwise, it adds a new color and assigns it
to the current vertex.

We have realized the both algorithms and con-
ducted experiments on various matrix configura-
tions. Fig. 7 reports results the CRGC algorithm
obtained for the D[4×4] matrix. Fig. 7a depicts the
optimal csc-coloring of 16 blocks. Fig. 7b depicts
the optimal placement of the blocks in the main

Algorithm 4: Constrained random graph csc-coloring (CRGC)
Input: A weighted undirected graph GT = (T, C) of block conflicts
Input: A number M2 of blocks in set T
Input: A conflict relation C
Input: A constraint CSC on the color class size
Input: A constraint RunCount on the coloring run count
Output: A vector BestColoring of vertex colors in graph GT
Output: A chromatic number γ of graph GT

γ ← ∞
for run ← 1 to RunCount do

Tcolored ← ∅ Colors ← ∅
while T \ Tcolored ≠ ∅ do

Randomly select b ∈ T \ Tcolored
ColAvailable ← ∅
for c ∈ Colors do

if UseCnt(c) < CSC then
flag ← true
for bc ∈ Tcolored do

if Coloring(bc) = c and (b, bc) ∈ C  then
flag ← false
break

if flag then
ColAvailable ← ColAvailable ∪ {c}

if |ColAvailable| > 0 then
Randomly select c ∈ ColAvailable
Coloring(b) ← c
UseCnt(c) ← UseCnt(c) + 1

else
Colors ← Colors ∪ {NewColor}
Coloring(b) ← NewColor
UseCnt(NewColor) ← 1

Tcolored ← Tcolored ∪ {b}
if γ > |Colors| then

γ ← |Colors|
BestColoring ← Coloring

return γ, BestColoring

Algorithm 3: Constrained deterministic graph csc-coloring (CDGC)
Input: A weighted undirected graph GT = (T, C) block conflicts
Input: A number M2 of blocks in set T
Input: A conflict relation C
Input: A constraint CSC on the color class size
Output: A vector Coloring of vertex colors in graph GT
Output: A chromatic number γ of graph GT

Colors ← ∅
for b ← 0 to M2 do

AvailColor ← undefined
for c ∈ Colors do

if UseCnt(c) < CSC then
flag ← true
for bc ← 0 to b‑1 do

if Coloring(bc) = c and (b, bc) ∈ C  then
flag ← false
break

if flag then
AvailColor ← c
break

if AvailColor = undefined then
AvailColor ← NewColor
Colors ← Colors ∪ {AvailColor}
UseCnt(AvailColor) ← 1

else
UseCnt(AvailColor) ← UseCnt(AvailColor) + 1

Coloring(b) ← AvailColor
γ ←|Colors|

return γ, Coloring

INFORMATION SECURITY 45

3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

memory and cache. Table 1 provides a compari-
son of CRGC against CDGC on matrix D[12×12]
depending on the CSC constraint.

The comparison concerns three parameters:
the cache size, the overall block count in main
memory, and the garbage blocks count in overall
count. CRGC has reduced the cache size by up to
17.1 % against CDGC. It also introduced much
less garbage blocks.

Table 2 reports conflict graph parameters such
as the vertex count, edge count, maximum, min-
imum and average vertex degree, and chromatic
number upper bound depending on M.

Table 3 reports the lower bound that is evaluated
by Assertion 1 and the upper bound that is evaluat-
ed by CRGC with respect to the cache size, mem-
ory size and garbage block count that are sufficient
for non-conflict allocation of matrix D depending
on M and CSC. If M equals 4 and 6, the lower and
upper bounds are the same, it means CRGC has
given a minimum of cache size. If M equals 8, 10
and 12, the upper bound of cache size is 1, 2 and
2 blocks respectively that is larger than the lower
bound, but the load of a cache block is one memory
block lower, and the garbage block count are re-
duced from 11, 14 and 17 to 0, 5 and 6 respectively.
The matrix D allocations given by CRGC are much
better over those given by the lower bound. If M
equals 5, 7, 9 and 11, the upper bound loses 1, 1,
1 and 2 blocks of the cache size respectively, and
has a larger main memory fragmentation against
the lower bound. The overall conclusion is in most
cases CRGC has given optimal results and in other
cases has given high quality solutions that are close
to optimal ones.

Fig. 8 shows a reduction of the cache size
against the main memory size in non-conflict al-
location of matrix D depending on M. It can be
observed that the increase in the number of ma-
trix blocks leads to the relative reduction of the
cache size from 50 % at M = 4 down to about
10 % at M = 20.

Defective weighted coloring algorithm

Defective coloring may color adjacent verti-
ces by the same color [18]. A (k, d)-coloring of
a graph is a coloring of its vertices with k colors
such that each vertex has at most d neighbors with
the same color. The minimum number of colors k
required for which the graph is (k, d)-colorable is

a b
Fig. 7. Constrained csc-coloring algorithm:

a) block- vertex colors in graph GT;
b) assignment of memory blocks to slot groups

in cache and placement of blocks in main memory

T a b l e 1. Comparison of deterministic and random
coloring algorithms regarding the cache size and the

overall and garbage block count in main memory
for D[12×12]

Algorithm Parameter
CSC

2 3 4 5 6

CDGC
Cache blocks 75 53 42 35 28
Memory blocks 150 159 168 175 168
Garbage blocks 6 15 24 31 24

CRGC
Cache blocks 72 48 36 29 25
Memory blocks 144 144 144 145 150
Garbage blocks 0 0 0 1 6

Ran/Det Cache gain (%) 4.0 9.4 14.3 17.1 10.7

T a b l e 2. Conflict graph GT parameters vs. M

M 6 7 8 9 10 11 12

Vertices 36 49 64 81 100 121 144
Edges 315 525 812 1188 1665 2255 5940
Edges (%) 50.0 44.6 40.3 36.7 33.6 31.1 28.9
Vertex degree max 19 23 27 31 35 39 43
Vertex degree min 10 12 14 16 18 20 22
Vertex degree aver 17.5 21.4 25.4 29.3 33.3 37.3 41.3
Chromatic number 11 14 16 18 20 23 25

T a b l e 3. Lower and upper bounds of cache size γ,
main memory size ρ and garbage block count η sufficient

for non-conflict allocation of matrix D vs. M and CSC

M
Lower bound Upper bound

CSC γ ρ η CSC γ ρ η

4 3 7 21 5 3 7 21 5
5 3 9 27 2 3 10 30 5
6 4 11 44 8 4 11 44 8
7 4 13 52 3 4 14 56 7
8 5 15 75 11 4 16 64 0
9 5 17 85 4 5 18 90 9

10 6 19 114 14 5 21 105 5
11 6 21 126 5 6 23 138 17
12 7 23 161 17 6 25 150 6

46 ЗАЩИТА ИНФОРМАЦИИ

called the d-defective chromatic number. The im-
propriety of a vertex is the number of neighbors
that have the same color. The impropriety of the
coloring  is the maximum of the improprieties of
all vertices of the graph.

In the paper, we have extended the concept of
defective coloring to the concept of weighted de-
fective coloring µ of graph GT. In the coloring, at
least one color class Tµ(r) ⊆ T, r∈Rµ is a depend-
ent vertex set. Since the class contains at least one
weighted edge, we define a weighted defect with
Equation (5).

, ()
(()) (,)

i j T r
T r w i j

µ

µ
∈

ϕ = ∑ (5)

A weighted defect of the coloring µ is
 () max (())

r R
T r

µ
µ

∈
Φ µ = ϕ (5)

We formulate the defective weighted con-
strained coloring problem as follows:
 minimize () min ()TG µ∈Ω

ω = Φ µ (6)

subject to
 R CCCµ ≤ , µ∈Ω, (7)

 ()T r CSCµ ≤ , µ∈Ω and r∈Rµ, (8)

 2CCC CSC M× ≥ , (9)
where CCC is a color- count-constraint. In case of
CCC × CSC = M2 a solution of problem (6) – (9)
gives a block- matrix allocation without garbage
blocks in the main memory and with a minimum
of conflicts among blocks assigned to the same
cache block. A permutation of D matrix blocks
represents the allocation.

Fig. 9 depicts a solution for D[4×4], CCC = 4
and CSC = 4. The obtained weighted defect ω(GT)
is 3 conflicts. In the figure, each column repre-
sents a color class corresponding to a single cache
block. The allocation of blocks in main memory
is: 0, 2, 1, 3, 6, 4, 7, 5, 11, 9, 10, 8, 13, 15, 12, 14.

We have developed Algorithm 5 of defective
weighted constrained random coloring (DW‑
CRGC) of the conflict graph. The algorithm itera-
tively generates

Fig. 9. Defective weighted constrained coloring of D[4×4]

RunCount vertex random permutations (order)
and selects a coloring that has a minimum ω of
weighted defect. Each iteration produces a graph
vertex coloring that meets the given constraints.
After selecting a vertex u ∈ T \ L where L ⊆ T is
a subset of already colored vertices, the algorithm
chooses a color c using seven parameters:

•	 an overall weighted defect D(c) on L;
•	 a weighted additional defect d(c) after in-

cluding u in c;
•	 a maximum defect Dmax = max D(c) over

all c;
•	 a maximum defect dmax = max d(c) over all c;
•	 a weight function W(c) on L, whose maxi-

mum value indicate a selected color of ver-
tex u;

Fig. 8. Cache size (%) over matrix D size, and garbage block count (%) over D block count in non-conflict allocation vs. M

INFORMATION SECURITY 47

3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

•	 a maximum value Wmax = max W(c) of the
weight function over all c;

•	 a color class BestC with Wmax.
For each run of coloring and each color

class c, Algorithm 5 first initializes three varia-
bles: a number vCnt(c) of vertices in c, an overall
defect D(c) and an additional defect d(c). Then in
a loop, it traverses all vertices. For each vertex 
block, it traverses all color classes as candidates
for color assignment. For each class c whose car-
dinality is less than CSC, the algorithm calculates
the additional defect d(c) using the weights of
conflict graph edges. It also calculates dmax. Then
the algorithm calculates the weight function W(c)
of each c  using (10), and selects a class BestC
with the maximum value of Wmax.

 max max

max max

() (()) /
(()) / .

W c D D c D
d d c d

= α× ‑ +

+β× ‑
 (10)

W(c) depends on two parameters: weighted de-
fect D(c) of c over all colored vertices and addi-
tional defect d(c) due to coloring vertex u. In (10),
we assume the first term be zero if Dmax = 0, and
the second term be zero if dmax = 0. Algorithm 5
adds vertex block to class BestC and recalculates
D(BestC)  and Dmax. After coloring all vertices,
the algorithm updates BestColoring and its de-
fect ω if the obtained Coloring is better than the
BestColoring.

We have implemented Algorithm 5 in C/C++
and have performed several experiments. Ta-
ble 4 reports results for D[6×6] with respect
to the weighted defect of the CSC constraint
and factors α and β. When α = 1 the algorithm
yields a maximum defect. It gives a lower de-
fect when α is closer to zero (in our experiment
at α = 0.3). We can explain it as balancing the
load among cache blocks (D(c) and Dmax are
responsible for the balancing) is less important
than avoiding conflicts when mapping the main
memory blocks to cache blocks (d(c) and dmax
are responsible for the avoiding). CSC has taken
values 3, 4, 6, 9 and 12, which guaranty the ab-
sence of garbage blocks at the D size of 36. The
weighted defect has reduced as 42, 22, 6, 2 and
0 respectively with increasing CSC. At CSC =
12 the algorithm has generated a non-conflict
block allocation.

Table 5 compares the matrix row-major mem-
ory defective allocation of BSPA (Fig. 3) against
the optimized cache allocation (Fig. 9) produced

by the defective weighted coloring algorithm
DWCRGC for matrix D[M×M] at M = 4, …, 12,
CSC = CCC = M. In both cases, the allocation is
defective since the conflict graph chromatic num-
ber is larger than M.

Algorithm 5: Defective weighted constrained random conflict graph
coloring (DWCRGC)
Input: A weighted undirected graph GT = (T, C) of block conflicts
Input: A number M2 of blocks in set T
Input: A conflict relation C
Input: A factor α in the objective function
Input: A constraint CSC on the color class size
Input: A constraint CCC on the color count
Input: A constraint RunCount on the coloring run count
Output: A vector BestColoring of vertex colors in graph GT

Output: A minimal weighted defect ω of best graph coloring

ω ← ∞ β ← 1 – α
for run ← 1 to RunCount do

Order ← RandomBlockOrdering(M2)
for c ← 0 to CCC ‑ 1 do

vCnt(c) ← 0 D(c) ← 0 d(c) ← 0
Dmax ← 0
for i ← 0 to M2 ‑ 1 do

block ← Order(i) dmax ← ‑1
for c ← 0 to CCC ‑ 1 do

d(c) ← 0
if vCnt(c) < CSC then

for j ← 0 to i ‑ 1 do
b ← Order(j) d ← w(b, block)
if d > 0 and Coloring(b) = c then

d(c) ← d(c) + d
dmax ← Max(dmax, d(c))

Wmax ← ‑1 BestC ← ‑1
for c ← 0 to CCC ‑ 1 do

W(c) ← 0 W1 ← W2 ← ‑1
if vCnt(c) < CSC then

if Dmax ≠ 0 then
W1 ← α × (Dmax – D(c)) / Dmax

if dmax ≠ 0 then
W2 ← β × (dmax – d(c)) / dmax

if W1 ≠‑1 or W2 ≠‑1 then
if W1 ≠‑1 then W(c) ← W1
if W2 ≠‑1 then W(c) ← W(c) + W2
if Wmax < W(c) then

Wmax ← W(c) BestC ← c 
else

if BestC = ‑1 then BestC = c
Coloring(block) ← BestC
D(BestC) ← D(BestC) + d(BestC)
Dmax ← Max(Dmax, D(BestC))
d(BestC) ← 0 vCnt(BestC) ← vCnt(BestC) + 1

if ω > Dmax then
ω ← Dmax BestColoring ← Coloring

return ω, BestColoring

T a b l e 4. Maximum-minimum weighted defect of
a single color class in defective coloring

for M=6 vs. α, β and CSC

α β
CSC

3 4 6 9 12

0.0 1.0 43–56 22–31 6–14 2–7 0–6
0.3 0.7 42–57 22–30 6–14 2–8 0–6
1.0 0.0 47–74 25–50 11–27 5–12 2–6

48 ЗАЩИТА ИНФОРМАЦИИ

With the increase of M from 6 to 12 the min-
imized weighted defect ω per cache block given
by DWCRGC has grown from 6 to 15 conflicts.
The results given by the row-major allocation of
BSPA are much worse: from 30 to 132 conflicts
respectively. The gain of DWCRGC has increased
from 5.0 to 8.8 times.

Conclusion

The paper has formulated the problem of op-
timizing the data allocation in main and cache
memory to reduce the data miss count during
execution of blocked all-pair shortest paths algo-
rithms. We have introduced the model of block

conflict weighted graph for solving the problem.
The known coloring techniques does not solve
the problem efficiently since they generate color
classes of different size and give big fragmenta-
tion of the main memory. The paper has intro-
duced two types of block allocation: non-conflict
and weighted defective. We have pro-posed the
color- class-size constrained coloring algorithms
for the non-conflict allocation. Experimental re-
sults have shown the gain our random coloring
algorithm provides against the deterministic one.
To minimize the conflict count at the restricted
cache size, we have extended the known concept
of defective coloring to the concept of weighted
defective coloring of the block conflict graph. Our
random weighted constrained defective coloring
algorithm minimizes the number of conflicts and
balances the load on the cache slots for the given
cache size. The model and algorithms target first
the direct mapped cache although they are also
applicable being modified to the set associative
cache.

REFERENCES

1. R. W. Floyd “Algorithm 97: Shortest path”, Communications of the ACM, 1962, 5(6), p.345.
2. Hofner, P. Dijkstra, Floyd and Warshall Meet Kleene / P. Hofner and B. Moller // Formal Aspect of Computing, Vol. 24,

No. 4, 2012, № 2, pp. 459–476.
3. G. Venkataraman, S. Sahni, S. Mukhopadhyaya “A Blocked All- Pairs Shortest Paths Algorithm”, Journal of Experi-

mental Algorithmics (JEA), Vol. 8, 2003, pp. 857–874
4. Prihozhy A. A., Karasik O. N. “Heterogeneous blocked all-pairs shortest paths algorithm”. «System analysis and applied

information science». 2017; (3): 68–75. (In Russ.) https://doi.org/10.21122/2309–4923–2017–3–68–75.
5. C. Kozyrakis. “Computer Systems Architecture. Advanced Caching Techniques”, Stanford University, pp. 1–35, 2012.
6. Smith, A. J., “Cache Memories”, Computing Surveys. 1982, 14 (3): 473–530.
7. J. S. Park, M. Penner, and V. K. Prasanna. “Optimizing graph algorithms for improved cache performance” /

J. S. Park, // IEEE Trans. on Parallel and Distributed Systems, 2004, 15(9), pp. 769–782.
8. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths algorithms.

«System analysis and applied information science». 2019; (4):10–18.
9. Solomonik, E. Minimizing Communication in All Pairs Shortest Paths / E. Solomonik, A. Buluc, and J. Demmel // IEEE

27th International Symposium on Parallel & Distributed Processing, 2013, pp. 548–559.
10. Tang, P. Rapid Development of Parallel Blocked All- Pairs Shortest Paths Code for Multi- Core Computers / P. Tang //

IEEE SOUTHEASTCON 2014, pp. 1–7.
11. Prihozhy, A. A. Adaptive memory management. Automation and computer technology, 1988, № 3, с. 58–65.
12. Prihozhy, A. A. Asynchronous scheduling and allocation / A. A. Prihozhy / Proceedings Design, Automation and Test in

Europe. Paris, France. – IEEE, 1998, pp. 963–964.
13. Prihozhy A. A., Karasik O. N. Investigation of methods for implementing multithreaded applications on multicore sys-

tems. Informatization of education, 2014, № 1, с. 43–62.
14. Prihozhy A. A., Karasik O. N. Cooperative model for optimization of execution of threads on multi-core system. «Sys-

tem analysis and applied information science». 2014;(4):13–20. (In Russ.)
15. Chaitin, G. J. “Register allocation & spilling via graph colouring”, Proc. 1982 SIGPLAN Symposium on Computer

Construction, 1982, pp. 98–105.
16. Bodlaender, H. L., Fomin, F. V. “Equitable colorings of bounded treewidth graphs”, Theoretical Computer Science,

2005, 349 (1): 22–30.
17. Hajnal, A., Szemeredi E. “Proof of a conjecture of P. Erdős”, Combinatorial theory and its applications, II (Proc. Col-

loq., Balatonfüred, 1969), North- Holland, 1970, pp. 601–623
18. Cowen, L. J., Cowen, R. H., Woodall, D. R. “Defective colorings of graphs in surfaces: Partitions into subgraphs of

bounded valency”. Journal of Graph Theory, 2006, 10 (2): 187–195.

T a b l e 5. The number of conflicts given by DWCRGC
against BSPA (row-major block matrix layout) vs. M

M 6 7 8 9 10 11 12

DWCRGC, conflict 6 8 9 11 12 14 15
BSPA, conflict 30 42 56 72 90 110 132

Gain, times 5.0 5.3 6.2 6.6 7.5 7.9 8.8

INFORMATION SECURITY 49

3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE3, 2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

ЛИТЕРАТУРА
1. R. W. Floyd “Algorithm 97: Shortest path”, Communications of the ACM, 1962, 5(6), p. 345.
2. Hofner, P. Dijkstra, Floyd and Warshall Meet Kleene / P. Hofner and B. Moller // Formal Aspect of Computing, Vol. 24,

No. 4, 2012, № 2, pp. 459–476.
3. G. Venkataraman, S. Sahni, S. Mukhopadhyaya “A Blocked All- Pairs Shortest Paths Algorithm”, Journal of Experi-

mental Algorithmics (JEA), Vol 8, 2003, pp. 857–874
4. Прихожий, А. А. Разнородный блочный алгоритм поиска кратчайших путей между всеми парами вершин графа /

А. А. Прихожий, О. Н. Карасик // Системный анализ и прикладная информатика. – № 3. – 2017. – С. 68–75.
5. C. Kozyrakis “Computer Systems Architecture. Advanced Caching Techniques”, Stanford University, pp. 1–35, 2012.
6. Smith, A.J. “Cache Memories”, Computing Surveys. 1982, 14 (3): 473–530.
7. J. S. Park, M. Penner, and V. K. Prasanna “Optimizing graph algorithms for improved cache performance” / J. S. Park, //

IEEE Trans. on Parallel and Distributed Systems, 2004, 15(9), pp.769–782.
8. Prihozhy A. A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths algorithms.

«System analysis and applied information science». 2019; (4):10–18.
9. Solomonik, E. Minimizing Communication in All Pairs Shortest Paths / E. Solomonik, A. Buluc, and J. Demmel // IEEE

27th International Symposium on Parallel & Distributed Processing, 2013, pp. 548–559.
10. Tang, P. Rapid Development of Parallel Blocked All- Pairs Shortest Paths Code for Multi- Core Computers / P. Tang //

IEEE SOUTHEASTCON 2014, pp. 1–7.
11. Прихожий, А. А. Адаптивное управление памятью / А. А. Прихожий // Автоматика и вычислительная техника,

1988, № 3, с. 58–65
12. Prihozhy, A. A. Asynchronous scheduling and allocation / A. A. Prihozhy / Proceedings Design, Automation and Test in

Europe. Paris, France. – IEEE, 1998, pp. 963–964.
13. Прихожий, А. А. Исследование методов реализации многопоточных приложений на многоядерных системах /

А. А. Прихожий, О. Н. Карасик // Информатизация образования, 2014, № 1, с. 43–62.
14. Прихожий, А. А. Кооперативная модель оптимизации выполнения потоков на многоядерной системе /

А. А. Прихожий, О. Н. Карасик // Системный анализ и прикладная информатика, 2014, № 4, с. 13–20.
15. Chaitin, G. J. “Register allocation & spilling via graph colouring”, Proc. 1982 SIGPLAN Symposium on Computer

Construction, 1982, pp. 98–105.
16. Bodlaender, H.L., Fomin, F.V. “Equitable colorings of bounded treewidth graphs”, Theoretical Computer Science, 2005,

349 (1): 22–30.
17. Hajnal, A., Szemeredi E. “Proof of a conjecture of P. Erdős”, Combinatorial theory and its applications, II (Proc. Col-

loq., Balatonfüred, 1969), North- Holland, 1970, pp. 601–623
18. Cowen, L. J., Cowen, R. H., Woodall, D. R. “Defective colorings of graphs in surfaces: Partitions into subgraphs of

bounded valency”. Journal of Graph Theory, 2006, 10 (2): 187–195.

Поступила После доработки Принята к печати
11.08.2021 01.09.2021 01.09.2021

ПРИХОЖИЙ А. А.

ОПТИМИЗАЦИЯ РАЗМЕЩЕНИЯ ДАННЫХ
В ИЕРАРХИЧЕСКОЙ ПАМЯТИ ДЛЯ БЛОЧНЫХ АЛГОРИТМОВ

ПОИСКА КРАТЧАЙШИХ ПУТЕЙ
Статья посвящена сокращению обмена данными между основной памятью и кэш прямого сопоставления при

выполнении блочных алгоритмов поиска кратчайших путей, представляющих данные матрицей блоков D[M×M].
Для больших графов размер кэш S = δ×M2, δ < 1 меньше размера матрицы. Кэш назначает группу блоков основной
памяти на один блок кэш. Алгоритмы пересчитывают блок матрицы через один или два других блока и могут
обращаться сразу к трем блокам. Если эти блоки назначены на один блок кэш, между ними возникает конфликт,
приводящий к активному обмену данными между уровнями памяти. Распределение блоков по группам и число
конфликтов сильно зависят от размещения и упорядочения блоков матрицы в основной памяти. В статье
предлагается решать проблему оптимального размещения на взвешенном графе конфликтов блоков и различать
два случая назначения блоков на кэш: безконфликтного и минимально-конфликтного. В первом случае
формулируется проблема равномерной раскраски графа конфликтов, предлагаются детерминированный и
случайный алгоритмы ее решения. Во втором случае формулируется проблема взвешенной дефектной раскраски
графа при ограничении на число цветов, предлагается случайный алгоритм ее решения. Экспериментальные
результаты показывают, что случайный алгоритм равномерной раскраски дает верхнюю границу размера кэш
очень близкую к нижней границе, оцениваемой через полный подграф, и показывает, что бесконфликтное
размещение матрицы возможно при δ = 0.5 для M = 4 и при δ = 0.1 для M = 20. Для малого размера кэш
взвешенный дефектный алгоритм дает число оставшихся конфликтов до 8.8 раз меньшее чем начальное
размещение. Предложенные модель и алгоритмы применимы также к k-канальному ассоциативному кэш.

СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАÄНАЯ ИНФОРМАТИКА 3, 2021 СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАÄНАЯ ИНФОРМАТИКА 3, 2021

50 ЗАЩИТА ИНФОРМАЦИИ

Ключевые слова: алгоритм поиска кратчайших путей, иерархическая память, кэш прямого отображения, произво-
дительность,  размещение  данных,  граф  конфликтов  блоков,  равномерная  раскраска,  дефектная 
раскраска.

Anatoly Prihozhy is a full professor at the Computer and system software
department of Belarus national technical university, doctor of science (1999)
and full professor (2001). His research interests include programming and hard-
ware description languages, parallelizing compilers, and computer aided design
techniques and tools for software and hardware at logic, high and system levels,
and for incompletely specifi ed logical systems. He has over 300 publications in
Eastern and Western Europe, USA and Canada. Such worldwide publishers as
IEEE, Springer, Kluwer Academic Publishers, World Scientifi c and others have
published his works.

