Кафедра «Тепловые электрические станции»

Н. В. Пантелей А. В. Нерезько

ПАРОВЫЕ ТУРБИНЫ ТЕПЛОВЫХ И АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ

Пособие

для студентов специальностей 1-43 01 04 «Тепловые электрические станции» и 1-43 01 08 «Проектирование и эксплуатация атомных электрических станций»

Рекомендовано учебно-методическим объединением по образованию в области энергетики и энергетического оборудования

> Минск БНТУ 2021

УДК [621.311.22+621.039.53]:621.165(075.8) ББК 31.363я7 П16

Рецензенты:

кафедра электроники Белорусского государственного университета информатики и радиоэлектроники, зав. кафедрой, канд. техн. наук С. М. Сацук; начальник турбинного участка ОАО «Белэнергореаналадка», канд. техн. наук А. М. Таращук

Пантелей, Н. В.

П16 Паровые турбины тепловых и атомных электростанций: пособие для студентов специальностей 1-43 01 04 «Тепловые электрические станции» и 1-43 01 08 «Проектирование и эксплуатация атомных электрических станций» / Н. В. Пантелей, А. В. Нерезько. – Минск : БНТУ, 2021. – 171 с.

ISBN 978-985-583-189-2.

Пособие для курсовых проектов предназначено для студентов специальностей «Проектирование и эксплуатация атомных электрических станций», «Тепловые электрические станции», изучающих дисциплины «Турбины ТЭС», «Турбины АЭС».

В пособии приведены методические основы и примеры теплового и конструкторского расчета проточной части турбин как от начальных, так и от конечных параметров. Изложен порядок расчета конструкционных элементов турбины на прочность.

Выполнение этих работ позволяет закрепить теоретический материал лекций, а также приобрести практические навыки по исследованию работы паровых турбин электростанций.

Пособие соответствует государственным образовательным стандартам высшего профессионального образования по направлению подготовки дипломированного специалиста 1-43 01 08 «Паротурбинные установки атомных электрических станций», 1-43 01 04 «Тепловые электрические станции».

УДК [621.311.22+621.039.53]:621.165(075.8) ББК 31.363я7

 © Пантелей Н. В., Нерезько А. В., 2021
 © Белорусский национальный технический университет, 2021

ISBN 978-985-583-189-2

 ОБЩИЕ ПРЕДПОСЫЛКИ ВЫПОЛНЕНИЯ ТЕПЛОВОГО И КОНСТРУКТИВНОГО РАСЧЕТА ПАРОВЫХ ТУРБИН	
 ПОСТРОЕНИЕ РАБОЧЕГО ПРОЦЕССА ТУРБИНЫ И ОПРЕДЕЛЕНИЕ РАСХОДА ПАРА НА ТУРБИНУ Турбины типа К и Р	ІОСЫЛКИ ВЫПОЛНЕНИЯ ТЕПЛОВОГО ВНОГО РАСЧЕТА ПАРОВЫХ ТУРБИН
 ТЕПЛОВОЙ РАСЧЕТ РЕГУЛИРУЮЩЕЙ СТУПЕНИ	РАБОЧЕГО ПРОЦЕССА ТУРБИНЫ Е РАСХОДА ПАРА НА ТУРБИНУ
 3.5.4. Расчет второго венца рабочей решетки	АСЧЕТ РЕГУЛИРУЮЩЕЙ СТУПЕНИ
и низкого давлении 4.4. Детальный расчет нерегулируемых ступеней 4.4.1. Использование кинетической энергии выходной скорости	г второго венца рабочей решетки

СОДЕРЖАНИЕ

4.4.3 Потеря энергии от утечек пара 97 5. РАСЧЕТ КОНСТРУКЦИОННЫХ ЭЛЕМЕНТОВ 100 ТУРБИНЫ НА ПРОЧНОСТЬ 100 5.1. Общие сведения 100 5.2. Расчет рабочей лопатки на растяжение 100 5.3. Расчет рабочей лопатки постоянного сечения на изгиб 102 5.4. Расчет рабочей лопатки переменного сечения на изгиб 104 5.5. Расчет рабочей лопатки переменного сечения на изгиб 104 5.6. Выбор допускаемых напряжений 106 5.7. Критическое число оборотов ротора 108 Список использованной литературы 109 ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171	4.4.2. Потеря энергии от влажности	96
5. РАСЧЕТ КОНСТРУКЦИОННЫХ ЭЛЕМЕНТОВ ТУРБИНЫ НА ПРОЧНОСТЬ	4.4.3 Потеря энергии от утечек пара	97
5.1 АС НЕТ КОПСТЬ УКЦИОННЫХ УЛЕМЕНТОВ ТУРБИНЫ НА ПРОЧНОСТЬ	5 PACUET KOHCTPVKIIIIOHHLIY ƏJEMEHTOR	
19 г Винві на пігочность 100 5.1. Общие сведения 100 5.2. Расчет рабочей лопатки на растяжение 100 5.3. Расчет рабочей лопатки постоянного сечения на изгиб 102 5.4. Расчет рабочей лопатки переменного сечения на изгиб 104 5.5. Расчет вала на прочность 104 5.6. Выбор допускаемых напряжений 106 5.7. Критическое число оборотов ротора 108 Список использованной литературы 109 ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171		100
5.1. Общие сведения	5 1 05	100
5.2. Расчет рабочей лопатки на растяжение	5.1. Оощие сведения	100
5.3. Расчет рабочей лопатки постоянного сечения на изгиб 102 5.4. Расчет рабочей лопатки переменного сечения на изгиб 104 5.5. Расчет вала на прочность 104 5.6. Выбор допускаемых напряжений 106 5.7. Критическое число оборотов ротора 108 Список использованной литературы 109 ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 157	5.2. Расчет рабочей лопатки на растяжение	100
5.4. Расчет рабочей лопатки переменного сечения на изгиб	5.3. Расчет рабочей лопатки постоянного сечения на изгиб	102
5.5. Расчет вала на прочность	5.4. Расчет рабочей лопатки переменного сечения на изгиб	104
5.6. Выбор допускаемых напряжений 106 5.7. Критическое число оборотов ротора 108 Список использованной литературы 109 ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 2 111 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171	5.5. Расчет вала на прочность	104
5.7. Критическое число оборотов ротора 108 Список использованной литературы 109 ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 2 111 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171	5.6. Выбор допускаемых напряжений	106
Список использованной литературы 109 ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 2 111 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171	5.7 Критическое число оборотов ротора	108
Список использованной литературы 109 ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 2 111 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171		
ПРИЛОЖЕНИЕ 1 110 ПРИЛОЖЕНИЕ 2 111 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171	Список использованной литературы	109
ПРИЛОЖЕНИЕ 2 111 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171	ПРИЛОЖЕНИЕ 1	110
ПРИЛОЖЕНИЕ 2 111 ПРИЛОЖЕНИЕ 3 114 ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171		
ПРИЛОЖЕНИЕ 3	ПРИЛОЖЕНИЕ 2	111
ПРИЛОЖЕНИЕ 4	ПРИЛОЖЕНИЕ 3	114
ПРИЛОЖЕНИЕ 4 138 ПРИЛОЖЕНИЕ 5 143 ПРИЛОЖЕНИЕ 6 149 ПРИЛОЖЕНИЕ 7 157 ПРИЛОЖЕНИЕ 8 171		
ПРИЛОЖЕНИЕ 5	ПРИЛОЖЕНИЕ 4	138
ПРИЛОЖЕНИЕ 6	ПРИЛОЖЕНИЕ 5	143
ПРИЛОЖЕНИЕ 7	ПРИЛОЖЕНИЕ 6	149
ПРИЛОЖЕНИЕ 7		
	ПРИЛОЖЕНИЕ 7	157
ПРИЛОЖЕНИЕ 8	ПРИЛОЖЕНИЕ 8	171

введение

Предметы «Турбины ТЭС» и «Турбины АЭС», читаемые студентам БНТУ, являются одними из базовых в получении подготовки по специальности «Тепловые электрические станции» и «Паротурбинные установки атомных электрических станций». Курсовое проектирование предполагает обобщение и совершенствование знаний студентов, полученных при изучении предметов в течение двух семестров.

Целью выполнения курсового проекта является получение практических навыков выполнения конструкторских и поверочных расчетов турбин, работающих как на паре, так и на газах любого состава.

Турбина – уникальный двигатель, поэтому области ее применения разнообразны: от мощных силовых установок тепловых и атомных электростанций, до маломощных турбин мини-ТЭЦ, силовых транспортных установок и турбонадувных агрегатов дизельных двигателей внутреннего сгорания. Исходя из этого в данном методическом пособии большое внимание уделено общему подходу к выбору конструкции проектируемой турбомашины с учетом потребительских требований к ней.

Методики расчета турбин со времен А. Стодолы постоянно совершенствовались. Большие наработки таких методик сделаны в МЭИ школой профессоров М. Е. Дейча и Б. М. Трояновского. Именно здесь был усовершенствован метод закрутки ступеней большой веерности, предложенный в 1942 году В. В. Уваровым и получивший название «саблевидных лопаток». В настоящее время он реализован в конструкциях турбин ряда зарубежных турбостроительных фирм под названием «банановых лопаток». Впервые в МЭИ разработаны сверхзвуковые профили с выпуклостью на спинке. Показаны возможности управления пограничным слоем на торцевых стенках каналов турбинных решеток с лопатками малой длины с применением их меридионального профилирования. Разработаны высокоэффективные конструкции регулирующих клапанов турбин. Единственный академик-турбинист Андрей Владимирович Щегляев руководил многими важнейшими работами в области отечественного турбостроения. Огромный вклад в совершенствование турбин сверхкритического давления внесли ученые ВТИ. Именно их трудом обеспечен успешный переход нашей энергетики с 12,8 МПа (130 ата) на параметры свежего пара 23,5 МПа (240 ата) без промежуточных (16-18 МПа), на которых полтора-два десятка лет оставалась зарубежная энергетика. Трудно выделить кого-либо в этом ряду выдающихся специалистов по причине его обширности, но заметной фигурой в нем стоит В. П. Лагун. Под его руководством была решена проблема сверхзвуковых ступеней части низкого давления мощных паровых турбин, уточнена методика расчета потерь от влажности пара в их последних ступенях и самих таких ступеней, предложен метод обратной закрутки таких ступеней и т. д. Лучшие наработки отечественного и зарубежного турбостроения авторы стремились использовать при подготовке данного пособия. Прежде всего, это аналитический аппарат профессора Трояновского Б. М.

Обеспечение прочности разрабатываемой конструкции турбины – основа ее надежной работы. Поэтому такой раздел является неотъемлемой частью выполняемого проекта. Для освоения методик прочностных расчетов студентами в рамках курсового проекта предполагается выполнение ими прочностного расчета лопаток рабочего колеса турбины, расчета критического числа оборотов ее ротора, а также ротора на прочность. В плане этих требований в данном пособии приводятся характеристики металлов, турбин и основных профилей турбинных лопаток конструкции МЭИ, а также ряд других справочных материалов, необходимых в работе будущих инженеров-теплоэнергетиков.

1. ОБЩИЕ ПРЕДПОСЫЛКИ ВЫПОЛНЕНИЯ ТЕПЛОВОГО И КОНСТРУКТИВНОГО РАСЧЕТА ПАРОВЫХ ТУРБИН

Тепловой расчет турбины может быть конструкторским или поверочным. Конструкторский расчет предполагает создание нового агрегата под заданные исходные данные. Такими данными являются мощность, начальные и конечные параметры рабочего тела, а также тип турбины (конденсационная, теплофикационная, турбоприводная и т. д.). Поверочный расчет турбины предполагает определение ее основных характеристик по заданным основным геометрическим размерам и дополнительным техническим условиям, изложенным в техническом задании на проектирование. Такими размерами являются основные геометрические размеры ступеней уже изготовленной или ранее рассчитанной турбины (средние диаметры ступеней, профильные углы сопл и рабочих лопаток и т. д.). Обычно поверочный расчет предполагает восстановление отсутствующих заводских расчетных данных на расчетный режим или получение таких данных под новые условия работы турбины (изменившиеся параметры рабочего тела или получение основных характеристик турбины для принятия решения по ее реконструкции в плане надежной и экономичной работы под изменившиеся условия).

1.1. Примеры заводских данных теплового расчета паровых турбин и их анализ

В инженерной практике белорусских энергетиков наиболее часто встречаются теплофикационные паровые турбины типов ПТ-60/75–12,75/1,27, Р-50–12,75/1,27, производства Ленинградского металлического завода (ЛМЗ, в настоящее время «Силовые машины»); Т-110/120–12,75, Т-50/60–12,75, ПТ-50/60–12,75/0,68 и Т-250/300–23,5 производства Уральского турбомоторного завода (УТМЗ). Именно они в обозримой перспективе будут определять состав основного оборудования белорусских ТЭЦ, являющихся основой генерирующих мощностей белорусской энергосистемы (более 50 %). Первая в этом ряду турбина ПТ-60/75–12,75/1,27 является наиболее серийной в мире машиной своего класса (ЛМЗ выпустил их более 390 шт.). В белорусской энергосистеме успешно работает 14 таких турбин. Вторая турбина – Т-110/120–12,75 – в известном смысле, является

прототипом целого семейства в своем классе (T-110/120–12,75, T-50/60–12,75, ПТ-50/60–12,75/0,68) и, наконец, T-250/300–23,5 – машина нового поколения не имеющая аналогов по ряду важнейших характеристик в своем классе. В Белорусской энергосистеме успешно работает одна из первых конденсационных турбин производства ЛМЗ (ПАО «Силовые машины») – К-300–23,5 (8 шт. на Лукомльской ГРЭС). Она открывает ряд турбин сверхкритического давления, в число замыкающих которого входят К-800–23,5 и К-1200–23,5. Паровая конденсационная турбина К-160–12,75 производства Харьковского турбогенераторного завода (ХТГЗ) является прототипом многих современных турбин АЭС и турбин на суперсверхкритические давления (ССКД) пара (30 МПа/600/600 °С) по целому ряду конструктивных решений (совмещенные в одном цилиндре ЧВД и ЧСД, сварной РНД и т. д.).

Обратим внимание на большую разницу в расчетных расходах пара через последнюю ступень ЦВД (ст. № 17) турбины ЛМЗ типа ПТ-60–12,75/1,27 – 250,5 т/ч и первую ступень ЧСД (ст. № 18) 170 т/ч. Эта разница обусловлена выполнением производственного отбора пара после ее ЦВД (прил. 2).

Особого внимания заслуживает анализ выбора расчетного режима УТМЗ ступеней низкопотенциальной части (НПЧ) турбины T-110/120-12,75 (прил. 3), к которым можно отнести последнюю ступень теплофикационного отсека (ТО), предшествующего верхнему регулируемому отбору (ст. № 21), ступени № 22, 23 переключаемого или промежуточного отсека (ПО) и ступени № 24, 25 части низкого давления (ЧНД). Расчетный расход пара для ступеней ЧНД данной турбины составляет 2×145 т/ч = 290 т/ч, а для ступеней ПО его величина больше и составляет 356 т/ч. Большая разница значений расчетных расходов пара для двух смежных отсеков турбины обусловлена переменными режимами работы ступеней ПО. Промежуточный отсек теплофикационных турбин в течение сезона работает со значительными отклонениями от расчетных величин расходов пара и его параметров, как в зимний отопительный период, так и в летний (конденсационные режимы). ЧНД на зимних режимах работает с полностью закрытыми поворотными диафрагмами (ПД) и вентиляционным пропуском пара в конденсатор (D_{κ}^{\min}). Выполнение ЧНД на расчетный расход пара 356 т/ч привело бы к неоправданному увеличению длины лопаток его последней ступени и большим потерям трения и вентиляции на зимних режимах. Давление в конденсаторе теплофикационной турбины зимой ниже расчетного $(P_{\kappa} \cong 5 \text{ кПа})$, что приближает величины объемных пропусков пара по состоянию за ЧНД ($D_{\kappa}v_{\kappa}$) зимой к расчетному значению при максимальном (летнем) пропуске пара в конденсатор турбины $D_{\kappa}^{\max} \cong$ ≅ 350 т/ч, когда вакуум в конденсаторе хуже. Очевидно, за расчетный расход пара в ЧНД принят пропуск в него меньше максимально возможного, который может быть только на чисто конденсационных режимах в летний период работы: $D_{\rm kp}^{\rm or} = D_{\rm kp} / D_{\rm k}^{\rm max} = 290/350 =$ = 0,83 максимально возможного. Для ПТ-60-130 ЛМЗ принял это соотношение на уровне $D_{\kappa p}^{oT} = 0,9$. Следует также обратить внимание на выбор величин расчетных давлений НПЧ теплофикационных турбин. Для той же T-110–130 расчетное давление за ступенью № 21 составляет $P_{2p}^{(21)} = 0,57$ ата, а расчетное давление на входе в ступень № 22 – $P_{0p}^{(22)} = 2,08$ ата. Оба этих значения фактически соответствуют одному и тому же «верхнему» отопительному отбору турбины. Такой выбор оправдан опять же с учетом режимов работы турбоустановки в годовом разрезе и осуществляется путем технико-экономической оптимизации всей НПЧ. В курсовом проекте наиболее ценным является обоснование студентами принимаемых ими решений. Для помощи им в этом и приведены заводские данные по трем наиболее распространенным теплофикационным турбинам на белорусских ТЭЦ, кроме двух упомянутых также и для мощнейшей в своем классе теплофикационной турбины УТМЗ -Т-250/300-23,5 (прил. 6).

1.2. Тепловой расчет паровой турбины

Тепловой расчет турбины выполняется с целью определения основных размеров и характеристик проточной части: числа и диаметров ступеней, высот их сопловых и рабочих решеток и типов профилей, КПД ступеней, отдельных цилиндров турбины в целом.

Тепловой расчет турбины выполняется на заданную мощность, заданные начальные и конечные параметры пара, число оборотов; при проектировании турбины с регулируемыми отборами пара, кроме того, на заданные давления и величину отборов. В данном пособии излагается тепловой расчет турбины без расчета тепловой схемы турбоустановки, что обуславливает определение расчетных расходов пара без учета отборов на регенерацию.

Для турбин типа К и Р за расчетный расход пара принимается расход пара на турбину при режиме номинальной мощности.

Для турбин типа ПТ и Т расчетные расходы через ЧВД и ЧСД соответствуют режиму номинальной мощности и номинальных регулируемых отборов при номинальных параметрах пара. Расчетный расход через ЧНД соответствует расходу пара на турбину при режиме номинальной мощности без отборов (конденсационный режим).

1.3. Конструкторский расчет паровой турбины

Вариантов проектируемой турбины может быть множество. Конструктор, приступая к разработке своего варианта турбины, должен оценить основные ее характеристики. Они могут определяться как самим автором будущей конструкции разрабатываемой машины, так и быть оговорены в техническом задании на проектирование.

Примером первого подхода может быть задание на проектирование конденсационной паровой турбины единичной мощностью 2000 МВт, на параметры свежего и вторично перегретого пара 29 МПа/600/600/600 °С. Примером второго подхода – проектирование теплофикационной турбины типа ПТ единичной мощностью 100–120 МВт в габаритах турбины ПТ-60–12,75/1,27 (на ее фундамент).

2. ПОСТРОЕНИЕ РАБОЧЕГО ПРОЦЕССА ТУРБИНЫ И ОПРЕДЕЛЕНИЕ РАСХОДА ПАРА НА ТУРБИНУ

2.1. Для турбины типа К и Р

По параметрам пара *P*₀ и *t*₀ определяется точка состояния пара перед стопорным клапаном (рис. 2.1 и 2.2) в *h*,*s*-диаграмме.

Давление пара перед соплами регулирующей ступени с учетом потерь в стопорном, регулирующих клапанах и перепускных паропроводах

$$P_0' = P_0 \cdot (0,95 \div 0,96). \tag{2.1}$$

Точка A'_0 определяет состояние пара перед соплами регулирующей ступени в h_s -диаграмме.

Давление за последней ступенью турбины с учетом потерь в выхлопном патрубке

$$P_{2z} = \left[1 + \lambda \left(\frac{C_{\text{BI}}}{100}\right)^2\right] P_{\text{K}},\tag{2.2}$$

где P_{κ} – давление в конденсаторе или на выхлопе турбины с противодавлением, МПа;

 $C_{\rm вп}$ – средняя скорость потока в выхлопном патрубке, м/с: – *для конденсационной турбины*

$$C_{\rm BII} = (100 \div 120), \ {\rm M/c};$$

– для турбины с противодавлением

$$C_{\rm BII} = 50 \div 80 \, {\rm m/c}$$

λ – коэффициент, учитывающий аэродинамические качества выхлопного патрубка:

– для конденсационной турбины

$$\lambda = 0.08 \div 0.1;$$

– для турбины с противодавлением

$$\lambda = 0.05 \div 0.07.$$

Рис. 2.1. Ориентировочный рабочий процесс в турбине без отборов в *h*,*s*-диаграмме

Расход пара^{*} на турбину по предварительно заданному КПД (без учета утечек через концевые уплотнения)

^{*} если для привода питательного насоса применяется турбина, пар на которую подается из отбора проектируемой, то расход пара на проектируемую турбину подсчитывается с учетом приводной.

$$G = \frac{N_{\mathfrak{I}}^{\mathfrak{p}}}{H'_{\mathfrak{0}} \cdot \eta_{\mathfrak{O}\mathfrak{I}}}, \ \kappa \Gamma/\mathfrak{c},$$
(2.3)

где N_{2}^{p} – расчетная мощность турбины, равная номинальной, кВт/ч;

 H'_0 – располагаемый тепловой перепад турбины, определяемый из *h*,*s*-диаграммы по расстоянию между точками *A'* и *F* (рис. 2.1), кДж/кг;

η₀₉ – относительный КПД паротурбинного аппарата (ориентировочные значения даны в табл. 2.1).

Таблица 2.1

Среднее	Мощность турбины, МВт							
значение КПД, %	12	25	50	100	150	200	300 и более	
$\eta_{o^{\mathfrak{H}}}$	78÷81	79÷82,5	81÷83,5	83÷84,5	84÷86	84÷86	84÷86	
$\eta_{_M}$	97÷97,5	98÷99	98,5÷99	99÷99,5	99÷99,5	99÷99,5	99÷99,5	
η_{r}	96÷96,5	96,5÷97	97,5÷98,5	98÷99	98,1÷99,1	98,8	98,75	

Для турбин с промежуточным перегревом пара величина давления ЦВД

$$P_{\rm I} = P_0 \cdot (0, 15 \div 0, 18).$$

Потеря давления в промежуточном пароперегревателе и паропроводе составляет от 10 до 12,5 %.

$$P_{\mathrm{I}}^{\Pi\Pi} = P_{\mathrm{I}} \cdot (0,875 \div 0,9).$$

Располагаемый тепловой перепад турбины приведен на рис. 2.2

 $H_0' = H_0^{\mathrm{I}} + H_0^{\mathrm{II}},$

$$H_0^{\mathrm{I}} = A_0' \cdot K, \quad H_0^{\mathrm{II}} = a_1' \cdot B.$$

где

Расход пара на приводную турбину

Рис. 2.2. Процесс расширения пара в турбине с промежуточным перегревом пара в *h*,*s*-диаграмме

Расход пара на входе в проектируемую турбину

$$G = \frac{N_e^{\rm P}}{H_0' \cdot \eta_{\rm o9}} + y_{\rm IIT} \cdot G_{\rm IIT}, \text{ KeVc}, \qquad (2.3')$$

где *у*_{ПТ} – коэффициент недовыработки для потока пара, идущего в приводную турбину:

$$y_{\Pi T} = \frac{H_0^{\Pi T}}{H'_0};$$

 $H'_0 = H_0^{I} + H_0^{II};$

 $N_e\,$ – эффективная мощность на валу приводной турбины, к
Вт/ч;

 $H_0^{\Pi T}$ – располагаемый перепад приводной турбины, кДж/кг (см. рис. 2.2);

Нанесение линии состояния пара в рабочем процессе турбины в *h*,*s*-диаграмме осуществляется в следующей последовательности.

Выбирается тип регулирующей ступени и перепад на нее.

В конденсационных турбинах свыше 10 МВт применяют одновенечную регулирующую ступень с перепадом $H_0^{pc} = 80 \div 120 \text{ кДж/кг.}$

В турбинах типа Р в качестве регулирующих ступеней устанавливают до мощности 40 МВт включительно как одновенечные, так и двухвенечные ступени, выше 50 МВт одновенечные.

Двухвенечные ступени устанавливают с перепадом $H_0^{\rm pc} = 135 \div 160 \ \kappa Дж/кг,$ одновенечные $H_0^{\rm pc} = 75 \div 95 \ Дж/кг.$

От точки A'_0 по изоэнтропе откладывается выбранный тепловой перепад на регулирующую ступень H_0^{pc} (рис. 2.1). Изобара P_2^{pc} , проведенная через точку *C* конца отрезка H_0^{pc} , соответствующей давлению за регулирующей ступенью. Для того чтобы на этой изобаре найти точку начала процесса в нерегулируемых ступенях, необходимо учесть потери в регулирующей ступени. Для этого подсчитываются внутренний относительный КПД регулирующей ступени по формулам:

- для одновенечной ступени

$$\eta_0^{\rm Ipc} = 0,83 - \frac{2 \cdot 10^{-4}}{G} \sqrt{\frac{p_0'}{\nu_0'}}; \qquad (2.4)$$

- для двухвенечной ступени

$$\eta_0^{\text{IIpc}} = 0.8 - \frac{2 \cdot 10^{-4}}{G} \sqrt{\frac{P_0'}{v_0'}},$$
(2.5)

где G – предварительно определенный расход пара на турбину по формуле (2.3) (2.3').

Полезно используемый тепловой перепад на регулирующей ступени $H_i^{pc} = H_0^{pc} \cdot \eta_{oi}^{pc}$, кДж/кг, отложенной от точки A'_0 до точки C', определит в этой точке в *h*,*s*-диаграмме энтальпию пара за регулирующей ступенью с учетом потерь. Точка пересечения проходящая через точку C' линии постоянной энтальпии пара с изобарой P_2^{pc} дает точку начала процесса в нерегулируемых ступенях – точку a_0 . Оставшийся теплоперепад a_0B (рис. 2.1) или $a_0B_1a'_1B$ (рис. 2.2). $H_0^{\text{нер}}$ – располагаемый перепад, приходящийся на нерегулируемые ступени. $H_0^{\text{нер}}$ в зависимости от величины разбивается на 2–3 участка (на рис. 2.1, 2.2 по изобарам P_1 , P_{II}^*), и последовательно для каждого участка находится объемный расход на входе в участок – Gv. У противодавленческих турбин $H_0^{\text{нер}}$ следует рассматривать как один участок.

v – удельный объем пара при входе в рассматриваемый участок.

На рис. 2.1, 2.2 в точках a_0 , a_I , a'_I , a_{II} , удельные объемы v_0 , v_1 , v_2 , v_{2z} . *G* – расход пара через рассматриваемый участок, кг/с.

Для каждого участка находится отношение давлений ϵ_0 :

- для первого участка на рис. 2.1 $\varepsilon_0 = \frac{P_2^{\rm pc}}{P_1};$ - для второго участка $\varepsilon_0 = \frac{P_1^{\rm nn}}{P_2};$ - для третьего $\varepsilon_0 = \frac{P_2}{P_{2z}}.$

^{*} *P*_{II} следует принять равным 0,196–0,26 МПа, что обычно соответствует давлению перед цилиндрами низкого давления современных отечественных турбин конденсационного типа.

Аналогично для турбин с промперегревом на рис. 2.2.

По найденным значениям Gv и ε_0 последовательно определяется внутренний относительный КПД каждого участка по рис. 2.3, 2.4, 2.5.

$$\eta_{\rm oi} = \eta_{\rm oi}' \cdot k_{\gamma} - \xi_{\rm BC} - \Delta \eta_{\rm oiBJ}, \qquad (2.6)$$

где k_y – поправка на раскрытие проточной части турбины. Поправка принимается по рис. 2.4 в зависимости от значения давления в конце участка. Для участков в области высокого и среднего давления $k_y = 1$.

В случае если $k_y = 1$ и потери с выходной скоростью используются в последующих ступенях, а процесс протекает в области перегретого пара, $\eta_{0i} = \eta'_{0i}$.

 $\xi_{\rm BC}$ – относительная величина потерь с выходной скоростью, которая должна быть учтена, если давление в конце участка является давлением в конце цилиндра:

$$x_{\rm BC} = \frac{D \cdot H_{\rm BC}}{H'_{\rm BC}} \cdot 100 \%, \Delta H_{\rm BC}$$
 находится по рис. 2.4;

Δη_{о/вл} – по рис. 2.4 в зависимости от приведенной теоретической конечной влажности

$$\overline{y}_{2t} = y_{2t} \cdot \frac{H_0^{\text{BI}}}{H_0}, \%,$$

где y_{2t} – конечная влажность в теоретическом процессе (рис. 2.1, 2.2) $y_{2t} = (1 - x_{2t}) \cdot 100 \%$,

 $H_0^{\text{вл}}$ – располагаемый перепад части, срабатываемой ниже линии сухого насыщенного пара (*x* = 1);

 H_0 – располагаемый перепад части (на рис. 2.1, 2.2 $H_0 = H_0^{\text{III}}$); $P_{\text{ср}}$ – среднее давление части (на рис. 2.1, 2.2 $P_{\text{ср}} = \frac{P_{\text{II}} + P_{2z}}{2}$).

в зависимости от объемного расход пара Gv и $\varepsilon_0 = \frac{P_1}{P_2}$

Последовательность построения процесса в нерегулируемых ступенях на рис. 2.1, 2.2 выглядит так: по найденной величине $\eta_{oi} = \eta_{oi}^{I}$ для первой части и заданному разбивкой перепаду H_{0}^{I} определяется $H_{i}^{I} = H_{0}^{I} \cdot \eta_{oi}^{I}$ и находится точка a_{I} – конец процесса в первой части с учетом потерь, которая одновременно является точкой начала процесса во второй части (на рис. 2.2 это точка a'_{I}).

В этой точке определяется значение $v_{\rm I}$, объемный расход пара $Gv_{\rm I}$, $\varepsilon_0 = \frac{P_{\rm I}}{P_{\rm 2}}$.

По рис. 2.2, 2.3 и формуле (2.6) находится η_{oi}^{II} и строится процесс с учетом потерь для второй части. Аналогично строится процесс для третьей части с дополнительным учетом потерь от влажности пара по рис. 2.4.

Рис. 2.4. Зависимость потерь от выходной скорости и поправка на раскрытие проточной части от давления за последней ступенью

Рис. 2.5. Потери от влажности в зависимости от приведенной конечной влажности пара \bar{y}_{2t}

Процесс расширения пара в *h*,*s*-диаграмме:

 $A_0 - A_0' - a_0 - a_1 - a_2 - a_3 - A_{\kappa}$ на рис. 2.1 и для турбины с промперегревом $A_0 - A_0' - a_0 - a_1 - a_1' - a_2 - a_3 - A_{\kappa}$ на рис 2.2. По полученному при построении значению *H_i* уточняется расход пара на турбину:

– для турбин типа Р и К без турбопривода

$$G = \frac{N_{\mathfrak{I}}^{\mathfrak{p}}}{H_i \cdot \eta_{\mathrm{M}} \eta_{\mathrm{F}}}, \ \mathrm{kg/c},$$

где *H_i* – полезно используемый тепловой перепад на турбину (см. рис. 2.1);

η_мη_г – механический и электрический КПД из табл. 2.1;

– для турбин типа К с турбоприводом

$$G = \frac{N_{9}^{p}}{(H_{i}^{\mathrm{I}} + H_{i}^{\mathrm{II}}) \cdot \eta_{\mathrm{M}} \cdot \eta_{\mathrm{\Gamma}}} + y_{\mathrm{\Pi}\mathrm{T}} \cdot G_{\mathrm{\Pi}\mathrm{T}}, \ \mathrm{kg/c},$$

где $H_i^{I} + H_i^{II}$ – полезно используемый тепловой перепад на турбину с промперегревом (рис. 2.2).

2.2. Для турбин с регулируемыми отборами пара

Определение расхода пара на турбину с отборами производится в той же последовательности, что и для турбины без отборов, но с учетом величины отборов. Определяются значения P_0 и P_{2z} по формулам (2.1) и (2.2), проводятся изобары по заданным давлениям в отборах (рис. 2.6). В дополнение к операциям, проводимым в разделе 2.1, подсчитываются коэффициенты недовыработки мощности отборами и, задав значение η_{o_3} в зависимости от мощности по табл. 2.1, подсчитывается расход пара без учета утечек через концевые уплотнения:

$$G = \frac{N_{3}^{p}}{H'_{0} \cdot \eta_{09}} + y_{\Pi} \cdot G_{\Pi} + y_{T} \cdot G_{T}, \ \kappa \Gamma/c, \qquad (2.7)$$

где *у*_П – коэффициент недовыработки мощности паром производственного отбора;

*у*_т – коэффициент недовыработки мощности паром отопительного отбора (см. рис. 2.5);

$$y_{\Pi} = \frac{H'_0 - H^{I}_0}{H'_0};$$
$$y_{T} = \frac{H'_0 - H^{I}_0 - H^{I}_0}{H'_0}$$

Линия состояния пара в рабочем процессе турбины строится сначала для регулирующей ступени с использованием формул (2.4), (2.5), затем для нерегулируемых ступеней, тепловой перепад на которые, в зависимости от количества регулируемых отборов, разбивается на две-три части по заданным давлениям в отборах. Кроме того, построение процесса расширения пара в турбине с отборами должно производиться с учетом дросселирования пара в регулирующих устройствах отборов и величины отборов. Для теплофикационных турбин с регулируемыми отборами пара при сравнительно небольшом расходе свежего пара, примерно до 300 т/ч, иногда 450 т/ч (на номинальном режиме), в качестве регулирующей применяется двухвенечная ступень с перепадом:

$$H_0^{\rm pc} = 135 \div 160 \text{ кДж/кг.}$$

При значительном расходе свежего пара применяется одновенечная регулирующая ступень с перепадом:

$$H_0^{\rm pc} = 75 \div 105 \, \, \mathrm{кДж/кг}.$$

- КПД дросселирования производственного отбора

$$\eta_{\pi p}^{\pi} \cong 0,85 \div 0,95;$$

- КПД дросселирования отопительного отбора

$$\eta_{\text{дp}}^{\text{T}} = 0, 7 \div 0, 75.$$

Расчетный расход пара через ЧНД от давления $P'_{\rm T}$ до P_{2z} определяется по расходу пара на турбину при чисто конденсационном режиме, формула (2.3). Для нерегулируемых ступеней ЧВД объемный расход пара равен

 $Gv_0, M^3/c,$

где v_0 – удельный объем в точке a_0 начала процесса в нерегулируемых ступенях.

Отношение давлений

$$\varepsilon_0 = \frac{P_2^{\rm pc}}{P_{\Pi}}.$$

Внутренний относительный КПД для ЧВД и ЧСД определяется по формуле (2.6) и рис. 2.3:

$$H_{i1}^{\mathrm{I}} = H_{01}^{\mathrm{I}} \cdot \eta_{0i}^{\mathrm{YB}\mathcal{I}(\mathrm{Hep})}.$$

Для второй части (ЧСД) объемный расход пара равен G^{ЧНД}v₁'. Отношение давлений

$$\varepsilon_0 = \frac{P_{\Pi}^{\prime}}{P_{\rm T}},$$
$$H_{i1}^{\rm II} = H_{01}^{\rm II} \cdot \eta_{0i}^{\rm 4C,I}.$$

Для третьей части (ЧНД) объемный расход пара равен $G^{\text{ЧНД}}v'_2$. Отношение давлений

$$\varepsilon_0 = \frac{P_{\rm T}'}{P_{2z}}.$$

Значение $\eta_{0i}^{\text{ЧНД}}$ находится по формуле (2.6) и рис. 2.3, 2.4, 2.5.

$$H_i^{\rm III} = H_0^{\rm III} \cdot \eta_{oi}^{\rm YH\mathcal{I}}.$$

В результате перечисленных расчетов и построений наносится линия состояния пара в рабочем процессе турбины с регулируемыми отборами (рис. 2.6):

$$A_0 - A'_0 - a_0 - a_1 - a'_1 - a_2 - a'_2 - a_3 - A_{\kappa}.$$

По полученному значению *H_i* турбины уточняются расчетные расходы пара на турбину и ее отдельные части:

$$G = \frac{N_{9}^{p}}{H_{i} \cdot \eta_{M} \cdot \eta_{\Gamma}} + y_{\Pi} \cdot G_{\Pi} + y_{T} \cdot G_{T}, \text{ } \kappa\Gamma/c, \qquad (2.9)$$

где H_i – полезно используемый тепловой перепад турбины (см. рис. 2.6).

Значения $\eta_{\rm M}$ и $\eta_{\rm \Gamma}$ приведены в табл. 2.1, значения $G^{\rm ЧCД}$ и $G^{\rm ЧHД}$ уточняются по формуле (2.3), $G^{\rm ЧBД} = G$.

Рис. 2.6. Ориентировочный рабочий процесс расширения в турбине с регулируемыми отборами в *h*,*s*-диаграмме

Примеры построений рабочих процессов турбин и определение расходов пара

<u>Пример 1</u>

Номинальная мощность турбины 50 МВт. Начальные параметры пара: $P_0 = 12,75$ МПа, $t_0 = 565$ °C. Конечное давление $P_{\kappa} = 6$ МПа.

Энтальпия пара в точке состояния пара перед стопорным клапаном A_0 (см. рис. 2.1) $h_0 = 3150$ кДж/кг.

Давление пара перед соплами регулирующей ступени с учетом потерь в стопорном, регулирующих клапанах и перепускных паропроводах

$$P'_0 = P_0 \cdot 0.95 = 12,75 \cdot 0.95 = 12,11$$
 MITa.

Давление за последней ступенью турбины (в примере турбина типа Р) с учетом потерь в наклонном патрубке

$$P_{2z} = \left[1 + \lambda \left(\frac{c_{\text{вп}}}{100}\right)^2\right] \cdot P_{\kappa} = \left[1 + 0.07 \left(\frac{80}{100}\right)^2\right] \cdot 1.6 = 1.67 \text{ MIIa}.$$

Расход пара на турбину

$$G = \frac{N_{9}^{\rm p}}{H'_{0} \cdot \eta_{09}} = \frac{50\,000}{570 \cdot 0.82} = 106,97 \text{ kg/c},$$

 $H'_0 = h_0 - h'_{\kappa}$ (отрезок A'_0F на рис. 2.1), $H'_0 = 3510 - 2940 = 570 \ \kappa \mbox{Дж/кг};$

η₀₉ = 0,82 – относительный электрический КПД паротурбинного агрегата (из табл. 2.1).

Выбирается одновенечная регулирующая ступень с перепадом $H^{\rm pc} = 84 {\rm k} {\rm Д} {\rm k} / {\rm kr}.$

Давление пара в камере регулирующей ступени $P_2^{pc} = 9,6$ МПа находится по перепаду H^{pc} (см. рис. 2.1).

где 3443,5 – энтальпия в точке a_0 кДж/кг, 2950 – энтальпия в точке *B*, кДж/кг, см. рис. 2.1.

Поскольку в примере рассматривается противодавленческая турбина, то $H_0^{\text{нер}}$ рассматривается как один участок.

$$v = 0,036 \text{ m}^3/\text{kr};$$

 $Gv = 106,97 \cdot 0,036 = 3,85 \text{ m}^3/\text{c}$

$$\varepsilon_0 = \frac{P_2^{pc}}{P_{2z}} = \frac{9,6}{1,67} = 5,748;$$

 $\eta_{oi} = \eta'_{oi} \cdot k_{\gamma} - \xi_{\rm BC} - \Delta \eta_{oibj} = 0,9025 \cdot 1 - 0,0081 = 0,8944.$ По рис. 2.3 $\eta'_{oi} = 90,25 \% = 0,9025.$ По рис. 2.4 $k_{\gamma} = 1$; $\Delta H_{\rm BC} \cong 4$ кДж/кг.

$$\xi_{\rm BC} = \frac{\Delta H_{\rm BC}}{H_0^{\rm hep}} = \frac{4}{493,5} = 0,0081.$$
 Здесь $H_0' = H_0^{\rm hep}.$

Процесс протекает в области перегретого пара – $\eta_{0iвл} = 0$.

$$H_i^{\text{нер}} = H_0^{\text{нер}} \cdot \eta_{\text{oi}} = 493, 5 \cdot 0, 8944 = 438, 20$$
кДж/кг.

По перепаду $H_i^{\text{нер}}$ определяется точка конца процесса в турбине и находится полезно использованный перепад на турбину.

$$H_i = h_0 - h_{\kappa} = 3510 - 3005, 3 = 504, 7$$
 кДж/кг.

Уточненный расход пара на турбину

$$G = \frac{50000}{504, 7 \cdot 0,99 \cdot 0,985} = 101,59 \text{ kg/c}.$$

Пример 2

Номинальная мощность турбины 300 МВт, давление пара перед турбиной $P_0 = 23,5$ МПа, начальная температура пара $t_0 = 560$ °C. Температура промежуточного перегрева $t_{\Pi\Pi} = 565$ °C, давление отработавшего пара $P_{\kappa} = 3,4$ кПа.

Питательный насос имеет привод от противодавленческой турбины, которая питается паром из отбора основной турбины. Давление и температура пара перед стопорным клапаном приводной турбины $P_0^{\Pi T} = 1,47$ МПа, $t_0^{\Pi T} = 450$ °C. Давление на выхлопе $P_{\kappa}^{\Pi T} =$ = 0,245 МПа. После турбопривода пар возвращается в отбор основной турбины с давлением P = 0,235 МПа. Номинальная мощность турбопривода 12,5 МВт.

Давление пара перед соплами регулирующей ступени

$$P'_0 = 0,95 \cdot 23,5 = 22,325$$
 MIIa.

Для турбин с промежуточным перегревом пара давление за ЦВД

$$P_{\rm I} = 0,16 \cdot 23,5 = 3,78$$
 MIIa.

Потери в промежуточном перегревателе 10 % от P₁.

$$P_{\rm I}^{\Pi\Pi} = 0, 9 \cdot P_{\rm I}^{\Pi\Pi} = 0, 9 \cdot 3, 78 = 3, 4$$
 MIIa.

На *h*,*s*-диаграмме определяется перепад в турбине до промперегрева H_0^{I} (отрезок A'_0K на рис. 2.2).

$$H_0^1 = h_0 - h_I = 3384 - 2908 = 476$$
 кДж/кг.

По параметрам пара $P_{I}^{\Pi\Pi}$, $t_{0}^{\Pi\Pi}$, P_{2z} определяется перепад в турбине после промперегрева H_{0}^{Π} (отрезок $a'_{1}B$ рис. 2.2).

$$H_0^{\text{II}} = h'_0 - h'_{\kappa t} = 3588 - 2212 = 1376 \text{ кДж/кг.}$$
$$P_2^z = \left[1 + \lambda \left(\frac{c_{\text{вп}}}{100}\right)^2\right] \cdot P_{\kappa} = \left[1 + 0.1 \left(\frac{120}{100}\right)^2\right] \cdot 0.0034 = 0.00388 \text{ МПа.}$$

Перепад приводной турбины

$$H_0^{\Pi \Pi} = h_0^{\Pi \Pi} - h_{\kappa}^{\Pi \Pi} = 3364 - 2880 = 484 \ \kappa \ Дж/\kappa \ r.$$

 $h_0^{\text{ПТ}}$ находится на *h*,*s*-диаграмме по параметрам $P_0^{\text{ПT}}$ и $t_0^{\text{ПT}}$, $i_{\kappa}^{\text{ПT}}$ в конце теоретического процесса приводной турбине при давлении $P_{\kappa}^{\text{ПT}}$ (см. рис. 2.2).

Расход пара на приводную турбину

$$G_{\Pi T} = \frac{N_e}{H_0^{\Pi T} \cdot \eta_{oi}^{\Pi T} \cdot \eta_{M}} = \frac{12500}{484 \cdot 0.8 \cdot 0.98} = 32,94 \text{ Kr/c}.$$

Предварительный расход пара на входе в проектируемую турбину

$$G = \frac{N_3^p}{\left(H_0^{\text{I}} + H_0^{\text{II}}\right) \cdot \eta_{\text{os}}} + y_{\text{IIT}} \cdot G_{\text{IIT}} = \frac{300\ 000}{\left(476 + 1376\right) \cdot 0.84} + 0.261 \cdot 32.94 =$$
$$= 192.84 + 8.6 = 201.44\ \text{kr/c}.$$
$$H_0^{\text{IIT}} = \frac{484}{2} = 0.261$$

$$y_{\Pi\Pi} = \frac{H_0^{\Pi\Pi}}{H_0^1 + H_0^{\Pi}} = \frac{484}{476 + 1376} = 0,261.$$

Выбирается одновенечная регулирующая ступень с перепадом $H_0^{\rm PC}=100,6~{\rm \kappa}{\rm Д}{\rm w}/{\rm \kappa}{\rm \Gamma}.$

КПД регулирующей ступени

$$\eta_{0i}^{PC} = 0,83 - \frac{2 \cdot 10^{-4}}{G} \sqrt{\frac{P_0'}{v_0'}} = 0,83 - \frac{2 \cdot 10^{-4}}{201,44} \sqrt{\frac{22,325 \cdot 10^6}{0,0147}} = 0,83 - 0,0386 = 0,7914.$$

Полезно используемый тепловой перепад регулирующей ступени

$$H_i^{\text{PC}} = H_0^{\text{PC}} \cdot \eta_{\text{o}i}^{\text{PC}} = 100, 6 \cdot 0, 7914 = 79, 61$$
кДж/кг.

Отложив H_0^{PC} от точки A'_0 на *h*,*s*-диаграмме до пересечения с изобарой $P_2^{\text{PC}} = 16,2$ МПа, получим точку начала процесса в нерегулируемых ступенях (точка a_0 на рис. 2.2).

Теплоперепад $a_0B_1a'_1B$ (рис. 2.2) разобьем на участки a_0B , a_1M , MB. Внутренний относительный КПД участка a_0B_1

$$\eta_{0i} = \eta'_{0i} \cdot k_{\gamma} - \xi_{\rm BC} - \Delta \eta_{0iBJ} = 0,8935 \cdot 1 - 0,0106 - 0 = 0,8829;$$

$$Gv_0 = 201,44 \cdot 0,0193 = 3,887 \text{ m}^3/\text{c};$$

D0

$$\varepsilon_0 = \frac{P_2^{\rm PC}}{P_1} = \frac{16,2}{3,78} = 4,285$$
.

По рис. 2.3 $\eta'_{oi} = 0,8935$. По рис. 2.4 $k_{\gamma} = 1$, $\Delta H_{\rm BC} \cong 4$ кДж/кг,

$$\zeta_{\rm BC} = \frac{\Delta H_{\rm BC}}{H_{01}} = \frac{4}{376} = 0,0106.$$

где $H_{01}^{\text{II}} = 3304 - 2928 = 376 \text{ кДж/кг.}$

3304, 2928 кДж/кг – энтальпия пара в точках a_0 и B_1 соответственно (см. рис. 2.2).

Полезно использованный тепловой перепад a_0B_1 $H_{i1}^{II} = H_{01}^{II} \cdot \eta_{oi} = = 376 \cdot 0,8829 = 331,97$ кДж/кг.

Энтальпия пара в конце процесса участка $a_0B_1 - 2972$ кДж/кг.

Полезно использованный тепловой перепад в турбине до промперегрева

$$H_i^1 = 3384 - 2972 = 412$$
 кДж/кг.

Внутренний относительный КПД участка *a*₁[']M

$$η_{oi} = 0.9278 \cdot 0.994 - 0.0055 - 0 = 0.9166,$$

 $Gv_1 = 201.44 \cdot 0.11 = 22.16 \text{ m}^3/\text{kr}.$

 $ε_0 = \frac{P_1^{\Pi\Pi}}{P_2} = \frac{3.4}{0.235} = 14.47,$

2, ,

где *P*₂ принимается равным 0,235 МПа.

По рис. 2.3 $\eta'_{oi} = 0,9278,$

По рис. 2.4 $k_{\gamma} = 0,994$; $\Delta H_{\rm BC} = 4$ кДж/кг.

$$\zeta_{\rm BC} = \frac{\Delta H_{\rm BC}}{H_{02}^{\rm II}} = \frac{4}{720} = 0,055.$$

Полезно используемый перепад участка *а*'*М*

$$H_{i2}^{\text{II}} = H_{02}^{\text{II}} \cdot \eta_{\text{o}i} = 720 \cdot 0,9166 = 659,95 \text{ кДж/кг.}$$

Отложив перепад H_{02}^{II} от точки a'_1 , находим точку начала процесса в третьем участке a_2D .

Внутренний относительный КПД участка *а*₂*D* (в ЧНД три потока)

$$\eta_{\text{o}i} = \eta_{\text{o}i}' \cdot k_{\gamma} - \zeta_{\text{BC}} - \Delta \eta_{\text{o}i\text{B}\pi} = 0,941 \cdot 0,968 - 0,0355 - 0,03 = 0,8453.$$

$$Gv_{\rm II} = \frac{201,44}{3} \cdot 1,0 = 67,146 \text{ m}^3/\text{c}; \quad \varepsilon_0 = \frac{0,235}{0,00388} = 60,65$$

По рис. 2.3 $\eta'_{oi} = 0,941.$

По рис. 2.4 $k_{\gamma} = 0.968$ по $P_{\rm cp} = \frac{0.235 + 0.00388}{2} = 0.11944$ МПа,

$$\Delta H_{\rm BC} = 23 \text{ KJm/Kr}, \quad \zeta_{\rm BC} = \frac{\Delta H_{\rm BC}}{H_0^{\rm III}} = \frac{23}{648} = 0,0355.$$

 $\Delta \eta_{0iвл}$ по рис. 2.5 в зависимости от $\overline{y}_{2t} = y_{2t} \cdot \frac{H^{вл}}{H_0^{III}} = 11, 3 \cdot \frac{368}{648} = 6,42 \%.$

$$y_{2t} = (1 - x_{2t}) \cdot 100 \% = (1 - 0.887) \cdot 100 \% = 11.3 \%,$$

 $\Delta \eta_{0iBI} = 3 \% = 0.03.$

Полезно используемый перепад участка а₂D

$$H_i^{\text{III}} = H_0^{\text{III}} \cdot \eta_{\text{o}i} = 648 \cdot 0,8453 = 547,75$$
кДж/кг

Значение энтальпии в конце процесса в турбине *h*_к = 2380,25 кДж/кг,

$$H_i^{\text{II}} = h_0' - h_{\text{k}} = 3588 - 2380, 25 = 1207, 75$$
кДж/кг.
 $H_i = H_i^{\text{I}} + H_i^{\text{II}} = 412 + 1207, 75 = 1617, 75$ кДж/кг.

По H_i уточняется расход пара на турбину

$$G = \frac{N_9^p}{H_i \cdot \eta_M \cdot \eta_\Gamma} + y_{\Pi T} \cdot G_{\Pi T} = \frac{300\ 000}{1619,75 \cdot 0,995 \cdot 0,9875} + 0,261 \cdot 32,94 = 197,1\ \text{кг/c}.$$

<u>Пример 3</u>

Номинальная мощность турбины 135 МВт, начальные параметры пара перед турбиной: P_0 = 12,75 МПа, t_0 = 565 °C, давление отработавшего пара P_{κ} = 5,4 МПа. Давление и величина производственного отбора: P_{π} = 1,47 МПа, D_{π} = 320 т/ч. Давление и величина отопительного отбора: P_{τ} = 0,103 МПа, D_{τ} = 210 т/ч (рассматривается один отопительный отбор без разделений на верхний и нижний).

$$P'_0 = P_0 \cdot 0.95 = 12,75 \cdot 0.95 = 12,11$$
 MITa.

$$P^{z} = \left[1 + \lambda \left(\frac{c_{\text{вп}}}{100}\right)^{2}\right] \cdot P_{\text{K}} = \left[1 + 0,09 \left(\frac{100}{100}\right)^{2}\right] \cdot 0,0054 = 0,005886 \text{ MIIa}.$$

Расход пара на турбину

$$G = \frac{N_3^{\rm p}}{H_i' \cdot \eta_{\rm o3}} + y_{\rm II} \cdot G_{\rm II} + y_{\rm T} \cdot G_{\rm T},$$

где $H'_0 = h'_0 - h_{\kappa t} = 3516 - 2060 = 1456$ кДж/кг.

$$y_{\Pi} = \frac{H'_0 - H^1_0}{H'_0} = \frac{1456 - 566}{1456} = 0,611;$$

 H_0^{I} – перепад от P_0' до P_{Π} ;

$$H_0^{\mathrm{I}} = h_0 - h_{\mathrm{II}} = 3516 - 2950 = 566 \text{ кДж/кг};$$
$$Y_{\mathrm{T}} = \frac{H_0^{\mathrm{I}} - H_0^{\mathrm{II}} - H_0^{\mathrm{III}}}{H_0^{\mathrm{I}}} = \frac{1456 - 566 - 518}{1456} = 0,255;$$
$$H_0^{\mathrm{II}} = h_{\mathrm{II}} - h_{\mathrm{T}} = 2950 - 2432 = 518 \text{ кДж/кг}.$$

$$H_0^{\Pi} = h_{\Pi} - h_{\Gamma} = 2950 - 2432 = 518$$
 кДж/кг

Предварительный расход пара на турбину

$$G = \frac{135000}{1456 \cdot 0.84} + 0.611 \frac{320 \cdot 10^3}{3600} + 0.255 \cdot \frac{210 \cdot 10^3}{3600} = 179,55 \text{ Ke}/c.$$

В качестве регулирующей ступени принимается одновенечная с $H_0^{\rm PC}$ = 77 кДж/кг, $P_2^{\rm PC}$ = 9,7 МПа.

$$\eta_{0i}^{PC} = 0.83 - \frac{2 \cdot 10^{-4}}{179.55} \sqrt{\frac{12.11 \cdot 10^{6}}{0.0295}} = 0.83 - 0.0266 = 0.8074.$$

Полезно используемый перепад

$$H_i^{\text{PC}} = H_0^{\text{PC}} \cdot \eta_{\text{o}i}^{\text{PC}} = 77 \cdot 0,8074 = 62,17$$
 кДж/кг.

По H_i^{PC} и P_2^{PC} в точке a_0 находится $h_2^{PC} = 3453,8$ кДж/кг, $v_0 = 0,036$ м³/кг – энтальпия и удельный объем пара в начале процесса в нерегулируемых ступенях. Перепад на нерегулируемые ступени a_0B делится по аналогии с рис. 2.6 на три участка.

Для нерегулируемых ступеней ЧВД (первый участок)

$$Gv_0 = 179,55 \cdot 0,036 = 6,46 \text{ m}^3/\text{c},$$

отношение давлений $\varepsilon_0 = \frac{P_2^{\text{PC}}}{P_{\Pi}} = \frac{9,7}{1,47} = 6,6.$

По рис. 2.3 $\eta_{oi} = 0,909$.

По рис. 2.4 $k_{\gamma} = 1$, $\Delta H_{\rm BC} \cong 4.4$ кДж/кг.

$$\zeta_{\rm BC} = \frac{\Delta H_{\rm BC}}{h_{\rm oI}} = \frac{4}{529,8} = 0,0075,$$

где $H_{01}^{I} = h_{2}^{PC} - h_{\Pi} = 3453, 8 - 2924 = 529, 8 кДж/кг.$

$$\eta_{\rm oi} = \eta_{\rm oi}' \cdot k_{\gamma} - \zeta_{\rm BC} - \Delta \eta_{\rm oibn} = 0,909 \cdot 1 - 0,00755 - 0 = 0,9014.$$

Полезно используемый перепад

$$H_i^{\mathrm{I}} = H_0^{\mathrm{I}} \cdot \eta_{\mathrm{o}i} = 529 \cdot 0,9014 = 477,56$$
 кДж/кг

Энтальпия пара в конце процесса в ЦВД (точка *a*_I на рис. 2.6)

КПД дросселирования производственного отбора $\eta_{дp}^{\Pi} = 0.9$.

Давление пара за регулирующими клапанами производственного отбора

$$P'_{\Pi} = P_{\Pi} \cdot \eta^{\Pi}_{\mu} = 1,47 \cdot 0,9 = 1,323 \text{ MII}a.$$

Для второй части (ЧСД) начало процесса в точке $a'_{\rm I}$. Объемный расход пара

$$G^{\text{YCA}} = G - G_{\Pi} = 179,55 - 88,88 = 90,66 \text{ kg/c}.$$

Отношение давлений $\varepsilon_0 = \frac{P_{\Pi}^{/}}{P_{T}} = \frac{1,323}{0,103} = 12,84$.

По рис. 2.3 $\eta'_{oi} = 0,925$. По рис. 2.4 $k_{\gamma} = 1$, $\Delta H_{\rm BC} = 4$ кДж/кг.

$$\zeta_{\rm BC} = \frac{\Delta H_{\rm BC}}{H_{01}^{\rm II}} = \frac{4}{470} = 0,0085,$$

где $H_{01}^{I} = h'_{\Pi} - h_{\Gamma} = 2976,24 - 25,07 = 470,24$ кДж/кг.

 $\eta_{\rm oi} = \eta_{\rm oi}' \cdot k_{\gamma} - \zeta_{\rm BC} - \Delta \eta_{\rm oiBI} = 0,925 \cdot 1 - 0,0085 - 0,035 = 0,8815.$

По рис. 2.5 $\Delta \eta_{0iвл} = 3,5 \%$, $\overline{y}_{2t} = y_{2t} \cdot \frac{H_0^{вл}}{H_0^{II}} = 7,6 \cdot \frac{235}{470} = 3,8 \%$,

$$y_{2t} = (1 - x_{2t}) \cdot 100 \% = (1 - 0.924) \cdot 100 \% = 7.6 \%,$$

$$P_{\rm cp} = \frac{P_{\Pi}' + P_{\rm T}}{2} = \frac{1,323 + 0,103}{2} = 0,713$$
 MIIa

Полезно использованный перепад ЧСД

$$G^{\text{ЧНД}} \cdot v'_2 = 110,38 \cdot 2,15 = 237,3 \text{ м}^3/\text{с}.$$

 $G^{\text{ЧНД}} = G_{\kappa} = \frac{135\ 000}{1456 \cdot 0,84} = 110,38 \text{ кг/c}.$

 $\eta_{\rm oi} = \eta_{\rm oi}' \cdot k_{\gamma} - \zeta_{\rm bc} - \Delta \eta_{\rm oibit} = 0,905 \cdot 0,985 - 0,0388 - 0,08 = 0,776.$

По рис. 2.3 $\eta'_{oi} = 0,905$

$$\varepsilon_0 = \frac{P_{\rm T}'}{P_{2z}} = \frac{0,0773}{0,005886} = 13,13.$$

По рис. 2.4 для ЧНД k_{γ} и $\Delta H_{\rm BC}$ берутся для

$$\begin{split} P_{\rm cp} &= \frac{P_{\Gamma}' + P_{2z}}{2} = \frac{0,0773 + 0,005886}{2} = 0,0416 \text{ MIIa.} \\ k_{\gamma} &= 0,985, \quad \Delta H_{\rm BC} = 12 \text{ кДж/кг.} \\ \zeta_{\rm BC} &= \frac{\Delta H_{\rm BC}}{H_0^{\rm III}} = \frac{12}{354} = 0,0338. \end{split}$$

По рис. 2.5 потеря от влажности находится в зависимости от \overline{y}_{2t} . Когда процесс расширения целиком лежит в области влажного пара

$$\overline{y}_{2t} = y_{2t} = (1 - x_{2t}) \cdot 100 \% = (1 - 0.852) \cdot 100 \% = 14.8 \%,$$
$$\Delta \eta_{_{OIBJ}} = 8 \%.$$

Полезно использованный теплоперепад ЧНД

$$H_i^{\text{III}} = H_0^{\text{III}} \cdot \eta_{\text{o}i} = 354 \cdot 0,776 = 275,27$$
 кДж/кг.

Энтальпия пара в конце процесса в турбине $h_{\kappa} = 2288,7 \text{ кДж/кг.}$ Полезно использованный перепад турбины

$$H_i = h_0 - h_{\kappa} = 3516 - 2288, 7 = 1227, 3$$
кДж/кг.

Уточненный расход пара на турбину

$$G = \frac{N_{\Im}}{H_{i} \cdot \eta_{M} \cdot \eta_{\Gamma}} + y_{\Pi} \cdot G_{\Pi} + y_{T} \cdot G_{T} = \frac{135000}{1227, 3 \cdot 0, 99 \cdot 0, 99} + 0,611 \cdot 88,88 + 0,225 \cdot 58,33 = 181,4 \text{ kg/c}.$$

Рис. 2.7. Зависимость U/C_{ϕ} от $H_0^{\rm PC}$ для одновенечной регулирующей ступени

Рис. 2.8. Зависимость U/C_{ϕ} от ${H_0}^{\rm PC}$ для двухвенечной регулирующей ступени

3. ТЕПЛОВОЙ РАСЧЕТ РЕГУЛИРУЮЩЕЙ СТУПЕНИ

3.1. Определение среднего диаметра ступени

Отношение окружной скорости и условной (фиктивной) изоэнтропийной скорости, вычисляемой по располагаемому тепловому, перепаду на всю ступень, можно определить по графикам на рис. 2.7, 2.8.

При расчете регулирующих ступеней учитываются:

 ρ – степень реакции ступени, принимается в пределах 5–10 % (для двухвенечной ступени $\rho = \rho^{I} + \rho_{II} + \rho^{II}$);

 α_{19} – эффективный угол выхода потока из сопловой решетки; для одновенечной ступени $\alpha_{19} = 11^{\circ}-14^{\circ}$, для двухвенечной $\alpha_{19} = 8^{\circ}-16^{\circ}$;

φ – коэффициент скорости сопловой решетки, φ = 0,93-0,97.

Фиктивная изоэнтропийная скорость пара, подсчитанная по располагаемому теплоперепаду ступени

$$c_{\phi} = \sqrt{2 \cdot 10^3 \cdot h_0^{\text{PC}}}, \text{ M/c.}$$
 (3.1)

Окружная скорость вращения диска по среднему диаметру ступени

$$u = \left(\frac{u}{c_{\phi}}\right) \cdot c_{\phi}, \text{ M/c.}$$
(3.2)

Средний диаметр ступени

$$d^{\rm PC} = \frac{u}{\pi \cdot n}, \,\,\mathrm{M},\tag{3.3}$$

где $n = 50 \text{ c}^{-1}$.

3.2. Расчет сопловой решетки

3.2.1. Определение типа сопловой решетки

Располагаемый тепловой перепад сопловой решетки

$$H_{01}^{PC} = H_0^{PC} (1 - \rho), \ \kappa Дж/кг.$$
 (3.4)
Теоретическая скорость пара

$$c_{1t} = \sqrt{2 \cdot 10^3 \cdot H_{01}^{\text{PC}}}, \text{ m/c.}$$
 (3.5)

Число Маха для теоретического процессов соплах

$$M_{1t} = \frac{c_{1t}}{a_{1t}}.$$
 (3.6)

Тип сопловой решетки определяем из рис. 3.1.

Рис. 3.1. Выбор профиля сопловой решетки регулирующей ступени: *a* – определение типа сопловой решетки; *б* – определение угла отклонения в косом срезе сопловой решетки

*a*_{1*t}</sub> – скорость звука на выходе из сопловой решетки при изоэнтропийном истечении:</sub>*

$$a_{1t} = \sqrt{k \cdot P_1^{\text{PC}} \cdot v_{1t}}, \text{ M/c}, \qquad (3.7)$$

где *P*₁^{PC} – давление за соплами, Па;

 v_{1t} – теоретический удельный объем пара за соплами, м³/кг;

k – показатель изоэнтропы (k = 1,3 для перегретого пара, k = 1,135 для насыщенного).

Число Маха (3.6) может быть определено и по графику на рис. 3.2, где оно дано в функции относительного конечного давления за соплами: $\varepsilon = \frac{P_1}{P_0^1}$ (степень расширения).

По величине M_{1t} выбирается тип решетки.

При $M_{1t} \leq 1,4$ применяются профили решеток с суживающимися каналами. При $M_{1t} > 1,4$ применяются профили, образующие расширяющиеся каналы.

Рис. 3.2. Критерий Маха в зависимости от степени расширения $\varepsilon_1 = P_1/P_0$

3.2.2. Расчет суживающихся сопел

Следует различать сопла при докритическом и сверхкритическом истечениях.

Расчет суживающихся сопел при докритическом истечении

При докритическом истечении $M_{1t} \leq 1(\varepsilon_1 \geq \varepsilon^*)$ выходное сечение суживающихся сопл определяют по уравнению

$$F_{1} = \frac{\left(G + G_{\text{yT}}\right) \cdot v_{1t}}{\mu_{1} \cdot c_{1t}} \cdot 10^{6}, \text{ MM}^{2}, \qquad (3.8)$$

где μ_1 – коэффициент расхода сопловой решетки, принимается по графику рис. 3.3 ($\mu_1 \cong 0,97$ для пара практически с любым перегревом);

 $G_{\rm YT}$ – количество пара, утекающего через переднее концевое уплотнение турбины, $G_{\rm VT} \cong (0,008-0,015)$, кг/с.

Произведение степени парциальности ступени на высоту сопловой решетки определяется по формуле

$$e \cdot l_1 = \frac{F_1}{\pi d^{\rm PC} \sin \alpha_{12}} \cdot 10^{-3}, \text{ MM}, \tag{3.9}$$

где d^{PC} измеряется в м, $F_1 - в \text{ мм}^2$.

Оптимальная степень парциальности:

- для одновенечной ступени

$$e_{\rm opt} \cong 0, 5 \cdot \sqrt{el_1}; \tag{3.10}$$

– для двухвенечной ступени

$$e_{\rm opt} \cong 0,33 \cdot \sqrt{el_1}. \tag{3.11}$$

В формулы (3.10) и (3.11) значение *el*₁ должно подставляться в сантиметрах.

Высота сопловой решетки

$$l_1 = \frac{el_1}{e_{\text{opt}}}, \text{ MM.}$$
 (3.12)

Потери энергии в соплах

$$H_1^{\rm PC} = (1 - \varphi^2) h_{01}^{\rm PC}, \ \kappa Дж/кг,$$
 (3.13)

где φ – коэффициент скорости сопловой решетки, тип принимается в зависимости от l_1 по рис. 3.4.

Рис. 3.3. Коэффициент расхода для сопловых рабочих решеток

Тип профиля сопловой решетки выбирается по M_{1t} и α_{13} ($\alpha_1 = \alpha_{13}$) (прил. 2).

По характеристике выбранной решетки принимается относительный шаг $\overline{t_{opt}}$. Шаг решетки

$$t = b \cdot t_{\text{opt}}, \text{ MM.}$$
(3.14)

Выходная ширина канала сопловой решетки

$$A_1 = \sin \alpha_{12}, \text{ MM.}$$
 (3.15)

Число каналов

$$z_1 = \frac{\pi \cdot d^{\rm PC} \cdot e_{\rm opt}}{t}.$$
 (3.16)

Рис. 3.4. Коэффициент скорости сопловой решетки

Расчет суживающихся сопел при сверхкритическом истечении Выходное сечение при $M_{1t} > 1$ ($\varepsilon_1 < \varepsilon^*$)

$$F_1 = \frac{(G + G_{\rm VT}) \cdot 10^6}{0,648 \sqrt{\frac{P'_0}{\nu'_0}}}, \text{ MM}^2, \qquad (3.17)$$

где P_0^{\prime} измеряется в Па; $v_0^{\prime} - M^3/\kappa\Gamma$; $G_{\rm YT} \cong (0,0008-0,015) \, \kappa\Gamma/c$.

При сверхзвуковом обтекании суживающейся решетки $\alpha_1 \neq \alpha_{1_3}$. Угол выхода потока из сопловой решетки α_1 не равен эффективному углу выхода потока из сопловой решетки) α_{1_3} , и его нужно подсчитать:

$$\sin \alpha_{1} = \sin \alpha_{13} \frac{c^{*}}{c_{1t}} \cdot \frac{v_{1t}}{v^{*}},$$
(3.18)

где c^* – критическая скорость.

Для перегретого пара

$$c^* = 1,064\sqrt{P'_0 \cdot v'_0}, \qquad (3.19)$$

где P'_0 измеряется в Па, v'_0 – в м³/кг; c^* – м³/с.

Удельные объемы v'_0 , v_{1t} , v^* определяются по *h*,*s*-диаграмме, как показано на рис. 3.5. Угол α_1 используется при построении входного треугольника скоростей ступени. Дальнейший расчет производится аналогично расчету суживающихся сопл при докритическом истечении.

3.2.3. Расчет расширяющихся сопл

Площадь минимального сечения сопл F_{\min} определяется по выходной ширине канала и высоте сопловой решетки (см. формулы (3.12) и (3.15).

Площадь выходного сечения сопл F_1 определяется по формуле (3.8).

Относительная величина выходного сечения каналов сопловой решетки (степень расширения сопла)

$$\overline{f} = \frac{F}{F_{\min}}.$$

Определение e_{opt} , l_1 , h_1 , t, a_1 , z_1 идет по формулам (3.9)–(3.16) расчета для суживающихся сопл.

Выбор типа профиля сопловой решетки производится по прил. 2 в зависимости от значения M_{1t} и α_{12} .

Ширина минимального сечения сопловой решетки

$$A_{\min} = A^* = \frac{A_1}{f} \text{ MM.}$$

3.3. Расчет рабочей решетки

3.3.1. Двухвенечная ступень

Степень реакции, принятую ранее (3.1), следует распределить по венцам:

 $\rho = \rho_1 + \rho_{\Pi} + \rho_{\Pi}$, где, например, $\rho = 10$ % в долях $\rho_I = 0.02$, $\rho_{\Pi} = 0.035$, $\rho_{\Pi} = 0.045$.

ρ_I – степень реакции первого венца рабочих лопаток;

ρ_П – степень реакции поворотной решетки;

 ρ_{II} – степень реакции второго венца рабочих лопаток.

Тепловой перепад, используемый в соплах, подсчитанный по формуле (3.13), откладывается от точки A'_0 (см. рис. 3.5).

Тепловой перепад, использованный на лопатках $H_{02} = \rho_{\rm I} \cdot H_0^{\rm PC} + \rho_{\rm II} \cdot H_0^{\rm PC} + \rho_{\rm II} \cdot H_0^{\rm PC} = H_{02}^{\rm I} + H_{02}^{\rm II} + H_{02}^{\rm III}$, откладывается согласно распределению степени реакции по лопаточному аппарату ступени.

Для построения процесса расширения пар в h,s-диаграмме через концы отрезков H_{02}^{I} , H_{02}^{II} , H_{02}^{III} проводятся изобары (рис. 3.5).

Построение треугольников скоростей и определение всех их элементов дает возможность выбрать типы профилей лопаточных решеток, определив потери в лопаточном аппарате, относительный лопаточный КПД, шаг и количество лопаток (см. рис. 3.6).

Входной треугольник скоростей первого венца строится по углу α_1 , скоростям c_1 и u (см. рис. 3.7) в любом удобном масштабе (в 1 мм – 10 м/с или в 1 мм – 5 м/с).

Абсолютная скорость потока определяется по формуле

$$c_1 = c_{1t} \cdot \varphi, \ \mathsf{M/c}, \tag{3.20}$$

где ф – коэффициент скорости сопловой решетки.

Окружная скорость *и* может быть определена по формуле (3.2) или следующим образом:

$$u = \pi \cdot d^{\mathrm{PC}} \cdot n, \ \mathrm{M/c}, \tag{3.21}$$

где $n = 50 \text{ c}^{-1}$.

Рис. 3.6. Двухвенечная ступень скорости: *а* – проточная часть и профили лопаток; *б* – треугольники скоростей

Относительная скорость ω_1 на входе в рабочую решетку первого венца и угол β_1 определяются графически из входного треугольника скоростей (рис. 3.7).

Расчет первого венца рабочей решетки

Для определения параметров пара перед этой решеткой строится действительный процесс расширения в соплах в h,s-диаграмме (см. рис. 3.5).

Построение производится следующим образом: от конца теплового перепада в соплах $H_{02}^{\rm PC}$ (на рис. 3.5 точка *a*) вверх откладывается величина потери в соплах $H_{01}^{\rm PC}$ (*ab*), через точку *b* проводится линия энтальпии до пересечения с изобарой $P_{\rm l}^{\rm PC}$ (точка *c*). Располагаемый перепад на рабочей решетке первого венца будет равен отрезку *cd*.

Теоретическая относительная скорость на выходе из первой рабочей решетки

$$\omega_{2t} = \sqrt{2 \cdot 10^3 \cdot \rho_1 \cdot H_0^{\text{PC}} + \omega_1^2}, \text{ m/c.}$$

Число Маха

$$M_{2t} = \frac{\omega_{2t}}{\sqrt{k \cdot P_1 \cdot v_{2t}^{\mathrm{I}}}},$$

где k = 1,3 (для перегретого пара);

*P*₁ – давление за первой рабочей решеткой (см. рис. 3.5), Па;

 $v_{2t}^{\rm I}$ – удельный объем за первой рабочей решеткой (в точке *d*), $m^3/\kappa r$.

Выходная площадь первой рабочей решетки по уравнению неразрывности

$$F_2^{\mathrm{I}} = \frac{Gv_{2t}^{\mathrm{I}}}{\mu_{2\mathrm{I}} \cdot \omega_{2t}}, \ \mathrm{m}^2,$$

где μ_{2I} – коэффициент расхода первой рабочей решетки (рис. 3.3), определяется в зависимости от степени реакции и величины перегрева пара.

Высота рабочей лопатки первой рабочей решетки (лопатка выполняется постоянной высоты)

$$l_2^{\rm I} = l_1 + \Delta_1 + \Delta_2$$
, MM,

где величины Δ_1 и Δ_2 берутся из табл. 3.1.

Высота сопловой	Перекрыша	
решетки l_1 , мм	внутренняя Δ_1 , мм	внешняя Δ_2 , мм
≤ 35	≤ 1,0	≤ 2
35÷50	1,0	2÷2,5
55÷75	1,5÷2,0	2,5÷3
75÷100	1,5÷2,0	3÷3,5
100÷150	2÷2,5	3,5÷4
150÷300	2÷3	6,5÷7,5
300÷400	5÷6	7,5÷9
400÷625	7÷9	9÷12
625÷700	9÷12	
700÷950	12÷15	

Величины перекрыш для ступней активного типа

Угол первой рабочей решетки определяется по формуле

$$\sin\beta_2 = \frac{F_2^{\mathrm{I}}}{\pi \cdot d^{\mathrm{PC}} \cdot e \cdot l_2^{\mathrm{I}}},$$

где $l_2^{\rm I}$ – вм.

Действительная относительная скорость входа пара из рабочей решетки первого венца (м/с)

$$\omega_2 = \Psi_{\mathrm{I}} \cdot \omega_{2t},$$

где скоростной коэффициент ψ_1 определяется по рис. 3.8 в зависимости от l_2^I и углов β_1 и β_2 .

По полученным ω_2 , β_2 и *u* строится выходной треугольник скоростей первого венца. Из выходного треугольника определяются абсолютная скорость выхода пара c_2 и угол выхода потока в абсолютном движении α_2 .

По M_{2t} и β_{23} выбирается профиль первой рабочей решетки. После выбора профиля производится проверка на прочность по максимальным изгибающим напряжениям в рабочей лопатке. Для этого подсчитывается окружное усилие, действующее на лопатки:

$$R_u^{\mathrm{I}} = G(\omega_1 \cdot \cos\beta_1 + \omega_2 \cdot \cos\beta_2), \mathrm{H}.$$

Тогда изгибающие напряжения

$$\sigma_{_{\mathrm{H3r}}}^{\mathrm{I}} = \frac{R_{u}^{\mathrm{I}} \cdot l_{2}^{\mathrm{I}}}{2 \cdot z_{2}^{\mathrm{I}} \cdot e \cdot W_{\mathrm{min}}}, \quad \mathrm{M}\Pi \mathrm{a}.$$

(в данной формуле осевой составляющей усилия пренебрегают).

 W_{\min} – минимальный момент сопротивления профиля (прил. 2); z_2^I – количество лопаток решетки

$$z_2^I = \frac{\pi \cdot d^{\rm PC}}{t_1},$$

 t_1 – шаг первой рабочей решетки: $t_1 = \overline{t} \cdot b$ (мм), \overline{t} , b – относительный шаг и хорда выбранного профиля решетки. $\sigma^{I}_{_{H3F}}$ должно быть меньше $\sigma^{_{M3F}}_{_{H3F}}$.

Для деталей, наиболее широко применяемых при изготовлении рабочих лопаток в ступенях с парциальным подводом пара

 $\sigma_{\mu_{3\Gamma}}^{\text{доп}} = 15-20 \text{ MII}a.$

При получении $\sigma^{I}_{_{H3F}} > \sigma^{\text{доп}}_{_{H3F}}$ хорду профиля следует увеличить в соответствии с выражением

$$\frac{b'}{b} = \sqrt{\frac{\sigma_{\rm M3\Gamma}}{\sigma_{\rm M3\Gamma}^{\rm don}}}.$$

Геометрические характеристики профилей приведены в (прил. 2). При увеличении хорды производят пересчет геометрических харак-

теристик профиля на увеличенную хорду умножением табличным характеристик на соответствующий множитель:

$$k_f = \left(\frac{b'}{b}\right)^2$$
 – для площади; $k_w = \left(\frac{b'}{b}\right)^3$ – для момента сопротив-

ления; $k_{\rm B} = \frac{b'}{h} - для$ ширины решетки (профиля).

Потеря энергии в первой рабочей решетке

$$h_2^{\rm I} = \left(1 - \psi_1^2\right) \cdot \frac{\omega_{l_\ell}^2}{2 \cdot 10^3}, \$$
кДж/кг.

Расчет поворотной решетки

Для определения параметров пара перед этой решеткой строится действительный процесс расширения в первой рабочей решетке в h,s-диаграмме. Для этого от конца теплового перепада на 1-й рабочей решетке (на рис. 3.5 точка d) вверх откладывается величина потери на первой рабочей решетке h_2^1 (df), через точку f проводится линия энтальпии до пересечения с изобарой P_1 (точка n), располагаемый перепад на поворотной решетке равен отрезку nm.

Из выходного треугольника скоростей первого венца находим абсолютную скорость входа в поворотную решетку c_2 и угол ее направления (рис. 3.7).

Рис. 3.7. Треугольники скоростей (к примеру расчета двухвенечной ступени)

Теоретическая скорость выхода пара из поворотной решетки подсчитывается по формуле

$$c_{1t} = \sqrt{2 \cdot \rho_{\Pi} \cdot H_0^{\text{PC}} + c_2^2}, \text{ m/c.}$$

Число Маха

$$M_{2\Pi t} = \frac{c_{1t}'}{a_{1t}'} = \frac{c_{1t}'}{\sqrt{k \cdot P_{\Pi} \cdot v_{2t}^{\Pi}}},$$

где P_{Π} , v_{2t}^{Π} – соответственно давление и удельный объем за поворотной решеткой, Па, м³/кг (v_{2t}^{Π} на рис. 3.5 в точке *m*).

Выходная площадь поворотной решетки определяется по уравнению неразрывности

$$F_{\Pi} = \frac{G \cdot v_{2t}^{\Pi}}{\mu_{2\Pi} \cdot c_{1t}'}, \ \mathbf{M}^2,$$

где $\mu_{2\Pi}$ определяется по аналогии с μ_{2I} по рис. 3.3.

Высота лопатки (постоянная по высоте) поворотной решетки

$$l_2^{\Pi} = l_2^1 + \Delta_1 + \Delta_2,$$

где величины берутся по аналогии с величинами при определении $l_2^{\rm I}$ из табл. 3.1.

Угол поворотной решетки определяется по формуле

$$\sin \alpha'_{1_3} = \frac{F_{\Pi}}{\pi \cdot d^{PC} \cdot e \cdot l_2^{\Pi}}$$
 (в формуле d^{PC} , l_2^{Π} в м).

Скорость пара из поворотной решетки

$$c_1' = c_{1t}' \cdot \psi_{\Pi}, \text{ m/c},$$

где скоростной коэффициент ψ_{Π} определяется по рис. 3.7 в зависимости от l_2^{Π} и углов α_2 / α'_1 .

По определенным c'_1 , $\alpha_{1,3}$ и *u* строится входной треугольник скоростей второго венца. Из выходного треугольника скоростей второго венца определяется относительная скорость ω'_1 и выходной угол β'_1 .

По $M_{2\Pi t}$ и α'_1 выбирается профиль поворотной решетки.

Рис. 3.8. Коэффициент скорости у для рабочих решеток

Количество лопаток поворотной решетки

$$z_{2\Pi} = \frac{\pi \cdot d^{\rm PC}}{t_{\Pi}},$$

 t_{Π} – шаг поворотной решетки: $t_{\Pi} = \overline{t} \cdot b$ (мм), \overline{t} , b – относительный шаг и хорда поворотной решетки (прил. 1).

Потеря энергии в поворотной решетке

$$H_{\Pi} = \left(1 - \psi_{\Pi}^2\right) \cdot \frac{\left(c_{1t}'\right)^2}{2 \cdot 10^3}, \ \kappa Дж/кг.$$

Расчет второго венца рабочей решетки

Для определения параметров пара перед этой решеткой строится действительный процесс расширения пара в поворотной решетке

в *h*,*s*-диаграмме. Потеря h_{Π} откладывается по изоэнтропе от точки *m* до точки *k* (рис. 3.5). Затем через точку *k* проводится линия энтальпии в действительном процессе за поворотной решеткой до пересечения с изобарой, соответствующей давлению за поворотной решеткой P_{Π} . Точка *p* – точка начала процесса в рабочей решетке второго венца. Отрезок p_j соответствует располагаемому перепаду на решетке второго венца $H_{\Omega\Omega}^{\Pi}$.

Теоретическая относительная скорость на выходе из второй рабочей решетки

$$\omega'_{2t} = \sqrt{2 \cdot 10 \cdot \rho_{\text{II}} \cdot H_0^{\text{PC}} + (\omega'_2)^2}, \text{ m/c}.$$

Число Маха

$$M_{2\mathrm{II}t} = \frac{\omega_{2t}^{\mathrm{I}}}{\sqrt{k \cdot P_{\mathrm{II}} \cdot v_{2t}^{\mathrm{II}}}},$$

где *P*_{II} – давление за второй рабочей решеткой, Па;

 v_{2t}^{II} – удельный объем за рабочей решеткой, м³/кг (рис. 3.5).

Выходная площадь второй рабочей решетки по уравнению неразрывности

$$F_2^{\mathrm{II}} = \frac{G \cdot v_{2t}^{\mathrm{II}}}{\mu_{2\mathrm{II}} \cdot \omega_{2t}'}, \ \mathrm{m}^2,$$

где µ_{2II} – коэффициент расхода второй рабочей решетки (рис. 3.3) определяется в зависимости от степени реакции и величины перегрева пара.

Высота рабочей лопатки второй решетки (лопатка выполняется постоянной по высоте)

$$l_2^{\text{II}} = l_2^{\Pi} + \Delta_1 + \Delta_2, \text{ mm}^2,$$

где величины Δ_1 и Δ_2 берутся из табл. 3.1.

Угол выхода потока пара из второй рабочей решетки определяется по формуле

$$\sin\beta_2' = \frac{F_2^{\rm II}}{\pi \cdot d^{\rm PC} \cdot e \cdot l_2^{\rm II}}$$

где l_2^{II} подставляется в мм.

Действительная относительная скорость выхода пара из рабочей решетки второго венца

$$\omega_2' = \psi_{\mathrm{II}} \cdot \omega_{2t}', \ \mathrm{M/c},$$

где скоростной коэффициент ψ_{II} определяется по рис. 3.8 в зависимости от l_2^{II} и углов β'_1 и β'_2 .

По полученным значениям ω'_2 , β'_2 и *и* строится выходной треугольник скоростей второго венца. Из выходного треугольника определяется абсолютная скорость выхода пара c'_2 и угол выхода потока при абсолютном движении α'_2 .

По $M_{2\Pi t}$ и β'_2 выбирается профиль второй рабочей решетки.

Производится проверка на прочность по максимальным изгибающим напряжениям в рабочей лопатке. Для этого подсчитывается окружное усилие, действующее на лопатки:

$$R_{u}^{\mathrm{II}} = G\left(\omega_{1}^{\prime} \cdot \cos\beta_{1}^{\prime} + \omega_{2}^{\prime} \cdot \cos\beta_{2}^{\prime}\right), \text{ H.}$$
$$\sigma_{_{\mathrm{H3F}}}^{\mathrm{II}} = \frac{R_{u}^{\mathrm{II}} \cdot l_{u}^{\mathrm{II}}}{2 \cdot z_{2}^{\mathrm{II}} \cdot e \cdot W_{\mathrm{min}}}, \text{ M}\Pi a.$$

 W_{\min} – минимальный момент сопротивления профиля (прил. 2); z_2^{II} – количество лопаток решетки:

$$z_2^{\mathrm{II}} = \frac{\pi \cdot d^{\mathrm{PC}}}{t_{\mathrm{II}}},$$

 $t_{\rm II}$ — шаг второй рабочей решетки: $t_{\rm II} = \overline{t} \cdot b$ (мм), \overline{t} , b — относительный шаг и хорда выбранного профиля решетки.

Потеря энергии во второй рабочей решетке

$$h_{2}^{\text{II}} = \left(1 - \psi_{\text{II}}^{2}\right) \cdot \frac{\left(\omega_{\text{I}t}'\right)^{2}}{2 \cdot 10^{3}}, \ \kappa$$
Дж/кг.

Потеря энергии с выходной скоростью

$$h_{\rm BC} = \frac{(c_2')^2}{2 \cdot 10^3}, \ \kappa Дж/кг.$$

3.4. Относительный лопаточный КПД ступени

По потерям энергии в проточной части

$$\eta_{\text{on}}^{\text{PC}} = \frac{H_0^{\text{PC}} - (H_1 + H_{2\text{I}} + H_{2\text{II}} + H_{2\text{II}} + H_{\text{BC}})}{H_0^{\text{PC}}}$$

По проекциям скоростей

$$\eta_{\text{on}}^{\text{PC}} = \frac{u\left(c_1 \cdot \cos\alpha_1 + c_2 \cdot \cos\alpha_2 + c_1' \cdot \cos\alpha_1' + c_2' \cdot \cos\alpha_2'\right)}{10^3 \cdot h_0^{\text{PC}}}.$$

Если тепловой расчет ступени выполнен правильно, то величины, вычисленные по формулам, должны совпасть. Допустимое расхождение не более 1 % (0,01).

Для подсчета η_{0i} берется среднее значение.

Относительный внутренний КПД ступени

$$\eta_{oi}^{PC} = \eta_{o\pi}^{PC} - \zeta_{TP} - \zeta_{\pi a p \mu},$$

ζ_{тр} – относительная величина потери на трение;

*ζ*_{пари} – относительная потеря от парциального подвода пара,

$$\zeta_{\text{парц}} = \zeta_{\text{в}} + \zeta_{\text{сегм}},$$

ζ_в – относительная потеря от вентиляции;

ζ_{сегм} – относительная величина потери на концах дуг сопловых элементов,

$$\zeta_{\rm TP} = k_{\rm TP} \frac{\left(d^{\rm PC}\right)^2}{F_1} \cdot \left(\frac{u}{c_{\rm \varphi}}\right)^3.$$

Значения d^{PC} и F_1 в формулу подставляются соответственно в м и м².

$$\begin{aligned} k_{\rm Tp} &= 0,45 \cdot 10^{-3} \div 0,8 \cdot 10^{-3}; \\ \zeta_{\rm B} &= \frac{0,065}{\sin \alpha_{13}} \cdot \frac{1 - e - 0,5e_{\rm KOW}}{e} \cdot \left(\frac{u}{c_{\rm \varphi}}\right)^3 \cdot m; \\ e_{\rm KOW} &= \left[\left(0,9 \div 0,8\right) - e^{\rm opt} \right]; \end{aligned}$$

 $e = e^{\text{opt}}$,

где *т* – число венцов ступени.

$$\zeta_{\text{CEFM}} = 0,25 \cdot \frac{B_{\text{I}} \cdot l_{2\text{I}}'' + 0, 6 \cdot B_{\text{II}} \cdot l_{2\text{II}}''}{F_{1}} \cdot \frac{u}{c_{\phi}} \cdot n \cdot \eta_{\text{on}},$$

где $B_{\rm I}$, $B_{\rm II}$, $l_{2\rm I}''$, $l_{2\rm II}'' =$ ширина и высота первого и второго ряда рабочих решеток;

n – число групп сопл (обычно n = 4).

Откладываем в *h*,*s*-диаграмме потери на трение диска:

$$\overline{H}_{\mathrm{Tp}} = \zeta_{\mathrm{Tp}} \cdot H_0^{\mathrm{PC}}, \ \kappa Дж/кг,$$

потери, вызванные парциальным подводом пара:

$$H_{\text{парц}} = \zeta_{\text{парц}} \cdot H_0^{\text{PC}}, \ \kappa Дж/кг$$

и определенные ранее потери с выходной скоростью $H_{\rm BC}$, находим использованный теплоперепад $H_i^{\rm PC}$ (рис. 3.5).

На рис. 3.5 $H_{\rm Tp} + H_{\rm парц}$ равны отрезку *rx*; $H_{\rm Bc}$ – отрезку *yz*. Точка 0 – точка конца процесса в ступени.

Внутренняя мощность ступени $N_i^{PC} = G \cdot H_i^{PC}$, кВт.

Расчет двухвенечной ступени сводится в таблицу.

3.5. Одновенечная ступень

Одновенечная ступень рассчитывается в том же порядке, что и двухвенечная. Процесс расширения пара в h,s-диаграмме показан на рис. 3.9.

При расчете одновенечной ступени:

– Выходной угол β_2 следует задать в пределах $\beta_2 = \beta_1 - (2 \div 5)$.

– Выходную высоту l''_2 и входную высоту l'_2 рабочей решетки принять равными $l'_2 - l''_2$.

- Выходная высота рабочей решетки

$$l_2'' = \frac{F_2}{\pi \cdot d^{\mathrm{PC}} \cdot e \cdot \sin\beta_2}, \ \mathrm{MM},$$

где *F*₂ – выходная площадь рабочей решетки:

$$F_2 = \frac{G \cdot v_{2t}}{\mu_2 \cdot \omega_{2t}}.$$

– Значение l_2 должно быть больше l_1 в пределах принимаемой для высоты рабочей решетки перекрыши (табл. 3.1).

- Относительный лопаточный КПД ступени:

по потерям энергии в проточной части

$$\eta_{0\pi}^{PC} = \frac{H_0^{PC} - \left(H_1^{PC} + H_2^{PC} + H_{BC}\right)}{H_0^{PC}};$$

по проекциям скоростей

$$\eta_{\rm on}^{\rm PC} = \frac{u(c_1 \cos \alpha_1 + c_2 \cos \alpha_2)}{10^3 h_0^{\rm PC}}.$$

- Относительная потеря от парциального подвода пара

$$\begin{aligned} \zeta_{\text{парц}} &= \zeta_{\text{B}} + \zeta_{\text{сегм}} = \frac{0,065}{\sin \alpha_1} \cdot \frac{1 - e - 0,5 \cdot e_{\text{кож}}}{e} \cdot \left(\frac{u}{c_{\phi}}\right)^3 + \\ &+ 0,23 \frac{B_2 \cdot l_2''}{F_1} \cdot \frac{u}{c_{\phi}} \cdot n \cdot \eta_{\text{ол}}. \end{aligned}$$

Обозначения величин даны к аналогичным формулам по расчету двухвенечной ступени.

В остальном тепловой расчет одновенечной ступени отличается от расчета двухвенечной только объемом вычислений. Расчет рекомендуется свести в таблицу по образцу двухвенечной ступени.

3.5.1. Пример расчета двухвенечной ступени

Пример проводится без пояснений, так как они имеются в содержании.

Начальное давление $P'_0 = 12$ МПа.

Начальная температура $t'_0 = 540$ °C.

Расход пара через ступень G = 120 кг/с.

Располагаемый перепад ступени $H_0 = 146 \text{ кДж/кг}.$

Частота вращения турбины $n = 50 \text{ c}^{-1}$.

Степень реакции ступени $\rho = 10$ %.

$$\rho = \rho_{\rm I} + \rho_{\rm II} + \rho_{\rm II} = 0,02 + 0,03 + 0,05 = 0,1.$$

Эффективный угол выхода потока пара из сопловой решетки $\alpha_{1,2} = 10^{\circ}$.

$$C_{\Phi} = \sqrt{2 \cdot 10^3 \cdot H_0^{\text{PC}}} = 44,72\sqrt{146} = 540,7 \text{ m/c};$$
$$u = \left(\frac{u}{c_{\Phi}}\right) \cdot c_{\Phi} = 0,276 \cdot 540,7 = 149,15 \text{ m/c};$$

 $\frac{u}{c_{\phi}} = 0,276$ найдено по рис. 2.8.

$$d^{\rm PC} = \frac{u}{\pi \cdot n} = \frac{149,15}{\pi \cdot 50} = 0,95.$$

$$H_{01}^{\text{PC}} = H_0^{\text{PC}} (1 - \rho) = 146 \cdot 0,9 = 131,4$$
 кДж/кг.
 $c_{1t} = 44,72\sqrt{H_{01}^{\text{PC}}} = 44,72\sqrt{131,4} = 512,62$ м/с

 $M_{1t} = \frac{c_{1t}}{a_{1t}} = \frac{512,62}{\sqrt{1,3\cdot 8\cdot 10^6\cdot 0,039}} = 0,8 < 1 - \text{сопла с суживающимися}$

каналами для докритического истечения:

$$F_1 = \frac{(G + G_{\rm YT}) \cdot v_{1t}}{\mu_1 \cdot c_{1t}} = \frac{120,96 \cdot 0,039}{0,97 \cdot 512,26} = 0,009487 \text{ m}^2.$$

μ₁ = 0,97 определено по рис. 3.3.

$$G_{\rm YT} = 0,008 \cdot G = 0,008 \cdot 120 = 0,96 \text{ kg/c}.$$

$$e \cdot l_1 = \frac{F_1}{\pi \cdot d^{\text{PC}} \cdot \sin \alpha_{12}} = \frac{0,009487}{\pi \cdot 0,95 \cdot 0,1735} = 0,0183 \text{ M} = 1,83 \text{ cm}.$$

$$e_{\rm opt} \cong 0,33\sqrt{1,83} = 0,446.$$

$$l_1 = \frac{e \cdot l_1}{e_{\text{opt}}} = \frac{18,3}{0,446} = 41$$
 MM.

$$l_1 = 41$$
 MM.

$$H_1^{\text{PC}} = (1 - \varphi^2) \cdot H_{01}^{\text{PC}} = (1 - 0.963^2) \cdot 131.4 = 9.543$$
 кДж/кг.

Тип профиля сопловой решетки по $\alpha_1 = \alpha_{13} = 14^{\circ}$ и $M_{1t} = 0.8$ выбирается из (прил. 2): С-90-0,9 А.

 $\overline{t}_{opt} = 0,72 - 0,85, \ b_1 = 6,06 \text{ cm}, \ B = 2,94 \text{ cm}.$ $t = b_1 \cdot \overline{t}_{opt} = 60,6 \cdot 0,77 = 46,66 \text{ mm}.$

$$z_1 = \frac{\pi \cdot d^{\text{PC}} \cdot e_{\text{opt}}}{t} = \frac{\pi \cdot 0,95 \cdot 0,446}{0,04666} = 28.$$
$$c_1 = c_1 \cdot \varphi = 512,62 \cdot 0,963 = 463,65 \text{ m/c}.$$

3.5.2. Расчет рабочей решетки

$$H_{02}^{\text{PC}} = \rho_1 \cdot H_0^{\text{PC}} + \rho_\Pi \cdot H_0^{\text{PC}} + \rho_\Pi \cdot H_0^{\text{PC}} =$$

 $= 0,02 \cdot 146 + 0,03 \cdot 146 + 0,05 \cdot 146 = 2,92 + 4,38 + 7,3 = 14,6$ кДж/кг.

и = 149,15 м/с.

$$\alpha_1 = \alpha_{13} = 10^{\circ}.$$

По *c*₁, *α*₁, *u* строится входной треугольник скоростей первого ряда и из него графически определяются

 $\omega_1 = 347$ м/с и $\beta_1 = 14^{\circ}30'$

$$\begin{split} \omega_{2t} &= 44,72 \sqrt{\rho_1 \cdot H_0^{\text{PC}} + \frac{\omega_1^2}{2000}} = 44,72 \sqrt{2,92 + \frac{347,5^2}{2000}} = 355,79 \text{ m/c.} \\ M_{2t} &= \frac{\omega_{2t}}{\sqrt{k \cdot P_1 \cdot v_{2t}^I}} = \frac{355,79}{\sqrt{1,3 \cdot 7,9 \cdot 10^6 \cdot 0,0397}} = 0,557. \end{split}$$

Значения $P_1 = 7,9$ МПа и $v_{2t}^{I} = 0,0397$ м³/кг определены из процесса расширения пара в ступени (*h*,*s*-диаграмма).

$$F_2^{I} = \frac{G \cdot v_{2t}^{I}}{\mu_{21} \cdot \omega_{2t}} = \frac{120 \cdot 0,0397}{0,938 \cdot 355,79} = 0,0142749 \text{ m}^2.$$
$$l_2^{I} = l_1 + \Delta_1 + \Delta_2 = 41 + 1 + 2 = 44 \text{ MM.}$$
$$\sin\beta_2 = \frac{F_2^{I}}{\pi \cdot d^{PC} \cdot e \cdot l_2^{I}} = \frac{0,0142749}{\pi \cdot 0,95 \cdot 0,446 \cdot 0,044} = 0,2438.$$
$$\beta_2 = 14^{\circ}.$$
$$\omega_2 = \psi_1 \cdot \omega_{2t} = 0,855 \cdot 355,79 = 304,2 \text{ M/c.}$$

 $\psi_{\rm I} = 0,855$ (по рис. 3.8). По β_2 и ω_2 строится выходной треугольник скоростей первого венца и определяется $c_2 = 165$ м/с, $\alpha_2 = 26^{\circ}30'$.

Профиль первой рабочей решетки выбирается по $\beta_2 = 14^{\circ}$ и $M_{2t} = 0,557$. Принят профиль P-23-14A с размерами $b_2 = 2,59$ см, $\overline{t}_{opt} = 0,6\div0,75$, $B_{\rm I} = 2,5$ см.

Минимальный момент сопротивления профиля $W_{\min} = 0,39 \text{ см}^3$ (табл. П2.1).

$$R_u^{I} = G(\omega_1 \cdot \cos\beta_1 + \omega_2 \cdot \cos\beta_2) =$$

= 120(347,5 \cdot \cos 14^\circ 30' + 304,2\cos 14^\circ) = 75790,8 H.

$$\sigma_{{}_{\text{H3F}}} = \frac{R_u^{\text{I}} \cdot l_2^{\text{I}}}{2 \cdot z_2^{\text{I}} \cdot e \cdot W_{\text{min}}} = \frac{75790, 8 \cdot 0,044}{2 \cdot 0,446 \cdot 0,39 \cdot 10^{-6}} = 51,54 \text{ MIIa}.$$

$$z_2 = \frac{\pi \cdot d^{\rm PC}}{t_{\rm I}} = \frac{\pi \cdot 0,95}{0,016} = 186.$$

$$t_{\rm I} = \overline{t_{\rm I}} \cdot b_2^{\rm I} = 0,62 \cdot 2,59 = 1,6$$
 см.

 $\sigma_{\rm H3\Gamma} = 51,54 \text{ M}\Pi a > \sigma_{\rm H3\Gamma}^{\rm AOR} = 15 \div 20 \text{ M}\Pi a$, так как это значение больше ранее принятого $\sigma_{\rm H3\Gamma}^{\rm AOR} = 18 \text{ M}\Pi a$, то производится пересчет геометрических характеристик профиля

$$\frac{\left(b_{2}^{\mathrm{I}}\right)}{b_{2}^{\mathrm{I}}} = \sqrt{\frac{\sigma_{_{\mathrm{H3F}}}}{\sigma_{_{\mathrm{H3F}}}^{_{\mathrm{HOI}}}}} = \sqrt{\frac{51,54}{18}} = 1,692.$$
$$\left(b_{2}^{\mathrm{I}}\right)' = b_{2}^{\mathrm{I}} \cdot 1,692 = 2,59 \cdot 1,692 = 4,4 \text{ MM}.$$
$$B_{\mathrm{I}}' = B_{\mathrm{I}} \cdot 1,692 = 4,23 \text{ cm}.$$

$$W'_{\min} = W_{\min} \left[\frac{\left(b_2^{\rm I} \right)'}{b_2^{\rm I}} \right]^3 = 0,39 \cdot 1,692^3 = 1,889 \text{ cm}^3.$$

Шаг решетки при новом значении $b_2^{\mathrm{I}} - \left(b_2^{\mathrm{I}}\right)'$

$$t'_1 = 0,62 \cdot 4,4 = 2,728 \text{ cm} = 27,88 \text{ mm}; \quad z'_2 = \frac{\pi \cdot 0,93}{0,0273} = 110.$$

Изгибающее напряжение при новых значениях геометрических характеристик профиля

$$σ'_{\rm H3\Gamma} = \frac{75790, 8 \cdot 0,044}{2 \cdot 110 \cdot 0,446 \cdot 1,889 \cdot 10^{-6}} = 17\ 990\ 000\ \Pi a = 17,99\ M\Pi a;$$

$$h_2^{\rm I} = \left(1 - \psi_1^2\right) \cdot \frac{\omega_{2t}^2}{2000} = \left(1 - 0,855^2\right) \cdot \frac{355,79^2}{2000} = 17,025\ \kappa Дж/к\Gamma.$$

3.5.3. Расчет поворотной решетки

Точка начала процесса в поворотной решетке определяется построением действительного процесса в рабочих лопатках первого венца в *h*,*s*-диаграмме.

$$c_{1t}' = 44,72 \cdot \sqrt{\rho_{\Pi} \cdot H_0^{PC} + \frac{c_2^2}{2000}} = 44,72 \cdot \sqrt{4,38 + \frac{165^2}{2000}} = 189,69 \text{ m/c};$$
$$M_{2t} = \frac{c_{1t}'}{a_{1t}} = \frac{189,69}{\sqrt{1,3 \cdot 7,8 \cdot 10^6 \cdot 0,0405}} = 0,296.$$
$$F_{\Pi} = \frac{G \cdot v_{2t}^{\Pi}}{\mu_{2\Pi} \cdot c_{1t}} = \frac{120 \cdot 0,0405}{0,938 \cdot 189,69} = 0,0273 \text{ m}^2.$$

$$l_2^{\Pi} = l_2^{I} + \Delta_1 + \Delta_2 = 44 + 1, 0 + 2, 0 = 47$$
 MM.

$$\sin \alpha_{19} = \frac{F_{\Pi}}{\pi \cdot d^{PC} \cdot e \cdot l_2^{\Pi}} = \frac{0,0273}{\pi \cdot 0,95 \cdot 0,446 \cdot 0,047} = 0,4365.$$

$$\alpha'_1 = \alpha'_{1_2} = 25,886 = 25^{\circ}53'.$$

Строится входной треугольник скоростей второго венца по $\alpha_1'=\alpha_{1_2}'$

 $c'_1 = \psi_{\Pi} \cdot c'_{1t} = 0,87 \cdot 189,69 = 165$ м/с. (ψ_{Π} определяется по рис. 3.8). Из выходного треугольника $w'_1 = 75$ м/с и $\beta'_1 = 90^{\circ}$.

Профиль поворотной решетки P-35-25А выбирается по $\alpha'_1 = 25^{\circ}53'$ и $M_{2\Pi t} = 0,296$ с размерами $b''_2 = 2,54$, $W_{\min} = 0,168$ см³, $B_n = 2,5$ см.

$$h_{2n} = \left(1 - \psi_{\Pi}^2\right) \cdot \frac{\left(c_{1t}\right)^2}{2000} = \left(1 - 0.87^2\right) \cdot \frac{\left(189,69\right)^2}{2000} = 4,373 \text{ кДж/кг.}$$

$$x_{2\Pi} = \frac{\pi \cdot d^{\rm PC}}{t_{\Pi}} = \frac{\pi \cdot 0.95}{0.01536} = 194.$$

$$t_{\Pi} = \overline{t}_{0\Pi T} \cdot b_{2\Pi} = 0,604 \cdot 2,54 = 1,536$$
 см.

3.5.4. Расчет второго венца рабочей решетки

Определяются параметры пара перед решеткой, откладывается перепад рабочей решетки второго венца.

$$H_{02}^{\text{II}} = \rho_{\text{II}} \cdot H_0^{\text{PC}} = 7,3 \text{ кДж/кг.}$$
$$\omega_{2t}' = 44,72 \sqrt{\rho_{\text{II}} \cdot H_0^{\text{PC}} + \frac{w_{2t}^2}{2000}} = 44,72 \sqrt{7,3 + \frac{75^2}{2000}} = 142,2.$$

$$\begin{split} M_{2\Pi t} &= \frac{\omega'_{2t}}{\sqrt{k \cdot P_{\Pi} \cdot v_{2t}^{\Pi}}} = \frac{142.2}{\sqrt{1,3 \cdot 0.0415 \cdot 3.7 \cdot 10^6}} = 0,22. \\ F_2^{\Pi} &= \frac{G \cdot v_{2t}^{\Pi}}{\mu_{2\Pi} \cdot \omega'_{2t}} = \frac{120 \cdot 0.0415}{0.938 \cdot 142.2} = 0,03733 \text{ m}^2. \\ l_2^{\Pi} &= l_2^{\Pi} + \Delta_1 + \Delta_2 = 47 + 1.0 + 2.5 = 50.5 \text{ MM}. \\ \sin\beta'_{13} &= \frac{F_2^{\Pi}}{\pi \cdot d^{PC} \cdot e \cdot l_2^{\Pi}} = \frac{0.03733}{\pi \cdot 0.95 \cdot 0.446 \cdot 0.0505} = 0,5556. \\ \beta'_2 &= 33.75 = 33^{\circ}45'. \end{split}$$

Строится выходной треугольник скоростей второго венца. Из треугольника графически определяется c'_2 и α'_2

$$c'_2 = 82,5 \text{ M/c}, \quad \alpha'_2 = 121^{\circ}45'.$$

 $R_u^{II} = G(\omega'_1 \cos\beta'_1 + \omega'_2 \cos\beta'_2) =$
 $= 120 \cdot (75 \cdot \cos 90^{\circ} + 127,98 \cdot \cos 33^{\circ}45') = 12768,38 \text{ H}.$

Профиль рабочей решетки второго венца P-60-33A (выбирается по $\beta'_2 = 33,75 = 33^{\circ}45'$ и $M_{2t} = 0,22 - 14$ A) с размерами $\overline{t}_{0\Pi T} = 0,43-0,55$, $B_{\rm I} = 2,5$ см. Минимальный момент сопротивления $W_{\rm min} = 0,079$ см³ (табл. П2.1).

 $t_1 = \overline{t_1} \cdot b_2^{\text{II}} = 0,4516 \cdot 2,56 = 1,156$ см.

$$z_2 = \frac{\pi \cdot d^{\text{PC}}}{t_{\text{II}}} = \frac{\pi \cdot 0,95}{0,011562} = 258.$$

$$\sigma_{_{\rm H3F}} = \frac{R_u^{\rm II} \cdot l_2^{\rm II}}{2 \cdot z_2^{\rm II} \cdot e \cdot W_{\rm min}} = \frac{12769, 38 \cdot 0,0505}{2 \cdot 258 \cdot 0,446 \cdot 0,079 \cdot 10^{-6}} = 35,47 \text{ MIIa.}$$

 $\sigma_{_{H3\Gamma}} = 35,47 \text{ M}\Pi a > \sigma_{_{H3\Gamma}}^{\text{доп}} = 15-20 \text{ M}\Pi a$, принимая $\sigma_{_{H3\Gamma}}^{\text{доп}} = 18 \text{ M}\Pi a$ производится пересчет геометрических характеристик профиля.

$$K = \frac{\left(b_{2}^{\mathrm{I}}\right)'}{b_{2}^{\mathrm{I}}} = \sqrt{\frac{\sigma_{_{\mathrm{H3F}}}}{\sigma_{_{\mathrm{H3F}}}^{_{\mathrm{H0T}}}}} = \sqrt{\frac{35,47}{18}} = 1,404.$$
$$\left(b_{2}^{\mathrm{II}}\right)' = b_{2}^{\mathrm{II}} \cdot 1,404 = 3,594 \text{ cm.}$$
$$B'_{\mathrm{II}} = B_{\mathrm{II}} \cdot 1,404 = 3,51 \text{ cm.}$$
$$W'_{\mathrm{min}} = W_{\mathrm{min}} \left[\frac{\left(b_{2}^{\mathrm{II}}\right)'}{b_{2}^{\mathrm{II}}}\right]^{3} = 0,079 \cdot 1,404^{3} = 0,2186 \text{ cm}^{3}.$$

Шаг решетки при $\left(b_2^{\mathrm{II}}\right)'$

$$t'_{\rm II} = 0,4516 \cdot 3,594 = 1,623$$
 см.
 $z'_2 = \frac{\pi \cdot d^{\rm PC}}{t_{\rm I}} = \frac{\pi \cdot 0,93}{0,0273} = 110.$

Изгибающее напряжение при новых значениях геометрических характеристик профиля

$$\begin{split} \sigma_{_{\rm H3\Gamma}}' &= \frac{R_u^{\rm II} \cdot l_2^{\rm II}}{2 \cdot z_2^{\rm II} \cdot e \cdot W_{\rm min}} = \frac{12769, 38 \cdot 0,0505}{2 \cdot 184 \cdot 0,446 \cdot 0,2186 \cdot 10^{-6}} = 17,97 \quad \text{M}\Pi a \leq \sigma_{_{\rm H3\Gamma}}^{_{\rm H3\Gamma}}. \\ h_2^{\rm II} &= \left(1 - \psi_{\rm II}^2\right) \cdot \frac{\left(\omega_{2t}'\right)^2}{2000} = \left(1 - 0,9^2\right) \cdot \frac{\left(142,2\right)^2}{2000} = 1,92 \quad \text{кДж/кг}. \\ \Delta H_{_{\rm BC}} &= \frac{\left(c_2'\right)^2}{2000} = \frac{\left(82,5\right)^2}{2000} = 3,4 \quad \text{кДж/кг}. \end{split}$$

По потерям энергии в проточной части

$$\eta_{0\pi}^{1} = \frac{H_{0}^{PC} - (H_{1} + H_{2I} + H_{2II} + H_{2II} + H_{BC})}{H_{0}^{PC}} = \frac{146 - (19,543 + 17,025 + 4,373 + 1,92 + 3,4)}{146} = 0,7516 = 75,16\%.$$

По проекциям скоростей

$$\eta_{0\pi}^{2} = \frac{u(c_{1} \cdot \cos \alpha_{1} + c_{2} \cdot \cos \alpha_{2} + c_{1}' \cdot \cos \alpha_{1}' + c_{2}' \cdot \cos \alpha_{2}')}{10^{3} \cdot H_{0}^{PC}} = \frac{149,15(493,65\cos 10^{\circ} + 165\cos 26^{\circ}30' + 165\cos 25^{\circ}53' + 82,5\cos 121^{\circ}45')}{10^{3} \cdot 146} = \frac{149,15(493,65\cos 10^{\circ} + 165\cos 26^{\circ}30' + 165\cos 25^{\circ}53' + 82,5\cos 121^{\circ}45')}{10^{3} \cdot 146}$$

$$= 0,7548 = 75,48$$
 %.

Разница между КПД, вычисленными двумя способами, составляет 0,32 %. Среднее значение КПД

$$\eta_{\text{OII}}^{\text{CP}} = \frac{\eta_{\text{OII}}^{1} + \eta_{\text{OII}}^{2}}{2} = \frac{0,7516 + 0,7548}{2} = 75,32 \text{ \%}.$$

$$\eta_{o\pi} = \eta_{o\pi}^{PC} - \zeta_{\tau p} - \zeta_{\pi a p \mu} = 0,7532 - 0,0011 - 0,0765 = 0,6756$$
 %.

$$\zeta_{\text{парц}} = \zeta_{\text{в}} + \zeta_{\text{сегм}} = 0,01242 + 0,06408 = 0,0765.$$

$$\zeta_{\rm Tp} = k_{\rm Tp} \frac{\left(d^{\rm PC}\right)^2}{F_1} \cdot \left(\frac{u}{c_{\phi}}\right)^3 = 0,55 \cdot 10^{-3} \cdot \frac{0,95^2}{0,009487} \cdot 0,276^3 = 0,0011,$$
$$e_{\rm Kow} = \left[\left(0,9 \div 0,8\right) - e^{\rm opt}\right] = 0,85 - 0,446 = 0,404;$$

$$\begin{split} \zeta_{\rm B} &= \frac{0,065}{\sin\alpha_{13}} \cdot \frac{1-e-0,5e_{\rm KOK}}{e} \cdot \left(\frac{u}{c_{\phi}}\right)^3 \cdot m = \\ &= \frac{0,065}{0,1736} \cdot \frac{1-446-0,5\cdot0,404}{0,446} (0,276)^3 \cdot 2 = 0,01242, \\ \zeta_{\rm CEFM} &= 0,25 \cdot \frac{B_1' \cdot l_{21} + 0,6 \cdot B_{\rm II}' \cdot l_{2\rm II}}{F_1} \cdot \frac{u}{c_{\phi}} \cdot n \cdot \eta_{\rm off}^{\rm cp} = \\ &= 0,25 \cdot \frac{0,0423 \cdot 0,044 + 0,6 \cdot 0,0351 \cdot 0,0505}{0,009487} \cdot 0,276 \cdot 4 \cdot 0,7532 = 0,06408. \\ H_{\rm Tp} &= \zeta_{\rm Tp} \cdot H_0^{\rm PC} = 0,0011 \cdot 146 = 0,16 \text{ KДж/KF}. \\ H_{\rm napu} &= \zeta_{\rm napu} \cdot H_0^{\rm PC} = 0,0765 \cdot 146 = 0,11169 \text{ KДж/KF}. \\ N_i &= G \cdot \eta_{\rm oi} \cdot H_0^{\rm PC} = 120 \cdot 146 \cdot 0,6756 = 11836,5 \text{ KBT}. \end{split}$$

4. ТЕПЛОВОЙ РАСЧЕТ НЕРЕГУЛИРУЕМЫХ СТУПЕНЕЙ

4.1. Общие положения

Проточная часть паровых турбин проектируется по выбранному закону изменения диаметров ступеней (средних, корневых). Как правило, все проточные части современных турбин проектируют по законам изменения корневых диаметров.

Расчет ступеней ведется по средним диаметрам.

Для проектирования проточной части турбины возможно применение 3-х законов изменения корневого диаметра:

1) постоянства корневого диаметра (рис. 4.1, форма 4; первые две трети форма 3);

2) увеличения корневого диаметра по потоку пара (рис. 4.1, форма 1; последняя треть формы 3);

3) понижения по потоку пара корневого диаметра (рис. 4.1, форма 2). Форма проточной части может быть ступенчатой (форма 5, рис. 4.1) в том случае на каждом уступе (отсеке) может быть свой закон изменения корневого диаметра.

У формы 5 (рис. 4.1) на каждом уступе свое постоянное для всех ступеней отсека значение корневого диаметра.

Проточная часть турбины может быть выполнена в виде двух отсеков, с противотоком (форма 6, рис. 4.1) со своим постоянным корневым диаметром в каждом отсеке. В тепловом расчете проточную часть турбин обычно подразделяют на 3 группы:

А – ступени с относительно малыми высотами решеток, работавшие в области относительно малых объемных расходов пара;

Б – ступени промежуточные со сравнительно длинными лопатками, в которых объемные расходы пара достаточно велики;

В – ступени с длинными закрученными лопатками, работавшие под вакуумом, где объемы пара достигают очень большой величины.

При проектировании проточной части турбины закон изменения корневого диаметра задают:

– для ступеней группы А и группы Б – постоянным;

– для группы В – любой из вышеперечисленных.

Рис. 4.1. Типовые формы проточных частей турбин

Современные паровые турбины с конденсатором имеют большое число ступеней, что в сочетании с другими условиями приводит к необходимости выполнения турбины двух- или многоцилиндровой. В зависимости от количества параллельных потоков их проточная часть размещается в одном и более цилиндрах. Кроме необходимости задания параллельных потоков пара, увеличение числа цилиндров иногда основано на применении промежуточного перегрева пара регулируемых отборов пара и уравновешиванием осевых усилий.

4.2. Расчет проточной части области высокого давления

По изложенной ниже методике могут быть рассчитаны цилиндры высокого давления многокорпусных турбин и турбины с противодавлением. Проточная часть ЦВД (а также и у турбины с противодавлением) выполняется в двух вариантах:

1) в виде двух отсеков с противотоком пара со своим постоянным корневым диаметром в каждом отсеке и подводом пара в середину цилиндра (рис. 4.2);

2) в виде одного отсека с корневым диаметром, постоянным для всех ступеней (рис. 4.3).

В первом варианте обычно применяется одновенечная регулирующая ступень, во втором, как правило, – двухвенечная.

В первом варианте стремятся выполнить примерно одинаковое количество нерегулируемых ступеней в каждом отсеке. Здесь возможны два случая:

1) числа нерегулируемых ступеней первого и второго отсеков равны;

2) число нерегулируемых ступеней в первом отсеке меньше, чем во втором.

Рис. 4.2. Продольный разрез ЦВД турбины с противодавлением в виде двух отсеков с противодавлением

Рис. 4.3. Продольный разрез ЦВД в виде одного отсека

В первом случае начальное давление перед вторым отсеком принимается равным примерно половине P_0^{I} – начального давления P_0^{II} нерегулируемыми ступенями первого отсека:

$$P_0^{\text{II}} = (0,5 \div 0,51) P_0^{\text{I}}, \text{ МПа (кгс/см}^2).$$

Во втором случае:

$$P_0^{\text{II}} \cong (0,55 \div 0,57) P_0^{\text{I}}, \text{ МПа (кгс/см}^2).$$

В области высокого давления возможна унификация ступеней. Для этого во всех ступенях каждого отдельного отсека выбираются теплоперепады по параметрам торможения \overline{H}_0 , степени реактивности и α_{1_3} . Порядок расчета первого отсека (для первого всей проточной части цилиндра для второго варианта).

Диаметр первой нерегулируемой ступени (мм)

$$d^{\rm I} = d^{\rm PC} - \Delta d. \tag{4.1}$$

Для проточной части с одновенечной регулирующей ступенью $\Delta d = 200 \div 260$ мм, с двухвенечной – $\Delta d = 115 \div 125$ мм.

Отношение скоростей

$$x_{\phi} = \frac{u}{c_{\phi}} \cong \frac{\varphi \cdot \cos \alpha_{1\vartheta}}{2\sqrt{(1-\rho)}},\tag{4.2}$$

где ρ – степень реактивности рабочей решетки первой ступени $\rho = 0.05 \div 0.15$ (до 0.2);

α_{1э} – эффективный угол выхода из сопловой решетки,

 $\alpha_{1_3} = 10^{\circ} \div 14^{\circ}$; большие значения α_{1_3} для больших объемных расходов.

 $\varphi = 0.93 \div 0.96$.

Располагаемый тепловой перепад первой нерегулируемой ступени по параметрам торможения перед ступенью

$$\overline{H}_{0}^{\mathrm{I}} = H_{0}^{\mathrm{I}} = 12,325 \left(\frac{d^{\mathrm{I}}}{x_{\phi}}\right)^{2}, \ \kappa \square \mathscr{K} \mathsf{K} \mathsf{K} \mathsf{\Gamma}.$$

$$(4.3)$$

Примечание. Для первой нерегулируемой ступени перепад по параметрам торможения и статическим параметрам пара равны.

Тепловой перепад в сопловой решетке

$$\overline{H}_{0}^{\mathrm{I}} = H_{01}^{\mathrm{I}} = (1 - \rho) \cdot H_{0}^{\mathrm{I}}, \quad \kappa \mathfrak{Д} \mathfrak{ж} / \kappa \Gamma.$$

$$(4.4)$$

Высота сопловой решетки определяется из уравнения неразрывности

$$l_1^{\mathrm{I}} = \frac{10^3 \cdot G \cdot v_{1t}}{\pi \cdot d^{\mathrm{I}} \cdot e \cdot \mu_1 \cdot c_{1t} \cdot \sin \alpha_{12}}, \quad \mathrm{MM}, \quad (4.5)$$
где v_{1t} м³/кг – удельный объем пара в конце изоэнтропийного процесса в соплах, определяется из h_s -диаграммы при построении H_0^{I} (см. рис. 4.4).

Рис. 4.4. К расчету проточной части области высокого давления.

 c_{1t} – теоретическая скорость истечения пара из сопел.

$$c_{1t} = \sqrt{2 \cdot 10^3 \cdot H_{01}^1}, \text{ M/c},$$
 (4.6)

 μ_1 – коэффициент расхода сопловой решетки, $\mu_1 = 0.97 \div 0.98$; *e* – степень парциальности ступени, (*e* = 1); $\alpha_{1 \scriptscriptstyle 3}$ – эффективный угол выхода потока из сопловой решетки, принимается $10^{\circ}{\div}14^{\circ}.$

Высота рабочей решетки первой ступени

$$l_2^{\rm I} = l_2^{\rm I} + \Delta_1 + \Delta_2, \text{ mm.}$$
(4.7)

Значения внутренне
й Δ_1 и внешней Δ_2 перекрыш (рис. 4.5) приведены в таб
л. 3.1.

Рис. 4.5. К выбору перекрыш для ступеней активного типа

Корневой диаметр ступени

$$d_{\rm K} = d^{\rm I} - l_2^{\rm I}, \, {\rm M}.$$
 (4.8)

Этот диаметр принимается постоянным для отсека. Число ступеней отсека

$$z = \frac{(1+q)H_0^x}{(h_0)_{\rm CP}},$$
(4.9)

 H_0^x – изоэнтропийный тепловой перепад отсека, кДж/кг (см. рис. 4.4).

$$(H_0)_{\rm CP} = \frac{H_0^1 + (z'-1)H_0}{z'}, \ \kappa \mbox{Дж/кг},$$
 (4.10)

z' – ориентировочное число ступеней отсека (цилиндра).

$$z' = \frac{H_0^x}{H_0}.$$
 (4.11)

Располагаемый тепловой перепад H_0 по статическим параметрам пара перед ступенью, принятый одинаковым для всех ступеней отсека, кроме первой. Для первой ступени располагаемые перепады по параметрам торможения подсчитываются по формуле

$$H_0 = \overline{H}_0 \cdot k_0, \ \kappa Дж/кг, \tag{4.12}$$

где величина $k_0 = \left[1 - \sin^2 \alpha_1 \cdot (1 - \rho)\right] = 0,92 \div 0,96,$

 $\overline{H}_0 = \overline{H_0^I}$ – перепады по параметрам торможения, равные для всех ступеней;

q – коэффициент возврата тепла:

$$q \cong k_{\mathrm{T}} \left(1 - \eta_{\mathrm{o}i}^{x} \right) H_{0}^{x} \cdot \frac{z' - 1}{z'}, \qquad (4.13)$$

где $k_{\rm T} \cong 4.8 \cdot 10^{-4}$ – для процесса в области перегретого пара.

Значение η_{oi}^{x} – берется по построению ориентировочного процесса в турбине, или подсчитывается по формуле (2.6).

Число степеней, подсчитанное ранее, округляется до целого. Невязка

$$\pm \Delta H_0 = (1+q) \cdot H_0^x - \sum_{1}^{x} h_0 \tag{4.14}$$

должна быть распределена между ступенями.

Поправка к тепловому перепаду

$$\pm \Delta h_0 = \frac{\Delta H_0}{\sum\limits_{1}^{x} h_0} \cdot H_0, \ \kappa Дж/кг,$$

(для всех ступеней, кроме первой, Δh_0 одинакова).

Скорректированный тепловой перепад ступени статическим параметрам пара

$$H_0^K = H_0 \pm \Delta h_0$$
, кДж/кг.

Диаметр и высота лопатки любой ступени отсека определяется из уравнения неразрывности, которое при равенстве во всех ступенях тепловых перепадов по параметрам торможения \overline{H}_0 , степени углов α_{1_3} и расходов пара выглядят для рабочей решетки следующим образом:

$$l_{2}^{i} \cdot d^{i} = l_{2}^{I} \cdot d^{I} \cdot \frac{v_{2}^{i}}{v_{2}^{I}}, \ \mathbf{M}^{2}.$$
(4.15)

Значения удельных объемов v_2^i и v_2^I находятся по построению ориентировочного рабочего процесса расширения пара в турбине по *h*,*s*-диаграмме (см. рис. 4.4) после распределения перепада приходящегося на отсек по ступеням.

Высота лопатки рабочей решетки любой ступени (i) отсека

$$l_{2}^{i} = \sqrt{\left(\frac{d_{k}}{2}\right)^{2} + l_{2}^{\mathrm{I}} \cdot d^{\mathrm{I}}} - \frac{d_{k}}{2}, \text{ m.}$$
(4.16)

Диаметр любой ступени отсека

$$d^{i} = d_{k} + l_{2}^{i}, \text{ M.}$$
(4.17)

Ступени высокого давления обычно проектируются с одинаковой высотой рабочей решетки на входе и выходе: $l'_2 = l_2$. Высоту сопловой решетки можно определить по l_2 за вычетом перекрыш, взятых по табл. 3.1:

$$l_1 = l_2 - (\Delta_1 + \Delta_2), \, \text{m.}$$
(4.18)

Расчеты по всем ступеням отсека сводят в таблицу.

*Для второго варианта проточной части цилиндра

При расчете второго отсека, который необходимо произвести при выполнении проточной части по первому варианту, число ступеней этого отсека выбирают по условию уравновешивания осевых усилий равным или большим на единицу числа нерегулируемых ступеней первого отсека: $z_2 = z_1$ или $z_2 = z_1 + 1$.

Перепады по параметрам торможения для всех ступеней принимают одинаковыми, как при расчете первого отсека, но большими по величине. По последнему условию выбор числа ступеней второго отсека, в конечном счете, зависит от величины H_{0II}^{x} – располагаемого перепада второго отсека (см. рис. 4.4).

Тепловой перепад по параметрам торможения ступени второго отсека

$$\overline{H}_{0} = \frac{(1+q) \cdot H_{0\mathrm{II}}^{x}}{1+(z_{2}-1) \cdot k_{0}},$$
(4.19)

где $k_0 = \left[1 - \sin^2 \alpha_1 \cdot (1 - \rho)\right] = 0,94 \div 0,96$, конечную величину \overline{H}_0 следует сравнить с \overline{H}_0 первого отсека.

Тепловой перепад любой ступени, кроме первой по статическим параметрам пара

$$H_0 = \overline{H}_0^{\mathrm{I}} \cdot k_0, \ \kappa \ \mu \ \kappa \ \Gamma. \tag{4.20}$$

Перепад на сопловую решетку первой ступени

$$H_{01}^{\mathrm{I}} = (1 - \rho) \cdot \overline{H}_{0}^{\mathrm{I}}, \ \kappa Дж/кг.$$

 $\overline{H}_0^{\mathrm{I}} = \overline{H}_0.$

Фиктивная изоэнтропийная скорость пара, подсчитанная по располагаемому теплоперепаду ступени от параметров торможения,

$$c_{\phi} = \sqrt{2 \cdot 10^3 \overline{H}_0}, \text{ M/c.}$$

Окружная скорость рабочего колеса на среднем диаметре рабочих лопаток первой ступени второго отсека

$$u = c_{\phi} \cdot \left(\frac{u}{c_{\phi}}\right)_{\text{opt}}.$$
(4.22)

Значение $\left(\frac{u}{c_{\phi}}\right)_{\text{орt}}$ следует принять таким же, как для первой сту-

пени первого отсека.

Средний диаметр первой ступени второго отсека

$$d = \frac{u}{\pi \cdot n}$$
, rge $n = 50 \text{ c}^{-1}$. (4.23)

Высота сопловой решетки первой ступени определяется по формуле (4.5) с использованием формул (4.1) и (4.3).

Высота рабочей решетки первой ступени определяется по формуле (4.7).

Далее расчет ведется по формулам (4.8), (4.9), (4.14), (4.15). В формулах (4.9), (4.11) $z' = z_2$.

Диаметр и высота сопловой и рабочей решеток любой ступени отсека определяется по формулам (4.15), (4.16), (4.17), (4.18). Расчеты по всем ступеням сводят в таблицу. Значение ρ и α_{13} принимается в тех же пределах что и для первого отсека, но несколько большими по величине (см. 4.2).

Перепады ступеней второго отсека в корректировке не нуждаются.

4.3. Расчет проточной части областей среднего и низкого давлений

По изложенной ниже методике могут быть рассчитаны цилиндры среднего и низкого давлений.

В цилиндре низкого давления могут быть размещены вместе ступени областей среднего и низкого давлений. В этом случае проточную часть цилиндра целесообразно выполнять по форме 3 (рис. 4.1). Проектирование проточной части отдельно выполненных ЦСД и ЦНД целесообразно выполнять по формам 4 и 7 соответственно.

Для расчета цилиндра – должны быть известны начальные и конечные параметры пара, построен ориентировочный рабочий процесс расширения пара в турбине, определен расчетный расход пара.

Порядок расчета

ЦСД Расчет первой ступени

Обычно ЦСД выполняют с подводом пара в цилиндр по всей окружности, поэтому выраженной регулирующей ступени не имеют. В таком случае первая ступень цилиндра – ступень давления (нерегулируемая ступень).

В случае необходимости применения регулирующей ступени (как правило, эта необходимость возникает при наличии перед ЦСД регулируемого отбора пара) ее расчет производят в последовательности, изложенной в главе третьей.

Определение размеров теплового перепада первой нерегулируемой ступени производится в следующем порядке.

Просчетом ряда вариантов устанавливается зависимость между диаметром ступени, ее тепловым перепадом и высотой сопловой решетки для каждого варианта принимается свой тепловой перепад. Для ступеней группы Б рекомендуется принимать следующие значения тепловых перепадов:

 $\overline{H}_0 = H_0^{\text{I}} = 40; 50; 62; 75 \text{ кДж/кг.}$

Для каждого теплового перепада определяется фиктивная (условная) скорость:

$$c_{\phi} = \sqrt{2 \cdot 10^3 \overline{H}_0^1}, \text{ m/c}.$$

Задавшись отношением скоростей u/c_{ϕ} в пределах 0,46÷0,54, определяется окружная скорость на среднем диаметре ступени для каждого теплового перепада:

$$u = c_{\phi} \cdot x_{\phi}, \text{ м/с.}$$

 $d = \frac{u}{\pi \cdot n}, \text{ м, где } n = 50 \text{ c}^{-1}$

Задается степень реактивности ступени: $\rho = 0,1\div 0,2$. Высота решетки

$$l_1 = \frac{G \cdot v_{2t}}{20 \cdot d^2 \cdot n \cdot \mathrm{tga}_{19} \cdot (1 - \rho)}, \ \mathrm{M},$$

где v_{2t} определяется по состоянию пара в конце изоэнтропийного расширения в ступени для каждого значения $\overline{H}_0 = H_0^{I}$ (рис. 4.6).

Рис. 4.6. Процесс расширения пара в ЦСД (ЦНД)

Эффективный угол выхода из сопловой решетки $\alpha_{13} = 12^{\circ} \div 17^{\circ}$. Расчет сводится в таблицу.

При наличии регулирующей ступени построение процесса аналогично построению процесса для первого отсека ЦВД на рис. 4.4.

По результатам расчета строятся графики:

$$d = f(\overline{H}_0^{\mathrm{I}}); \quad l_1 = f(\overline{H}_0^{\mathrm{I}}).$$

Для определения d_1 и H_0^{I} , H_{01}^{I} следует задаться величиной l_1 в пределах полученных величин. Также по заданному диаметру d^{I} можно найти H_0^{I} , H_{01}^{I} , что показано на рис. 4.7.

Рис. 4.7. К расчету первой нерегулируемой ступени ЦСД

Для выбранных значений d^{I} и H_{0}^{I} определяется значение $x_{\Phi}^{I} = u / c_{\Phi}^{I}$, необходимое для дальнейших расчетов.

Корневой диаметр ступени

$$d_{\rm k}=d^{\rm I}-l_2,\ {\rm m},$$

*l*₂ подсчитывается по формуле (4.7).

Расчет последней ступени

Определение размеров и теплового перепада последней ступени ЦСД ведется исходя из условия постоянства корневого диаметра у всех ступеней (d_{κ} – пост.)

Эту задачу можно выполнить методом просчета ряда вариантов. Для этого задают ряд значений d^z , начиная с $d^z = d^I$ до $d^z = d^I(1,2\div1,3)$, то есть $d^z = d^I$; 1,05 d^I ; 1,1 d^I ; 1,15 d^I ; 1,2 d^I . Вычисляют H_0^z для каждого значения d^z , принимая:

$$x_{\Phi}^{z} = \frac{u}{c_{\Phi}} \cong 1,3x_{\Phi}^{I} - для ЦСД без регулирующей ступени;$$

 $x_{\Phi}^{z} = \frac{u}{c_{\Phi}} \cong 1,125x_{\Phi}^{I} - для ЦСД с регулирующей ступенью.$

Степень реакции последней ступени $\rho^{z} = \rho^{I}(2,1\div2,2)$ для ЦСД с регулирующей ступенью

Высота сопловой решетки для различных значений *d*_z

$$l_1^z = \frac{G \cdot v_{2t}}{20 \cdot \left(d^z\right)^2 \cdot n \cdot \operatorname{tga}_{13} \cdot (1-\rho)}, \ \mathrm{M}_z$$

где v_{2t} – удельный объем пара, берется по состоянию пара в конце ориентировочного рабочего процесса в цилиндре (рис. 4.6).

 α_{19} – эффективный угол потока за соплами последней ступени, принимается 18°÷20°.

Высота рабочей решетки $l_2^z = l_1^z + (\Delta_1 + \Delta_2).$

Величина перекрыш Δ_1 и Δ_2 принимается по табл. 3.1.

Корневой диаметр последней ступени для различных значений $d_{\kappa}^{z} = d^{z} - l_{2}^{z}$, м.

Весь расчет сводится в таблицу.

По результатам расчета строятся графики $h_0^z = f(d^z)$ и $d_{\kappa}^z = f(d^z)$ (рис. 4.8).

Рис. 4.8. К определению размеров и теплового перепада последней ступени

Из графиков по условию $d_{\kappa}^{I} = d_{\kappa}^{z}$ (d_{κ} – постоянно для всех ступеней), определяется d^{z} и H_{0}^{z} .

Предварительно число ступеней цилиндра

$$z' = \frac{H_0^{\text{ЦСД}}}{H_0^{\text{cp}}},$$
 где $H_0^{\text{cp}} = \frac{H_0^{\text{I}} + H_0^z}{2},$ кДж/кг.

 H_0^z – перепад последней ступени по статическим параметрам пара.

Согласно формуле (4.12)

$$H_0^z = \overline{H}_0^z(0,92 \div 0,96).$$

Число ступеней цилиндра

$$z = \frac{(1+q)H_0^{\Pi C \Pi}}{H_0^{\rm cp}},$$

где *q* – коэффициент возврата тепла, определяется по формуле (4.13). Полученное число ступеней округляется до целого числа.

Для определения размеров всех ступеней (d, l_1, l_2) и их тепловых перепадов строится диаграмма (рис. 4.9) изменения характеристик ступеней по проточной части от первой к последней ступени d, d_k , $\rho, u/c_{\phi}$ (ρ и u/c_{ϕ} – на среднем диаметре ступеней), \overline{H}_0, H_0 .

Диаграмма строится на отрезке AB длиной 200–300 мм (если известна примерная длина проточной части цилиндра – то на отрезке, равном ей, в любом удобном масштабе).

Рис. 4.9. Диаграмма для определения теплоперепадов, диаметров промежуточных ступеней

По краям отрезка проводятся ординаты, на которых в масштабах откладывают значения d^{I} и d^{z} , d_{κ} , ρ^{I} и ρ^{z} , $x_{\phi}^{I} = u / c_{\phi}$ и x_{ϕ}^{z} , α_{19}^{I} и α_{19}^{z} .

Между точкой 1 (d^1) и точкой 2 (d^z) наносится линия изменения *d*, близкая к прямой, с некоторым выгибом вниз. Аналогично наносятся линии ρ , x_{ϕ} , α_{13} , соответственно между точками 3–4; 5–6; 7–8. Отрезок делится на *z*–1 участков равной величины. Из конца каждого участка проводятся ординаты: до пересечения с линиями.

По формуле (4.3) подсчитываются располагаемые теплоперепады промежуточных ступеней по параметрам торможения, а по формуле (4.11) – по статическим параметрам пара.

Полученные значения тепловых перепадов заносятся в таблицу. Невязка

$$\Delta H_0 = \left(1+q\right) \cdot H_0^{\text{\rm YC}, \Pi} - \sum_{1}^{z} H_i$$

по статическим параметрам пара должна быть распределена по ступеням пропорционально определенным по диаграмме тепловым перепадам:

$$\pm \Delta h_0 = \frac{\Delta H_{0\mathrm{II}}^x}{\sum\limits_{1}^x h_0} \cdot h_0.$$

Скорректированные тепловые перепады по статическим параметрам пара:

$$H_0^{\kappa} = H_0 \pm \Delta h_0.$$

По параметрам торможения

$$\overline{H}_0^{\kappa} = \frac{h_0^{\kappa}}{k_0}.$$

См. формулу (4.11). $\overline{H}_0 = H_0, \ k_0 = 1.$

85

Располагаемый тепловой перепад ЦСД ($H_0^{\text{ЦСД}}$) разбивается в соответствии с полученными скорректированными перепадами ступеней по статическим параметрам (см. рис. 4.6). Располагаемый тепловой перепад сопловой решетки каждой ступени подсчитывается по формуле

$$\overline{H}_{01} = (1 - \rho) \cdot \overline{H}_0^{\mathrm{I}}.$$

Определяются удельные объемы пара в конце изоэнтропийного расширения в соплах от параметров торможения $v_{1t} \text{ м}^3/\text{кг}$ (рис. 2.2).

Высота сопловой решетки

$$l_1 = \frac{10^3 \cdot G \cdot v_{2t}}{\pi \cdot d \cdot e \cdot \mu_1 \cdot c_{1t} \cdot \sin \alpha_{12}},$$

где c_{1t} определяется по формуле (4.6);

значение μ_1 берется по рис. 3.3; ρ , α_1 – из диаграммы рис. 4.9 для соответствующей ступени.

Высота рабочей решетки каждой ступени определяется по формуле (4.7). Корневой диаметр ступени – по формуле (4.8).

Вычисление корневого диаметра ступени является контрольным действием: d_{κ} , полученные таким путем, должны быть равны, так как изложенная методика расчета была основана на постоянстве корневого диаметра всех ступеней цилиндра.

Все полученные величины сводятся в таблицу.

Порядок расчета ЦНД

Здесь могут встретиться два случая.

Проточная часть имеет форму 3 (см. рис. 4.1). В этом случае часть среднего и часть низкого давления размещаются в одном цилиндре. ЦНД турбин с производственным отбором, организованным непосредственно перед ЦНД, имеют регулирующую ступень (парциальный подвод пара к первой ступени). Регулирующая ступень ЦНД выполняется одновенечной с перепадом $H_0^{PC} = 75 \div 105 \text{ кДж/кг.}$

Порядок расчета таких ступеней изложен в третьей главе.

В ЦНД, не имеющих регулирующей ступени, подвод пара осуществляется с парциальностью, равной единице (по всей окружности). А первая ступень цилиндра – ступень давления (нерегулируемая ступень) – имеет обычно несколько увеличенный, по сравнению со следующей за ней ступенью, тепловой перепад.

Порядок расчета нерегулируемых ступеней такого ЦНД следующий.

Определяется значение теплового перепада, диаметра, высоты сопловой и рабочей решеток, значение корневого диаметра первой нерегулируемой ступени аналогично первой нерегулируемой ступени ЦСД.

При просчете вариантов задаются такие же значения тепловых перепадов. При определении величин по графикам $d^{I} = f(\overline{H}_{0}^{I})$, $l_{1} = f(\overline{H}_{0})$, если устанавливается регулирующая ступень, можно задаться значением d^{I} (рис. 4.7).

Приняв $d^{I} = d^{PC} - \Delta d$, $\Delta d \cong 10 \div 20$ мм.

Определяются значения диаметра, высот сопловой и рабочей решеток, корневого диаметра и теплового перепада последней ступени. Диаметр последней ступени

$$d_z = \sqrt{\frac{G^z \cdot v_{2t} \cdot \theta}{\pi \cdot (c_2)^2 \cdot \sin \alpha_2}},$$

где G^{z} – расход пара через последнюю ступень ЦНД, кг/с;

 v_{2t} – удельный объем пара за рабочей решеткой последней ступени, берется из построения процесса расширения пара по изохоре, проходящей через точку $a_{\rm III}$, на рис. 2.1 или рис. 2.6);

$$\theta = \frac{d_z}{l_2^z}; \quad \theta = 2, 4 \div 4;$$

 c_2^z – абсолютная скорость за последней ступенью, м/с: $c_2^z = 44, 7\sqrt{H_{\scriptscriptstyle \rm BC}},$

*H*_{вс} – определяется по графику рис. 2.4;

 α_2 – угол потока абсолютной скорости за рабочими лопатками, $\sin \alpha_2 \cong 90^\circ$.

После определения диаметра последней ступени, его необходимо сопоставить с диаметром первой ступени. Отношение d^{1}/d^{z} должно быть больше 0,5. Это требование имеет целью обеспечение плавности раскрытия проточной части цилиндра.

Окружная скорость $u^z = \pi \cdot d \cdot n$, где n = 50 с⁻¹.

Максимально допустимая величина окружной скорости по условиям прочности на среднем диаметре ступени для стальных лопаток – 400 м/с, в случае, если u^z получена больше допустимой, следует пересчитать значение d^z , уменьшив θ и увеличив c_2^z .

Длина рабочей лопатки

$$l_2^z = \frac{d^{\mathrm{I}}}{\theta}, \mathrm{M}$$

Значение l_2^z в зависимости от мощности и типа турбины приведены в табл. 4.5.

Таблица 4.5

Основные характеристики последних ступеней некоторых отечественных ступеней некоторых отечественных паровых турбин

Тип турбины и завод изготовитель	Средний диаметр ступени, мм	Высота лопаток l_2^z , мм	$\frac{d^{\rm I}}{l_2^z}$	Окружная ско- рость на сред- нем диаметре ступени, м/с
1	2	3	4	5
ПТ-135-130/15-УТМЗ	2280	830	2,75	358
К-100-130 УТМЗ	1915	550	3,48	300
К-200-130 ЛМЗ	2100	765	2,75	330
К-300-240 ЛМЗ	2480	960	2,58	389
К-800-240 ЛМЗ	2480	960	2,58	389
К-1200-240 ЛМЗ	2990	1200	2,5	470 (титан)
К-160-130 ХТГЗ	2125	780	2,72	335

1	2	3	4	5
К-300-240 ХТКЗ	2550	1050	2,43	400
T 110/120-130	1915	550	3,48	300
ПТ 60-130	2000	665	3,01	314
T 250-240	2370	920	2,58	372
К 1000-25	4150	1450	2,86	326
К 1000-50	3000	1200	2,5	470 (титан)

Корневой диаметр ступени $d_{\kappa} = d^z - l_2^z$ м. Тепловой перепад ступени

$$H_0^z = \frac{1}{2 \cdot 10^3} \left(\frac{u}{x_{\phi}} \right)^2$$
, кДж/кг.

Отношение скоростей для последней ступени

$$x_{\phi} = \frac{u}{c_{\phi}} = \frac{0.45(1-\xi_{\rm BC})}{\sqrt{(1-\rho)}},$$

где ξ_{BC} – относительная потеря с выходной скоростью, $\xi_{BC} = 0,18 \div 0,21$;

 x_{ϕ} – лежит в пределах 0,53÷0,62 (большие значения для турбин большей мощности).

Степень реакции на среднем декаметре ступени $\rho \cong 0,5 \div 0,7$ или значение ρ можно подсчитать по формуле

$$\rho = 1 - (1 - \rho_{\kappa}) \left(\frac{\theta - 1}{\theta}\right)^{m},$$

где ρ_{κ} – реакция у корня лопатки, $\rho_{\kappa} = 0,2\div0,3, m = 1,5\div1,6.$

Перепад в сопловой решетке ступени

$$H_{01}^{z} = (1 - \rho) H_{0}^{z}$$
, кДж/кг.

89

Для определения числа ступеней, их диаметров и тепловых перепадов строится диаграмма изменения d_{κ} , ρ , $x_{\phi} = u/c_{\phi}$, d, H_0 , α_{13} от первой к последней ступени проточной части цилиндра (рис. 4.10). Значение α_{13} изменяется в пределах от $10\div16^{\circ}$ в первых, до $18\div20^{\circ}$ последних ступенях. Принцип построения диаграммы изложен в тепловом расчете ЦСД. Отличием диаграммы ЦНД будут иные законы изменения характеристик проточной части в области низких давлений.

Рис. 4.10. Диаграммы для определения числа ступеней их диаметров и тепловых перепадов ЦНД

Линия 1–2 $(d^{I} - d^{z})$ в зоне малого изменения удельных объемов близка к прямой аналогично ЦСД, а в зоне значительного изменения удельных объемов (примерно 1/3÷2,5 до конца отрезка *AB*) поднимается круто вверх. Линия 5–6 $(x_{\phi}^{I} - x_{\phi}^{z})$ на 3/4 отрезка *AB* – прямая с небольшим подъемом, на последней четверти отрезка *AB* – резко поднимающаяся к точке, 6 кривая. Характер изменения α_{13} , р также показан на диаграмме рис. 4.10. Линия изменения тепловых

перепадов (3-4) строится расчетным путем. Располагаемый перепад ступени по статическим параметрам пара

$$H_0 = 12,325 \cdot K_0 \cdot \left(\frac{d}{x_{\phi}}\right)^2, \ \kappa Дж/кг.$$

Для первой ступени $K_0 = 1$, для промежуточных ступеней $K_0 =$ = 0,96÷0,92 (большие значения для первых ступеней, уменьшение К₀ идет к последним ступеням).

Значения Н₀ подсчитываются для нескольких промежуточных точек диаграммы. Для этого отрезок АВ делится на тучастков равной величины. Из конца каждого участка проводятся ординаты до пересечения с линиями $d, x_{\phi}, \rho, \alpha_{13}$ (линии-----).

По значениям d и x_{ϕ} , взятым по диаграмме, на каждой ординате подсчитываются Н₀ и откладываются в масштабе на соответствующей ординате. Точки концов отрезков Н₀ соединяются и образуют линии, характеризующие изменение тепловых перепадов от первой до последней ступени проточной части цилиндра (см. рис. 4.10).

Число ступеней цилиндра

$$z = \frac{(1+q)H_0^x}{H_0^{\rm cp}},$$

где H_0^x – располагаемый теплоперепад нерегулируемых ступеней цилиндра;

q – коэффициент возврата тепла:

$$q = \kappa_{\rm T} \left(1 - \eta_{\rm oi}^{x} \right) H_0^{x} \frac{z - 1}{z'}, \qquad z' = \frac{H_0^{x}}{H_0^{\rm cp}},$$

где η_{oi}^{x} – КПД проточной части цилиндра, найденный при построении процесса (см. главу 2);

 $\kappa_{T} = 2,8 \cdot 10^{-4} - для процесса, лежащего в области влажного пара;$ $<math>\kappa_{T} = (3,2 \div 4,3) \cdot 10^{-4} - для процесса, лежащего в области перегре$ того пара и в области влажного пара;

*H*₀^{ср} – средний располагаемый теплоперепад:

$$H_0^{\rm cp} = \frac{\frac{1}{2}H_0^{\rm I} + \sum_2^m H_0^x + \frac{1}{2}H_0^z}{m},$$

где m – число частей, на которое разделен отрезок AB (число ординат на отрезке на единицу больше).

Результат подсчета числа нерегулируемых ступеней округляется до целого числа z. Разделив отрезок AB на (z - 1) частей, находят теплоперепады для каждой ступени по ординатам, проведенным из конца каждой части до пересечения с линиями \overline{H}_0 и H_0 . Сумма теплоперепадов всех нерегулируемых ступеней, взятых по статическим параметрам, составляет $\sum_{1}^{z} h_0$, но может не совпасть с величиной $(1+q)H_0^x$:

$$\sum_{1}^{z} h_0 - (1+q) H_0^x = \pm \Delta H_0.$$

Поправка к тепловому перепаду каждой ступени

$$\pm \Delta h_0 = \frac{\Delta H_0}{\sum\limits_{1}^{z} h_0} \cdot h_0.$$

Скорректированный тепловой перепад ступени

$$H_0^k = H_0 \pm \Delta h.$$

Скорректированный тепловой перепад ступени по параметрам торможения

$$\overline{H}_0^k = \frac{H_0^k}{k_0}.$$

Результаты заносят в таблицу предварительного расчета. В эту же таблицу заносятся значения *d* для каждой ступени, измеренные по ординатам на линии 1–2.

Располагаемый перепад ЦНД H_0^x разбивается в соответствии с полученными перепадами ступеней по статическим параметрам. Параметры торможения каждой ступени определяются отложением \overline{H}_0 от точки конца изоэнтропийного расширения в каждой ступени (см. рис. 4.6) вверх по изоэнтропе.

Располагаемый тепловой перепад сопловой решетки каждой ступени

$$\overline{H}_{01} = (1 - \rho) \cdot \overline{H}_0,$$

где значение р берется из диаграммы (см. рис. 4.10) по линии 7–8 соответственно для каждой ступени.

Высота сопловой решетки

$$l_1 = \frac{10^3 \cdot G \cdot v_{1t}}{\pi \cdot d \cdot e \cdot \mu_1 \cdot c_{1t} \cdot \sin \alpha_{12}}, \text{ MM},$$

где v_{1t} – удельный объем пара в конце изоэнтропийного расширения в сопловой решетке (см. рис. 4.6);

 c_{1t} – скорость пара на выходе из сопловой решетки при изоэнтропийном расширении, м/с, определяется по формуле (4.6);

µ₁ – коэффициент расхода сопловой решетки, берется по рис. 3.3;

значения α_{1_3} берутся из диаграммы (рис. 4.10) по линии 9–10 соответственно для каждой ступени.

Высота рабочей решетки каждой ступени определяется по формуле (4.7).

Все полученные величины l_1 и l_2 заносятся в таблицу соответственно по ступеням.

Проточная часть имеет форму 7 (см. рис. 4.1) Здесь пар подводится к середине и растекается в противоположные стороны в равных количествах. Турбина в зависимости от мощности, технико-экономических показателей и надежности может иметь несколько однотипных ЦНД.

Определение значений диаметра, теплового перепада, высот сопловой и рабочей решеток первой ступени производится аналогично первым ступеням ЦСД и ЦНД со ступенями среднего давления.

Для просчета вариантов и построения графиков $d^{I} = f(\overline{H}_{0}^{I}),$ $l_{1} = f(\overline{H}_{0})$ следует брать следующие значения тепловых перепадов: $H_{0}^{I} = \overline{H}_{0}^{I} = 60;75;90;105;125$ кДж/кг.

Расчет выполняется в виде таблицы.

По графикам (см. рис. 4.7) можно получить значения d^{I} и H_{0}^{I} , задавшись l_{2}^{I} , или \overline{H}_{0}^{I} и l_{2}^{I} , задавшись d^{I} . В любом случае значение $\theta = d/l$ должно лежать в определенных пределах. Для начального давления перед ЦНД

 $P_0 \cong 2,5 \div 3$ кгс/см² (0,25 \div 0,3 МПа), $\theta^{\rm I} = 7 \div 10$

или $P_0 \cong 0,5\div 1 \text{ кгс/см}^2 (0,05\div 0,1 \text{ МПа}), \ \theta^{\text{I}} = 5\div 7.$

Степень реакции на среднем диаметре ступени:

- при $P_0 \cong 2,5 \div 3$ кгс/см² (0,25 \div 0,3 МПа), $\rho = 30 \% \div 40 \%$;

− при $P_0 \cong 0,5\div1$ кгс/см² (0,05÷0,1 МПа), $\rho = 40$ %÷50 %;

*l*₂ подсчитывается по формуле (4.7).

Расчет размеров d^z , l_1^z , l_1^z и теплового перепада последней ступени производится так же, как это изложено ранее для последней ступени ЦНД с проточной частью, выполненной по форме 3.

Для определения числа ступеней, их диаметров и тепловых перепадов строится диаграмма по принципу изображенной на рис. 4.10. Она будет отличаться от диаграммы для ЦНД с проточной частью, имеющей ступени среднего и низкого давлений (форма 3), тем, что в ней нет пологих участков линий изменения значений d, x_{ϕ} , H_0 , \overline{H}_0 . Перечисленные линии имеют крутой характер изменения значений от первой до последней ступени.

В остальном порядок и характер расчета ЦНД, выполненного по форме 7, аналогичен изложенному ранее расчету для формы 3.

Расчет выполняется для одного потока пара.

4.4. Детальный расчет нерегулируемых ступеней

Детальный расчет нерегулируемых ступеней не имеет принципиальных отличий от детального расчета регулирующей ступени, изложенного в третьей главе. Дополнительные указания о порядке определения или выбора некоторых величин, изложены ниже. Процесс в отдельной промежуточной ступени представлен на рис. 4.11.

Рис. 4.11. Рабочий процесс промежуточной ступени в *h*,*s*-диаграмме

4.4.1. Использование кинетической энергии выходной скорости

Коэффициент использования кинетической энергии выходной скорости предыдущей ступени $\chi \cong 0,65 \div 1,0$.

Для промежуточных ступеней величина этого коэффициента зависит от величины осевого зазора между выходными кромками лопаток и входными кромками сопл. В первой нерегулируемой ступени, а также после камер отборов пара и резких изменений диаметров ступеней $\chi = 0$.

Располагаемая энергия промежуточной ступени давления

$$E_0 = \chi_0 \cdot H_{\rm BC}^{\rm пред} + H_0 - \chi \cdot H_{\rm BC}, \ \kappa Дж/кг,$$

где $H_{\rm Bc}^{\rm nped}$, $H_{\rm Bc}$ – потеря энергии выходной скорости соответственно предыдущей и рассматриваемой ступени.

4.4.2. Потеря энергии от влажности

Относительная величина потери от влажности

$$\xi_{\rm BJ} = 2 \frac{u}{c_{\rm \varphi}} [0,9y_0 + 0,35(y_2 - y_0)].$$

Или
$$\xi_{\text{вл}} = a \cdot \frac{(y_2 - y_0)}{2}$$
, где $y_0 = 1 - x_0$; $y_2 = 1 - x_2$;

*x*₀, *x*₂ – начальная и конечная степень сухости пара при изоэнтропийном процессе расширения пара в ступени (см. рис. 4.12).

Рекомендуется вначале вычислить ξ_{BR} по указанным выше формулам, а затем определить по рис. 4.12.

Потеря энергии от влажности

$$h_{\rm BJ} = \xi_{\rm BJ} \cdot E_0, \ \kappa Дж/кг.$$

Рис. 4.12. Коэффициент потерь расхода пара от влажности пара

4.4.3. Потеря энергии от утечек пара

Снижение КПД ступени от утечек в ней в основном определяется тем, что какие-то количества пара проходят мимо рабочей решетки и не совершают в ней полезной работы.

$$\xi_y = \xi_{1y} + \xi_{2y}.$$

Составляющая ξ_{1y} определяется частью пара, минующей сопловую решетку и проходящей через диафрагменное уплотнение

$$\xi_{1y} = \frac{\mu_{1y} \cdot F_{1y}}{\mu_1 \cdot F_1 \sqrt{z_{1y}}} \cdot \eta_{\text{on}}.$$

где μ_{1y} , μ_1 определяются по рис 4.13 и рис. 3.3 соответственно; $F_{1y} = \pi \cdot d_{1y} \cdot \delta_{2y}$ – площадь зазора в уплотнении диафрагмы,

$$\delta_{1y} = 0,001 \cdot d_{1y};$$

*F*₁ – выходная площадь сопловой решетки;

ξ₂*y* – относительная величина потери от перетекания пара через периферийный зазор над лопатками:

- для необандаженных решеток

$$\xi_{2y} = \gamma \frac{0.5 \cdot \pi \cdot F_{2y}}{F_{1y}} \sqrt{\frac{\rho_{\pi}}{1 - \rho}} \cdot \eta_{o\pi};$$

- для обандаженных решеток

$$\xi_{y2} = \frac{\mu_{2y} \cdot F_{2y}}{\mu_1 \cdot F_1 \sqrt{z_{2y}}} \cdot \eta_{0\pi},$$

где F_{2y} – площадь кольцевого зазора над вершинами лопаток или над бандажным уплотнением:

$$F_{2y} = \pi \cdot d_{2y} \cdot \delta_{2y}, \ \mathbf{M}^2, \ \delta_{2y} \cong 0,001 \div 0,0015 d_{y2}, \ d_{y2} = d + l_2, \ \mathbf{M};$$

ρ_п – реактивность по периферии лопаток:

$$\rho_{\Pi} = 1 + \left(1 - 1, 8\frac{l_2}{d}\right)(1 - \rho),$$

 $\mu_{2\nu}$ определяется по рис. 4.13; μ_1 – по рис. 3.3; γ = 1,5.

Рис. 4.13. Коэффициент расхода µ, для уплотнений различной формы

5. РАСЧЕТ КОНСТРУКЦИОННЫХ ЭЛЕМЕНТОВ ТУРБИНЫ НА ПРОЧНОСТЬ

5.1. Общие сведения

Во время работы турбины возникают внешние силы, действующие на рабочие лопатки, их разделяют на статические и динамические.

Будем рассматривать расчет рабочих лопаток на прочность под действием статических сил. К статическим силам относятся:

 центробежные силы, вызывающие в основном растягивающие напряжения;

 – среднее усилие парового потока (примерно совпадающее с направлением вращения рабочих лопаток);

 – усилие, создаваемое разностью давлений пара по обе стороны рабочих лопаток (действует приблизительно в осевом направлении).

Эти усилия вызывают изгибающие напряжения по направлению их действия.

5.2. Расчет рабочей лопатки на растяжение

Растягивающие усилия, действующие на рабочую лопатку, вызываются центробежными силами собственной массы лопатки (C_{π}), массы ленточного бандажа (C_{6}) и скрепляющей проволоки (C_{π}).

В общем случае уравнение центробежной силы для любой вращающейся массы

$$C = 0,5md\omega^2,\tag{5.1}$$

где $m = V \rho$ – масса вращающихся частей, кг;

V – объем вращающихся частей, см³;

 ρ – плотность материала, кг/см³;

d – диаметр, см;

 ω – частота вращения, с⁻¹.

Расчетное значение центробежной силы для рабочей лопатки равно сумме центробежных сил составляющих ее частей:

$$\sum C = C_{\pi} + C_{\pi} + C_{5}.$$
 (5.2)

100

Центробежные силы, направленные радиально, создают в лопатке растягивающие напряжения, равномерно распределенные по сечению лопатки F (МПа):

$$\sigma_{\rm p} = \frac{\sum C}{F},\tag{5.3}$$

где *F* – площадь лопатки, м².

Наиболее опасное сечение лопатки находится у основания ее профильной части, так как здесь центробежная сила наибольшая.

Наибольшая из составляющих ΣC – центробежная сила профильной части лопатки C_{n} . Поэтому далее подробнее рассмотрим определение напряжений, вызываемых центробежными силами собственной массы профильной части лопатки (без учета масс ленточных бандажей и связующей проволоки), в зависимости от характера изменения площади по высоте.

Лопатки постоянного сечения. Центробежная сила профильной (рабочей) части лопатки

$$C_{\pi} = \rho F l d_{\rm cp} \omega^2. \tag{5.4}$$

Растягивающее напряжение в корневом сечении рабочей лопатки от действия C_{n} , МПа

$$\sigma_{\pi} = \frac{C_{\pi}}{F} = \rho l d_{\rm cp} \omega^2.$$
 (5.5)

Отсюда следует, что в лопатке постоянного по высоте профиля напряжение растяжения не зависит от площади сечения лопатки.

Лопатки переменного сечения. В этих лопатках напряжения в корневом сечении и в сечении по высоте лопатки уменьшаются за счет постепенного уменьшения площади сечения лопатки при переходе от корневого к периферическому, т. е. уменьшения массы лопатки, а значит и центробежной силы ее профильной части.

Центробежная сила, действующая в корневом сечении лопатки,

$$C_{\pi(0)} = \rho V r_{\rm ur} \omega^2, \qquad (5.6)$$

101

где V – объем всей лопатки, м³;

*г*_{пт} – радиус центра тяжести, м.

Напряжение растяжения лопатки в корневом сечении, МПа

$$\sigma_{\rm p(0)} = \frac{C_{\pi(0)}}{F_0},\tag{5.8}$$

где F_0 – площадь корневого сечения лопатки, м².

5.3. Расчет рабочей лопатки постоянного сечения на изгиб

В рабочих лопатках современных турбин при $d_{cp} / l > 12$ применяются постоянные профили по высоте.

Изгибающие усилия, действующие на рабочую лопатку, состоят из динамического давления пара вследствие изменения количества движения при протекании его через рабочую решетку и статической разности давления по обе стороны лопаток вследствие наличия в них реактивности.

Первое усилие, действующее на одну лопатку, может быть определено из количества движения в окружном направлении:

$$P_{\text{окр}} = \frac{G}{ez_2} (c_{1u} - c_{2u}).$$
(5.9)

В этом уравнении при $\alpha_2 < 90^\circ$ проекция скорости c_2 на направление окружной скорости является отрицательной, поэтому знак минус в формуле меняется на плюс.

Значение $P_{\rm okp}$ может быть определено из уравнения работы для одной лопатки

$$P_{\rm okp} = \frac{G\eta_{oi}h_0}{uez_2} = \frac{10^3 N}{uez_2},$$
 (5.10)

где G – расход пара, кг/с;

 h_0 – теплоперепад ступени, кДж/кг;

u – окружная скорость, м/с;

N-мощность ступени, кВт;

 c_{1u} и c_{2u} – проекции абсолютных скоростей пара при выходе из сопел рабочих лопаток на направление окружной скорости u, м/с;

е-степень парциальности;

*z*₂ – число рабочих лопаток.

Изгибающее усилие в осевом направлении складывается из динамического давления и статической разности давления

$$P_{\rm oc} = \frac{G}{ez_2}(c_{1a} - c_{2a}) + (p_1 - p_2)t_2l, \qquad (5.11)$$

где c_{1a} и c_{2a} – проекции абсолютных скоростей пара при выходе из сопел рабочих лопаток на осевое направление, м/с;

*t*₂ – шаг лопаток, м;

l – высота лопаток, м.

Проекции давлений *p*₁ и *p*₂ можно рассчитать по следующим зависимостям:

$$p_1 = P_{\text{окр}} \cos \alpha + P_{\text{oc}} \sin \alpha; \qquad (5.12)$$

$$p_2 = P_{\text{okp}} \sin \alpha + P_{\text{oc}} \cos \alpha. \tag{5.13}$$

Равнодействующая изгибающих усилий, действующих на лопатку,

$$p = \sqrt{p_{\rm okp}^2 + p_{\rm oc}^2}.$$
 (5.14)

Максимальное изгибающее напряжение лопатки с равномерно распределенной нагрузкой в корневом сечении

$$\sigma_{\rm H3} = \frac{p_1 l}{8W_x},\tag{5.15}$$

где W_x — момент сопротивления лопатки относительно оси, проходящей через центр тяжести сечения параллельно линии, соединяющей кромки лопатки. Справочная величина, определяемая по каталогу профиля лопатки (прил. 2).

5.4. Расчет рабочей лопатки переменного сечения на изгиб

В рабочих лопатках (при $d_{\rm cp} / l < 12...15$) с переменным профилем по высоте действуют изгибающие усилия парового потока и разности давления по обе стороны лопаток, а также растягивающие усилия от действия центробежных сил. Кроме того, в лопатках переменного сечения центры тяжести отдельных сечений лежат на пространственной кривой. Благодаря этому центробежные силы элементов лопатки, направленные радиально, не проходят через центры тяжести ниже лежащих сечений и создают в них изгибающие напряжения.

Изгибающее напряжение можно рассчитать:

$$\sigma_{\rm H3} = \frac{M_{\rm H3F}}{W} = \frac{Ple_1}{2J},\tag{5.16}$$

где *J* – момент инерции вала. Определяется по формуле

$$J = \frac{\pi d_{\rm B}^2}{64}.$$
 (5.17)

5.5. Расчет вала на прочность

На вал турбины действуют внешние нагрузки:

- крутящий момент от передаваемой валом мощности;

 – силы от действия массы частей ротора (вала, дисков, втулок), вызывающие изгиб вала

- осевое усилие, вызывающее растягивающие напряжения

– центробежная сила неуравновешенной массы ротора.

Зачастую диаметры вала выбирают не из расчета на прочность от изгиба и скручивания, а из расчета вала на критическое число оборотов, а затем вал проверяется на прочность.

Наибольшее приведенное напряжение для произвольного сечения вала при совместном действии изгиба и кручения

$$\tau_{\rm max} = \frac{1}{2} \sqrt{\sigma^2 + 4\tau^2}.$$
 (5.18)

104

Касательное напряжение кручения вала

$$\tau = \frac{M_k}{2W},\tag{5.19}$$

где $M_k = 9,55 \frac{N}{n}$ – крутящий момент, МН·м;

N-мощность на валу, MBт;

n – число оборотов ротора, об/мин;

Момент сопротивления для рассчитываемого сечения вала без центрального отверстия, м³

$$W = \frac{\pi d^3}{32}.$$
 (5.20)

А для сечения полого вала

$$W = \frac{\pi d_{\rm H}^3}{32} \left[1 - \left(\frac{d_0}{d_{\rm H}} \right)^4 \right], \tag{5.21}$$

где *d*_н и *d*₀ – соответственно наружный и внутренний диаметры, м.

Наличие внутреннего отверстия следует учитывать только для

 $\frac{d_0}{d_{_{\rm H}}} > 0,4$, так как при $\frac{d_0}{d_{_{\rm H}}} \le 0,4$ составляющая $\left(\frac{d_0}{d_{_{\rm H}}}\right)^4 < 0,0256$ и вы-

ражение в квадратных скобках близко к единице, т. е. наличие внутреннего отверстия не окажет существенного влияния на величину момента сопротивления.

Нормальные напряжения изгиба и растяжения определяются как

$$\sigma = \frac{M_{\rm H3}}{W} \pm \frac{P}{S},\tag{5.22}$$

где *S* – площадь поперечного сечения вала, м²;

 $\pm P$ – растягивающее или сживающее осевое усилие (в зависимости от места расположения упорного подшипника). Для произвольного сечения вала

$$\tau_{\max} = \frac{1}{2W} \sqrt{W_{\text{W3F}}^2 + M_k^2}.$$
 (5.23)

Величины $M_{\rm H3}$ и M_k изменяются по длине вала; максимум $M_{\rm H3}$ расположен приблизительно посредине между опорами, а максимум M_k – у соединительной муфты между роторами турбины и генератора. Поэтому необходимо рассчитывать $\tau_{\rm max}$ для нескольких сечений вала. Наиболее опасными являются сечения на концах валов у соединительной муфты, в которых напряжения кручения достигают максимального значения, а диаметр вала минимален. В многоцилиндровых турбинах при расчете сечений валов ЦСД и ЦНД учитывается мощность, развиваемая роторами предшествующих цилиндров. Изгибающий момент $M_{\rm H3}$ в любом сечении определяется графическим методом. Допускаемые напряжения рекомендуются для сталей: углеродистой $\sigma_{\rm доп} \approx 40$ МПа; легированных – $\sigma_{\rm доn} \approx 60...80$ МПа и выше. Запас прочности по отношению к пределу текучести принимается около семи, так как желательно, чтобы прогиб вала был мал (это позволяет выполнить небольшие радиальные зазоры в уплотнениях).

5.6. Выбор допускаемых напряжений

Выбор допускаемых напряжений для рабочих лопаток. Практика стационарного турбостроения рекомендует следующие нормы допускаемых напряжений от парового изгиба $\sigma_{_{\rm из, доп}}$ для активных турбин: в ступенях с полным подводом пара – не больше 35 МПа, в ступенях с парциальным подводом пара – не больше 15 МПа. Для лопаток, работающих при низких и умеренных температурах, критерием прочности является предел текучести $\sigma_{0,2}$ и предел усталости σ_{-1B} при соответствующей температуре.

Допускаемое напряжение растяжения в зоне низких и умеренных температур

$$\sigma_{\mathrm{p,Jon}} = \frac{\sigma_{0,2t_0}}{K_s},\tag{5.24}$$

где $K_s = 1,7 - коэффициент запаса прочности по отношению к пределу текучести <math>\sigma_{0,2t_0}$.

В тяжело напряженных лопатках последних ступеней турбин, работающих при низких температурах, коэффициент запаса прочности при растяжении и изгибе $K_s = 1,52...2,17$.

В зоне повышенных температур (свыше 400 °С), где сильно сказывается ползучесть металла, допускаемые напряжения растяжения определяются как минимальные из трех величин:

$$\sigma'_{\text{p.don}} = \frac{\sigma_{0,2t_0}}{K_s}, \ \sigma''_{\text{p.don}} = \frac{\sigma_{0,2t_0}}{K_{\pi,\text{np}}}, \ \sigma'''_{\text{p.don}} = \frac{\sigma_{0,2t_0}}{K_{\pi}},$$

где $K_s = 2,0; K_{\text{д.пр}} = 2,0; K_{\text{п}} = 1,3.$

Выбор допускаемых напряжений для валов турбин. В деталях, насаживаемых на вал с натягом и работающих при умеренных температурах (дисках и соединительных муфтах), суммарные расчетные напряжения, включающие напряжения от действия центробежных сил и напряжения от посадки на вал с натягом, при номинальном числе оборотов должны быть меньше допускаемых. Допускаемое напряжение выбирается с коэффициентом запаса прочности $K_s \ge 1,8$ по отношению к пределу текучести при рабочей температуре:

$$\sigma_{\mathrm{p,don}} = \frac{\sigma_{0,2t_0}}{K_s}.$$
(5.25)

В сварных роторах низкого давления из-за наличия сварки, более сложного изготовления дисков $K_s \ge 2,3$, а для перемычек ротора в зоне сварки $K_s \ge 3$. В цельнокованых роторах, работающих при высоких температурах, допускаемые напряжения выбираются минимальными из следующих:

$$\sigma'_{\text{p.don}} = \frac{\sigma_{0,2t_0}}{K_{\text{s}}}, \ \sigma''_{\text{p.don}} = \frac{\sigma_{0,2t_0}}{K_{\text{g.np}}}, \ \sigma'''_{\text{p.don}} = \frac{\sigma_{0,2t_0}}{K_{\text{n}}},$$

где коэффициент запаса $K_s = 2,2; K_{\text{д.пр}} = 1,65; K_{\text{п}} = 1,25.$

107

5.7. Критическое число оборотов ротора

Критическое число оборотов ротора определяется по формуле

$$n_{\rm KP} = \frac{9,55}{\sqrt{f_0}}, \text{ об/мин},$$
 (5.26)

где f_0 – величина статического прогиба ротора. Определяется по формуле

$$f_0 = \frac{G_0 \cdot l_{\rm B}^3}{48EI_{\rm p}},\tag{5.27}$$

 $G_0 = m_{\rm B}g$ – сила отвеса ротора, H;

 $m_{\rm B} = \rho V_{\rm B}$ – масса вала, кг;

 ρ – плотность материала. Для стали ρ = 7850 кг/м³;

 $V_{\rm B}$ – объем вала, м³. Определяется по формуле

$$V_{\rm B} = \frac{\pi d_{\rm B}^2 l_{\rm B}}{4},\tag{5.28}$$

 $l_{\rm B}$ и $d_{\rm B}$ – длина и диаметр вала соответственно, м. Определяется по заводским данным.

 $I_{\rm p}$ – момент инерции сечения ротора. Определяется по формуле (5.17);

 $E = 208 \cdot 10^9 \text{ H/м}^2 - \text{модуль упругости.}$

Так как это число оборотов меньше эксплуатационного (3000 об/мин), то такой вал считается «гибким», и при пуске турбины необходимо преодолевать эту частоту за возможно более короткое время (подавая повышенный расход пара).
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Турбины тепловых и атомных электрических станций: учебник / Г. В. Арсеньев [и др.]; под ред. А. Г. Костюка, В. В. Фролова. – 2-е изд., перераб. и доп. – М.: Издательство МЭИ, 2001. 488 с.

2. Трояновский, Б. М. Турбины для атомных электростанций / Б. М. Трояновский. – М.: Энергия, 1978. – 232 с.

3. Трухний, А. Д. Атлас конструкций деталей турбин / А. Д. Трухний [и др.]. – М.: Издательство МЭИ, 2002. – 148 с.

4. Трухний, А. Д. Стационарные паровые турбины / А. Д. Трухний. – 2-е изд., перераб. и доп. – М.: Энергоатомиздат, 1990. – 640 с.

5. Трухний, А. Д. Теплофикационные паровые турбины и турбоустановки: учебное пособие для вузов / А.Д. Трухний. – М.: Издательство МЭИ, 2002. – 540 с.

6. Щегляев, А. В. Паровые турбины. Теория теплового процесса и конструкции турбин: учеб. для вузов: в 2 кн. / А. В. Щегляев, и подгот. к печати Б. М. Троянским. – 6-е изд., перераб., и доп. – М.: Энергоатомиздат, 1993. – 416 с.

7. Смоленский, А. Н. Конструкция, прочность и металлы элементов паровых турбин / А. Н. Смоленский. – Киев: Вища школа, 1979. – 350 с.

8. Бененсон, Е. И. Теплофикационные паровые турбины / Е. И. Бененсон, Л. С. Иоффе; под ред. Д. П. Бузина. – М.: Энергоатомиздат, 1986. – 270 с.

9. Паровые турбины малой мощности КТЗ / В. И. Кирюхин [и др.]. – М.: Энергоатомиздат, 1987. – 216 с.

10. Тепловые и атомные электростанции: справочник / под общ. ред. А. В. Клименко, В. М. Зорин. – М.: Издательство МЭИ, 2007.

11. Костюк, А. Г. Динамика и прочность турбомашин / А. Г. Костюк. – 2-е изд., перераб. и доп. – М.: Издательство МЭИ, 2001. – 480 с.

ПРИЛОЖЕНИЕ 1 Таблица ПІ.1

Характеристики двухвенечных ступеней скорости МЭИ

				Типы ступе	зней		
		KC-OA	KC-IA	KC-IB	KC-OB	KC-IB	KC-2B
Наил	ленование	для малых	для больших	для больших	для малых	для боль-	для боль-
		<i>Gv</i> и	<i>Gv</i> и	<i>Gv</i> и	Gv n	ших <i>Gv</i> и	ших <i>Gv</i> и
		$0,7 > \epsilon > 0,45$	$0,7 > \epsilon > 0,45$	$0,7 > \varepsilon > 0,35$	$\varepsilon < 0,3$	$\epsilon < 0,3$	$\varepsilon < 0,3$
	сопловая	C-90-12A	С-90-15А или	С-90-1Б или	C-90-P	C-90-15P	C-90-18P
, C			C-90-15AM	C-90-15M	P-23-14B	P-26-17B	P-35-15B
Le-	1-я рабочая	P-23-14A	Р-26-17А или	Р-26-17Б или			
			P-26-17AK	P-26-175K			
КИ	поворотная	P-30-21AK	P-35-25AK	P-35-25AK	P-30-21B	P-35-25B	P-46-29B
	2-я рабочая	P-46-29A	P-46-29A	P-50-33A	P-46-29A	P-50-33A	P-60-38A
	$\int \alpha_{1_3}$	$11 \div 13^{\circ}$	$14 \div 16^{\circ}$	15÷17°	9÷12°	15÷17°	16÷19°
VLIIЫ	$b_{r_{0}}$	$14\div16^{\circ}$	17÷19°	$17{\div}20^{\circ}$	14÷17°	17÷19°	24 ÷ 26°
BbIX0-							
да	a_{1_3}	$20\div22^{\circ}$	23÷25°	23÷25°	20÷22°	23÷25°	29÷33°
	$\bigcup b'_{2_3}$	28÷30°	$29 \div 32^{\circ}$	$31 \div 33^{\circ}$	26÷29°	29÷33°	38÷45°
OTHO-	F_2^1/F_1	$1,52 \div 1,56$	$1,48 \div 1,54$	$1,5\div 1,56$	1,6	1,55÷1,65	1,56
шения	F_{Π}/F_1	2,4+2,5	2,4+2,5	$2,45\div 2,55$	2,7	2,6+3	2,86
щадей	F_2/F_1	$3,5{\div}3,6$	$3,3 \div 3,6$	3,5÷3,8	4,5	3,8÷4,5	4,5

ПРИЛОЖЕНИЕ 2

Таблица П2.1

В,	CM	10	2,94	3,4	3,08	3,14	3,13	3,28	3,56	4	3,3	3,5	4,0	3,3	3,5	3,6	3,1	3,99
$W_{\min_{3}}$	cm	6	0,417	0,575	0,45	0,333	0,265	0,195	0,163	0,141	0,912	0,275	0,536	0,154	0,348	0,235	0,420	0,413
$I_{\min_{A}}$	CM^{+}	8	0,416	0,591	0,36	0,243	0,167	0,116	0,09	0,081	1,195	0,273	0,703	0,118	0,338	0,242	0,388	0.326
$f_{,\gamma}$	$c M^{2}$	7	3,45	4,09	3,3	2,72	2,35	2,03	1,84	1,75	4,41	2,15	3,3	1,49	2,26	1,89	3,31	3,21
B 1, B 2,	СМ	9	6,06	6,25	5,15	4,71	4,5	4,5	4,5	4,5	4,5	4,15	4,58	3,46	4,5	4,5	5,66	5,2
$M_{1t}^{ m our},$	$M_{2t}^{ m our}$	5	до 0,90	до 0,85	до 0,85	до 0,85	до 0,90	до 0,90	до 0,90	до 0,90	до 0,90	до 0,90	до 0,90	до 0,90	до 0,90	до 0,90	0,85-1,15	0,85-1,15
$\frac{1}{t_{orm}}$	0111	4	0,72-0,85	0,72-0,87	0,70-0,85	0, 7-0, 8	0, 7-0, 8	0,65-0,76	0,62-0,75	0,6-0,73	0,72-0,87	0,7-0,85	0,6-0,75	0,52-0,7	0,6-0,7	0,5-0,67	0,72-0,87	0,7–0,85
$\alpha_0^{\text{pacy}}, \beta_1^{\text{pacy}},$	град	3	70–120	70–120	70–120	70–120	70–120	70–120	70–120	70–120	45–75	45–75	35–85	45-85	45-85	55-90	70–120	70–120
$\alpha_{1_3},\ \beta_{2_3}$	град	2	8-11	10 - 14	13-17	16-20	20–24	24–30	30–36	35-42	12-18	17–23	21–28	17–23	22–28	10 - 14	13-17	10 - 14
Обозначение	впифодп	1	C-90-09A	C-90-12A	C-90-15A	C-90-18A	C-90-22A	C-90-27A	C-90-33A	C-90-38A	C-55-15A	C-55-20A	C-45-25A	C-60-30A	C-65-20A	C-70-25A	C-90-12B	C-90-15B

Некоторые характеристики профилей МЭИ

Окончание табл. П2.1

10	2,67	2,6	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	1,98	2,5	2,0	2,0
6	0,324	0,238	0,39	0,225	0,234	0,168	0,112	0,079	0,035	0,331	0,165	0,296	0,216	0,101	0,159	0,142	0,100
8	0,237	0,153	0,43	0,215	0,205	0,131	0,071	0,044	0,018	0,387	0,152	0,296	0,216	0,073	0,126	0,118	0,084
L	2,30	2,00	2,44	2,07	1,85	1,62	1,22	1,02	0,76	2,35	1,81	2,06	1,79	1,11	1,51	1,16	0,99
9	4,09	4,2	2,59	2,57	2,56	2,54	2,56	2,56	2,61	2,59	2,57	2,54	2,54	2,01	2,51	2,0	2,0
5	1, 4-1, 8	1, 4-1, 7	до 0,95	до 0,95	до 0,90	до 0,85	до 0,85	до 0,85	до 0,85	до 0,95	до 0,95	0,85-1,15	0,85-1,15	0,85-1,1	0,85-1,1	1, 3-1, 6	1,35-1,6
4	0,58-0,68	0,55-0,65	0,6–0,75	2,0-9,0	0,58-0,68	0,55-0,65	0,45-0,58	0,43-0,55	0,41-0,51	0,6–0,75	0,6-0,7	0,57-0,65	0,57–0,68	0,55-0,65	0,55-0,65	0,6-0,7	0,54-0,67
3	70–120	70–120	20–30	23–35	25-40	30–50	44–60	47–65	55-75	20 - 30	23-45	23-45	23-45	25-40	30 - 50	19–24	23–37
2	13-17	13-17	12-16	15-19	19–24	22–28	25–32	30–36	35-42	12-16	15-19	15-19	15-19	19–24	22–28	16-20	20–24
1	C-90-12P	C-90-15P	P-23-14A	P-23-17A	P-30-21A	P-35-25A	P-46-39A	P-60-33A	P-60-38A	P-23-14AK	Р-25-17Ак	P-27-17B	P-27-175K	P-30-21E	P-35-25B	P-21-18P	P-25-22P

Примеры выбора профилей: 1. М
н $=0,8;\ \alpha_{1_3}=11^\circ-$ тип профиля C-90-12A.

2. $M_{2t} = 0.5; \beta_{1_3} = 26^{\circ} - тип профиля Р-46-29А.$

Таблица П2.2

<i>l</i> ₁ , мм	d / l	Сопловая решетка	Рабочая решетка	F_2 / F_1
		С-90-12Ам	Р-30-21Ак	1,6–1,65
		С-90-15Ам	Р-30-21Ак	1,4–1,5
		С-90-12Ам	Р-30-21Ак	1,55–1,65
e 20	> 20	C-90-12A	Р-30-21Ак	1,45–1,65
8-20	> 20	C-90-12A	P-30-21A	1,45–1,65
		С-90-15Ам	P-30-21A	1,40–1,50
		C-90-15A	Р-30-21Ак	1,50–1,60
		C-90-15A	Р-30-25Ак	1,60–1,70
		C-90-12A	P-30-21A	1,62–1,75
20-50	> 10	C-90-15A	P-30-21A	1,45–1,55
		C-90-15A	P-30-25A	1,55–1,65
		C-90-12A	P-35-21A	1,55–1,67
50-100	> 8(6)	C-90-15A	P-30-21A	1,40–1,55
		C-90-15A	P-35-25A	1,5–1,6

Геометрические размеры ступеней МЭИ активного типа с лопатками постоянного профиля

ПРИМЕР РАСЧЕТА ПРОТОЧНОЙ ЧАСТИ ОБЛАСТИ ВЫСОКОГО ДАВЛЕНИЯ (ЦВД)

1. Условия расчета

Расчеты, предшествующие рассматриваемому, выполнены по методике, изложенной в главах второй и третьей.

Расход пара через цилиндр G = 208,6 кг/с.

Параметры пара в камере регулирующей ступени

$$P_2^{\rm PC} = P_0^{\rm I} = 9,7$$
 MIIa.

 $t_2^{\rm PC} = t_0^{\rm I} = 533,5$ °C.

Диаметр регулирующей ступни $d^{PC} = 1100$ мм.

Давление за последней ступенью цилиндра $P_{\rm K} = P_2 = 14,7$ МПа.

Проточная часть цилиндра выполняется в виде двух отсеков с противотоком пара.

2. Расчет первого отсека

Начальное давление пара перед вторым отсеком

$$P_0^{\text{II}} = P_0^{\text{I}} \cdot 0,51 = 9,7 \cdot 0,51 = 4,947$$
 MIIa.

Конечное давление пара за первым отсеком

$$P_{\rm K}^{\rm I} = P_0^{\rm II} \cdot 1,015 = 4,97 \cdot 1,015 = 5,02$$
 MIIa.

Диаметр первой нерегулируемой ступени

$$d^{\mathrm{I}} = d^{\mathrm{PC}} - \Delta d = 1100 - 243 = 857$$
 MM.

Отношения скоростей

$$x_{\phi} = \frac{u}{c_{\phi}} \cong \frac{\phi \cdot \cos \alpha_{19}}{2\sqrt{(1-\rho)}} = \frac{0,9279 \cdot 0,97437}{2\sqrt{(1-0,166)}} = 0,495.$$

 $\alpha_{13} = 13^{\circ}, \ \rho = 16,6 \%, \ \phi = 0,9279.$

Располагаемый тепловой перепад нерегулируемой ступени по параметрам торможения

$$\overline{H}_0^{\mathrm{I}} = H_0^{\mathrm{I}} = 12,325 \left(\frac{0,857}{0,495}\right)^2 = 36,94$$
 кДж/кг (перепады по пара-

метрам торможения равны для всех ступеней).

Тепловой перепад в сопловой решетке первой ступени отсека

$$\overline{H}_{01} = H_{01}^{I} = (1-\rho) \cdot H_{0}^{I} = (1-0,166) \cdot 36,94 = 30,8$$
 кДж/кг.

Высота сопловой решетки

$$l_{1}^{\mathrm{I}} = \frac{10^{3} \cdot G \cdot v_{1t}}{\pi \cdot d^{1} \cdot e \cdot \mu_{1} \cdot c_{1t} \cdot \sin \alpha_{19}} = \frac{10^{3} \cdot 208, 6 \cdot 0,03843}{\pi \cdot 0,857 \cdot 1 \cdot 0,97 \cdot 248, 18 \cdot 0,225} = 55, \mathrm{MM}.$$

$$c_{1t} = 44,72\sqrt{H_{01}^{I}} = 44,72\sqrt{30,8} = 248,18$$
 m/c.

 $\mu_1 = 0,97$ (определяется по рис. 3.3).

 $v_{1t} = 0,03843 \text{ м}^3/\text{кг}$ определен по *h*,*s*-диаграмме в конце теплоперепада.

Высота рабочей решетки первой ступени

$$l_2^{\rm I} = l_2^{\rm I} + \Delta_1 + \Delta_2 = 55 + 1, 5 + 2 = 58, 5$$
 MM.

Корневой диаметр ступени

$$d_k = d^{\mathrm{I}} - l_2^{\mathrm{I}} = 857 - 58, 5 = 798, 5$$
 MM.

Для отсека $d_k = пост.$ Число ступеней отсека

$$z = \frac{(1+q)H_0^x}{(H_0)_{\rm CP}} = \frac{(1+0,00968) \cdot 220}{35,4} = 6,275 = 6 \text{ ст.}$$
$$H_{0(1)}^x = h_2^{\rm PC} - h_{kt(1)} = 3470 - 3250 = 220 \text{ кДж/кг.}$$

$$(H_0)_{\rm CP} = \frac{H_0^1 + (z'-1)h_0}{z'} = \frac{36,94 + (6-1)\cdot 35,1}{6} = 35,4 \text{ кДж/кг.}$$
$$z' = \frac{H_{0(1)}^x}{H_0} = \frac{220}{35,1} = 6,27 = 6 \text{ ст.}$$
$$H_0 = \overline{H}_0^1 \cdot k_0 = 36,94 \cdot 0,95 = 35,1 \text{ кДж/кг.}$$
$$q = 4,8 \cdot 10^{-4} \cdot (1 - \eta_{0i}^x) H_{0(1)}^x \cdot \frac{(z'-1)}{z'} =$$
$$= 4,8 \cdot 10^{-4} \cdot (1 - 0,89) 220 \cdot \frac{(6-1)}{6} = 0,00968.$$

 $\eta_{oi}^{x} = 0,89$ – по построению процесса на *h,s*-диаграмме. Невязка

$$\Delta H_0 = (1+q) \cdot H_{0(1)}^x - \sum_{1}^{6} H_0 = (1+0,00968) \cdot 220 - (36,94+5\cdot35,1) =$$

= + 9,716 кДж/кг.

Поправка к тепловому перепаду первой ступени

$$\pm \Delta h_0 = \frac{9,716}{212,44} \cdot 36,94 = 1,689$$
 кДж/кг.

Со второй по шестую ступень

$$\pm \Delta h_0 = \frac{9,716}{212,44} \cdot 35, 1 = 1,6$$
 кДж/кг.

Скорректированный тепловой перепад по статическим параметрам пара:

– первой ступени

$$H_0^K = H_0 + \Delta h_0 = 36,94 + 1,689 = 38,629$$
 кДж/кг.

- ступеней со второй по шестую

$$H_0^K = H_0 + \Delta H_0 = 35, 1 + 1, 6 = 36, 7$$
 кДж/кг.

Проверка корректировки

$$(1+0,00968) \cdot 220 = (38,629+5 \cdot 35,1) = 222,15 \neq 222,129.$$

222,156 – 222,129 = 0,027 кДж/кг отнесем к первой ступени h_0^1 = 38,629 + 0,027 = 38,656 кДж/кг.

Высота лопатки рабочей решетки второй ступени

$$l_2^{\text{II}} = \sqrt{\left(\frac{d_k}{2}\right)^2 + l_2^{\text{II}} \cdot d^{\text{II}}} - \frac{d_k}{2} = \sqrt{\left(\frac{0,7985}{2}\right)^2 + 0,05483} - 0,39925 = 0,0636 \text{ m} = 63,5 \text{ mm}.$$

$$l_2^{\text{II}} \cdot d^{\text{II}} = l_2^{\text{I}} \cdot d^{\text{I}} \cdot \frac{v_2^{\text{II}}}{v_2^{\text{I}}} = 0,0585 \cdot 0,857 \cdot \frac{0,04375}{0,04} = 0,05483 \text{ m}^2.$$

Значения удельных объемов находятся по действительному процессу расширения пара в первом отсеке цилиндра на h,s-диаграмме соответственно в конце процесса в первой и второй ступени.

Диаметр второй ступени

$$d^{\text{II}} = d_k + l_2^{\text{II}} = 0,7985 + 0,0636 = 0,862 \text{ m} = 862 \text{ mm}.$$

Высота сопловой решетки второй ступени

$$l_1 = l_2 - (\Delta_1 + \Delta_2) = 68,5 - (1,5+2) = 60$$
 MM.

Таблица ПЗ.1

0,043 0,047 0,053 0,057 0,061 0,055 0,059 0,067 0,072 0,077 87,5 36,7 886 25 9 880,5 36,7 78,5 82 Ś Номер ступени 36,7 76,5 875 5 4 36,7 68,5 867 65 ξ 36,763,5 862 60 2 38,656 0,050 0,04 58,5 857 55 $\bigg)^{2} + l_{2}^{\mathrm{I}} \cdot d^{\mathrm{I}} - \frac{d_{k}}{2}$ $l_2^i \cdot d^i = l_2^1 \cdot d^1 \cdot \frac{\nu_2^i}{\nu_2^1}$ $l_1^i = l_2^i - (\Delta_1 + \Delta_2)$ Формула, способ Определяется по $H_0^K = H_0 \pm \Delta h_0$ *h*,*s*-диаграмме определения $d^{l} = d_{k} + l_{2}^{i}$ $l_2^i = \sqrt{\left(\frac{d_k}{2}\right)}$ Обозначение, H_0^K , кДж/кг размерность $l_2^l \cdot d^l$, \mathbf{M}^2 v_2^l , $m^3/k\Gamma$ l_2^i , mm l_1^i , mm d^{l} , mm пени по статическим Располагаемый теп-Произведение высоты рабочей лопатки на диаметр ступени ловой перепад сту-Наименование Высота сопловой Удельный объем Диаметр ступени Высота рабочей величины пара за рабочей параметрам решеткой решетки решетки

Результаты предварительного расчета ступеней первого отсека

3. Расчет второго отсека

Число нерегулируемых ступеней второго отсека $z_2 = z_1 = 6$. Тогда тепловой перепад па параметрам торможения каждой ступени второго отсека

$$\overline{H}_{0} = \frac{(1+q) \cdot H_{0(\mathrm{II})}^{x}}{1+(z_{2}-1) \cdot k_{0}} = \frac{(1+0,0192) \cdot 316}{1+5 \cdot 0,94} = 56,5 \text{ KJ}\text{K/KF}.$$

$$q \cong k_{T} \cdot (1-\eta_{oi(\mathrm{II})}^{x}) \cdot H_{0(\mathrm{II})}^{x} \cdot \frac{(z_{2}-1)}{z_{2}} =$$

$$= 4,8 \cdot 10^{-4} \cdot (1-0,8481) \cdot 316 \cdot \frac{(6-1)}{6} = 0,019,$$

где $\eta_{oi(II)}^{x} = 84,81 \%$ – по построению процесса расширения.

Тепловой перепад каждой последующей ступени (со второй по шестую) *H*₀ по статическим параметрам пара

$$H_0 = \overline{H}_0 \cdot k_0 = 0,94 \cdot 56,5 = 53,11$$
 кДж/кг.

Перепад на сопловую решетку первой ступени

$$H_{01}^{I} = (1-\rho) \cdot \overline{H}_{0}^{I} = (1-0,168) \cdot 56,5 = 47$$
 кДж/кг.

где ρ = 0,168.

$$c_{1t} = 44,72\sqrt{\overline{H}_0^1} = 44,72\sqrt{47} = 306,6$$
 m/c.

Высота рабочей решетки первой ступени второго отсека

$$l_1^{\rm I} = l_2^{\rm I} + (\Delta_1 + \Delta_2) = 68, 5 + 1, 5 + 2 = 72$$
 MM.

Корневой диаметр ступени

$$d_k = d^{\mathrm{I}} - l_2^{\mathrm{I}} = 1060 - 72 = 988$$
 MM.

Высота лопатки рабочей решетки второй ступени второго отсека

$$l_{2}^{\mathrm{II}} = \sqrt{\left(\frac{d_{k}}{2}\right)^{2} + l_{2}^{\mathrm{II}} \cdot d^{\mathrm{II}}} - \frac{d_{k}}{2}, \mathrm{M.}$$
$$l_{2}^{\mathrm{II}} \cdot d^{\mathrm{II}} = l_{2}^{\mathrm{I}} \cdot d^{\mathrm{I}} \cdot \frac{v_{2}^{\mathrm{II}}}{v_{2}^{\mathrm{I}}} = 0,072 \cdot 1,06 \cdot \frac{0,0867}{0,075} = 0,088226 \mathrm{\ m^{2}}.$$
$$l_{2}^{\mathrm{II}} = \sqrt{\left(\frac{d_{k}}{2}\right)^{2} + l_{2}^{\mathrm{II}} \cdot d^{\mathrm{II}}} - \frac{d_{k}}{2} = \sqrt{\left(\frac{0,988}{2}\right)^{2} + 0,088226} - \frac{0,988}{2} = 0,08242 \mathrm{\ m} = 82,5 \mathrm{\ mm}.$$

Средний диаметр второй ступени второго отсека

$$d^{\text{II}} = d_k + l_2^{\text{II}} = 988 + 82,5 = 1070,5$$
 MM.

Высота сопловой решетки

$$l_2^{\rm II} = l_2^{\rm II} - (\Delta_1 + \Delta_2) = 82, 5 - 1, 5 - 2 = 79 \ \text{ mm}.$$

Далее выполняется детальный расчет ступеней цилиндра. Расход пара через ступень

$$G = 208,6$$
 кг/с.

Давление пара перед ступенью

$$P_0 = 9,7 \text{ MIIa}.$$

Расчеты по всем ступеням отсека сведены в табл. ПЗ.2. Энтальпия пара перед ступенью

$$h_0 = 3470 \text{ кДж/кг.}$$

Таблица ПЗ.2

Результаты предварительного расчета ступеней второго отсека

Обозначение, Формула, способ	Формула, способ				Homep (ступени		
I	размерность	определения	1	2	3	4	5	9
еп- су- ским	H_0^K , кДж/кг	$H_0^K = H_0 \pm \Delta h_0$	53,5	53,11	53,11	53,11	53,11	53,11
V	$v_2^i, m^3/\mathrm{kr}$	Определяется по <i>h</i> , <i>s</i> -диаграмме	0,075	0,087	0,104	0,120	0,145	0,17
ысо- атки ени	$l_2^i \cdot d^i$, m^2	$l_2^i \cdot d^i = l_2^1 \cdot d^1 \cdot \frac{v_2^i}{v_2^1}$	0,076	0,088	0,106	0,122	0,1476	0,173
	$l_2^i,$ mm	$l_2^i = \sqrt{\left(\frac{d_k}{2}\right)^2 + l_2^1 \cdot d^1} - \frac{d_k}{2}$	72	82,5	98	111	132	152
й	$l_1^i,{ m MM}$	$l_1^i = l_2^i - (\Delta_1 + \Delta_2)$	68,5	79	94	107	28	148
И	$d^i, $ MM	$d^i = d_k + l_2^i$	1060	1070,5	1086	1099	1120	140

Тепловой перепад ступени по статическим параметрам пара

Располагаемый перепад ступени от параметров торможения пара (рассчитывается первая нерегулируемая ступень цилиндра)

$$\overline{H}_0 = H_0 = 38,656$$
 кДж/кг.

Давление за ступенью

$$P_2 = 8,6 \text{ MII}a.$$

Условная (фиктивная скорость)

$$c_{\phi} = 44,72\sqrt{\overline{H}_{01}} = 44,72\sqrt{38,656} = 278$$
 m/c.

Средний диаметр ступени

Окружная скорость на среднем диаметре

$$u = \pi \cdot d \cdot n = \pi \cdot 0,857 \cdot 50 = 134,55$$
 м/с.

Отношение скоростей

$$x_{\Phi} = \frac{u}{c_{\Phi}} = \frac{134,55}{278}.$$

Степень реактивности ρ = 0,166. Тепловой перепад сопловой решетки от параметров торможения

$$\overline{H}_{0}^{I} = (1-\rho) \cdot \overline{H}_{0} = (1-0,166) \cdot 38,656 = 32,24$$
 кДж/кг.

Теоретический удельный объем за сопловой решеткой (взят по построению процесса в *h*,*s*-диаграмме)

$$v_{1t} = 0,0385 \text{ m}^3/\text{kg}.$$

Давление за сопловой решеткой $P_1 = 6,8$ МПа.

Значения G, P₀, h, P₁, P₂, h₀, d, α₁, l₂, l₁, р взяты из предварительного расчета ступеней цилиндра.

Абсолютная теоретическая скорость выхода потока из сопловой решетки

$$c_{\phi} = 44,72\sqrt{32,24} = 253,9$$
 м/с.

Скорость звука на выходе из сопловой решетки

$$a_{1t} = 1000\sqrt{k \cdot P_1 \cdot v_{1t}} = 1000\sqrt{1, 3 \cdot 8, 8 \cdot 0, 0385} = 663, 6 \text{ M/c}.$$

Число Маха

$$M_{1t} = \frac{c_{1t}}{a_{1t}} = \frac{253,9}{663,6} = 0,382.$$

Выходная площадь сопловой решетки

$$F_1 = \frac{G \cdot v_{1t}}{\mu_1 \cdot c_{1t}} = \frac{208, 6 \cdot 0, 0385}{0, 97 \cdot 253, 9} = 0,0326 \text{ m}^2,$$

где $\mu_1 = 0.97 - коэффициент расхода сопловой решетки (определяется по рис. 3.3).$

Эффективный выходной угол сопловой решетки

$$\alpha_{12} = \alpha_1 = 13^\circ (M_{1t} < 1).$$

Выходная высота сопловой решетки $l_1 = 55$ мм.

Профиль сопловой решетки (из табл. П2.1 по M_{1t} и α_{13}) С-90-12А. Хорда профиля $e_1 = 6,25$ см и осевая ширина $B_1 = 3,4$ см. Шаг сопловой решетки

$$t = b_1 \cdot \overline{t} = 62, 5 \cdot 0, 8 = 50$$
 MM.

где $t \bar{t}$ – относительный шаг сопловой решетки по профилю.

Количество сопл

$$z_1 = \frac{\pi \cdot d \cdot e}{t} = \frac{\pi \cdot 857 \cdot 1}{50} = 54.$$

Скорость выхода потока из сопловой решетки

$$c_1 = \phi \cdot c_{1t} = 0,97 \cdot 253,9 = 246,3$$
 м/с.

Угол направления относительной скорости ω_1

$$tg\beta_1 = \frac{\sin \alpha_1}{\cos \alpha_1 - \frac{u}{c_1}} = \frac{\sin 13^\circ}{\cos 13^\circ - \frac{134,55}{246,3}} = 0,5254.$$

Относительная скорость

$$\omega_1 = c_1 \cdot \frac{\sin \alpha_1}{\sin \beta_1} = 246, 3 \cdot \frac{0,22495}{0,4651} = 119 \text{ m/c}.$$

Потери энергии сопловой решетки

$$\Delta H_1 = (1 - \varphi^2) \cdot \overline{H}_{01} = (1 - 0.97^2) \cdot 32,24 = 1.9$$
 кДж/кг.

Изоэнтропийный тепловой перепад рабочей решетки

$$\overline{H}_{02} = \overline{H}_0 \cdot \rho = 38,656 \cdot 0,116 = 6,417$$
 кДж/кг.

Теоретическая относительная скорость выхода потока пара из рабочей решетки

$$\omega_{2t} = 44,72\sqrt{\overline{H}_{02} + \frac{\omega_1^2}{2000}} = 44,72\sqrt{6,417 + \frac{199^2}{2000}} = 164,3$$
 m/c.

Теоретический удельный расход пара за рабочей решеткой $v_{2t} = 0,04 \text{ м}^3/\text{к}\Gamma$ – взят по построению процесса в *h*,*s*-диаграмме.

Скорость звука на выходе из рабочей решетки

$$a_{2t} = 1000\sqrt{k \cdot P_2 \cdot v_{2t}} = 1000\sqrt{1, 3 \cdot 8, 6 \cdot 0, 04} = 668,7$$
 m/c.

Число Маха

$$M_{2t} = \frac{c_{2t}}{a_{2t}} = \frac{164,3}{668,7} = 0,246.$$

Эффективный выходной угол рабочей решетки

$$\beta_{23} = \beta_2 = \beta_1 - (2 \div 10)^\circ = 27,72 - 7,72 = 20^\circ.$$

Выходная площадь рабочей решетки

$$F_2 = \frac{G \cdot v_{2t}}{\mu_2 \cdot \omega_{1t}} = \frac{208, 6 \cdot 0, 04}{0,948 \cdot 164, 3} = 0,05357 \text{ m}^2.$$

Выходная высота рабочей решетки $l_2 = 58,5$ мм.

Относительная скорость потока на выходе из рабочей решетки

$$\omega_2 = \psi \cdot \omega_{2t} = 0,872 \cdot 164,3 = 143,27$$
 M/c.

Профиль рабочей решетки – Р-30-21А (табл. П2.1 по β_2 и M_{2t}). Хорда профиля $b_2 = 25,6$ мм. Осевая ширина $B_2 = 25$ мм. Шаг рабочей решетки

$$t_2 = b_2 \cdot \overline{t_2} = 25, 6 \cdot 0, 61 = 15, 6$$
 MM.

Количество рабочих лопаток

$$z_2 = \frac{\pi \cdot d}{t_2} = \frac{\pi \cdot 0,857}{0,0156} = 172.$$

Окружное усилие, действующие на лопатки,

$$R_u = G(\omega_1 \cos\beta_1 + \omega_2 \cos\beta_2) =$$

= 208,6 \cdot (119 \cdot 0,885 + 143,27 \cdot 0,9396) = 50058 \text{ H}.

Изгибающее напряжения на лопатке

$$\sigma_{_{\rm H3\Gamma}} = \frac{R_u \cdot l_2}{2 \cdot z_2^{\Pi} \cdot e \cdot W_{\rm min}} = \frac{0.050058 \cdot 0.0585}{2 \cdot 172 \cdot 0.234 \cdot 10^{-6}} = 36,37 \text{ M}\Pi a > \sigma_{_{\rm H3\Gamma}}^{_{\rm H3\Gamma}},$$

где $W_{\min} = 0,234 \text{ см}^3$ – минимальный момент сопротивления профиля (табл. П2.1).

σ^{доп}_{изг} = 15÷20 МПа (табл. П8.1).

При $\sigma_{_{\rm H3\Gamma}} > \sigma_{_{\rm H3\Gamma}}^{_{\rm доп}}$ хорда профиля будет увеличена.

$$b_2' = b_2 \cdot \sqrt{\frac{\sigma_{_{\rm H3\Gamma}}}{\sigma_{_{\rm H3\Gamma}}^{_{\rm ZO\Pi}}}} = 25, 6\sqrt{\frac{36,37}{18}} = 36,4$$
 MM.

Соответственно

$$W'_{\min} = W_{\min} \cdot K_W = 2,874 \cdot 0,234 = 0,6725 \text{ cm}^3.$$

$$K_W = \left(\frac{36,4}{25,6}\right)^3 = 2,874.$$

Шаг решетки при $b'_2 = 36,4$ мм.

$$\overline{t} = 0,61 \cdot 36,4 = 22,2$$
 MM.

Количество рабочих лопаток

$$z_2' = \frac{\pi \cdot d}{t_2} = \frac{\pi \cdot 0,857}{0,0222} = 122.$$

$$\sigma'_{\text{H3F}} = \frac{0,050058 \cdot 0,0585}{2 \cdot 122 \cdot 0,6725 \cdot 10^{-6}} = 17,8 \text{ MIIa.}$$

Угол направления абсолютной скорости потока *c*₂ на выходе из рабочей решетки

$$tg\alpha_2 = \frac{\sin\beta_2}{\cos\beta_2 - \frac{u}{\omega_2}} = \frac{\sin 13^\circ}{0,93969 - \frac{134,55}{143,27}} = 610,$$

тогда угол $\alpha_2 \cong 90^{\circ}(89,9^{\circ}).$

Абсолютная скорость потока из рабочей решетки

$$c_2 = \omega_2 \cdot \frac{\sin \beta_2}{\sin \alpha_2} = 143, 27 \cdot \frac{0,342}{1} = 50 \text{ m/c}.$$

Потери энергии рабочей решетки

$$\Delta H_2 = (1 - \psi^2) \cdot \frac{\omega_{2t}^2}{2000} = (1 - 0.872^2) \cdot \frac{164.3^2}{2000} = 3,239 \text{ KJ}\text{K/Kr}.$$

Располагаемая энергия ступени

$$E_0 = \overline{H}_0 - \chi H_{\rm BC} = 38,656 - 1 \cdot 1,25 = 37,4$$
 кДж/кг.
 $\Delta H_{\rm BC} = \frac{c_2^2}{2000} = \frac{50^2}{2000} = 1,25$ кДж/кг.

 $\Delta H_{\rm BC}$ – потеря энергии с выходной скоростью.

χ = 1 – доля использованной энергии выходной скорости в следующей ступени.

Относительный лопаточный КПД ступени по потерям энергии в проточной части ступени

$$\eta_{0\pi}^{1} = \frac{E_{0} - \Delta H_{1} - \Delta H_{2} - (1 - \chi)\Delta H_{BC}}{E_{0}} =$$
$$= \frac{37, 4 - 1,954 - 3,239 - (1 - 1) \cdot 1,25}{37,4} = 0,8611.$$

По проекциям скоростей

$$\eta_{0\pi}^{2} = \frac{u(c_{1}\cos\alpha_{1} + c_{2}\cos\alpha_{2})}{10^{3} \cdot E_{0}} =$$
$$= \frac{134,55(246,3\cdot0,9743+59\cdot0)}{10^{3}\cdot146} = 0,8632.$$

Для дальнейшего расчета берется средняя величина

$$\eta_{o\pi} = \frac{\eta_{o\pi}^1 + \eta_{o\pi}^2}{2} = \frac{0.8611 + 0.8632}{2} = 0.8621.$$

Относительная величина потери от утечки пара через диафрагменное уплотнение

$$\xi_{y1} = \frac{\mu_{1y} \cdot F_{1y}}{\mu_1 \cdot F_1 \sqrt{z_{1y}}} \cdot \eta_{on} = \frac{0,74 \cdot 0,000785}{0,97 \cdot 0,0326\sqrt{8}} \cdot 0,8621 = 0,0055984.$$

Число гребешков диафрагменного уплотнения для первой ступени принимается большим, чем для последующих, $z_{1y} = 8$.

Площадь кольцевого зазора уплотнения

$$F_{1y} = \pi \cdot d_{1y} \cdot \delta_{1y} = \pi \cdot 0, 5 \cdot 0,0005 = 0,000785 \text{ m}^2,$$

где $d_{1v} = 0,5$ м – диаметр диафрагменного уплотнения;

 $\delta_{1y} = 0,001$ $d_{1y} = 0,001 \cdot 0,5 = 0,0005$ м – радиальный зазор уплотнения.

 $\mu_1 = 0,74$ – коэффициент расхода в зазоре диафрагменного уплотнения определен по рис. 4.13 при $\frac{\delta}{\Lambda} = 1$ для формы уплотнения 1.

Относительная величина потери от перетекания пара через периферийный зазор над лопатками

$$\xi_{y2} = \frac{\mu_{2y} \cdot F_{2y}}{\mu_1 \cdot F_1 \sqrt{z_{2y}}} \cdot \eta_{\text{on}} = \frac{0.74 \cdot 0.002587}{0.97 \cdot 0.0326\sqrt{2}} \cdot 0.8621 = 0.0369,$$

 $z_{2v} = 2 -$ число гребней надбандажного уплотнения;

 $F_{2y} = \pi \cdot (d + l_2) \cdot \delta_{2y} = \pi \cdot (0,857 + 0,0585) \cdot 0,0009 = 0,002587 \text{ м}^2 -$ площадь кольцевого зазора уплотнения;

 $\delta_{2y} = (0,001 \div 0,0015) d_{2y} = 0,001 \cdot 0,9155 = 0,0009$ м. $d_{2y} = d + l_2 = 0,857 + 0,0585 = 0,9155$ м.

Относительная величина потери на трение диска

$$\xi_{\rm Tp} = K_{\rm Tp} \cdot \frac{d^2}{F_1} \cdot \left(\frac{u}{c_{\rm \phi}}\right)^3 = 0, 6 \cdot 10^{-3} \cdot \frac{0,857^2}{0,0326} \cdot \left(\frac{134,55}{278}\right)^3 = 0,001532.$$

Внутренний относительный КПД ступени

$$\eta_{oi} = \eta_{o\pi} - \xi_{y1} - \xi_{y2} - \xi_{\tau p} =$$

= 0,8621 - 0,0055984 - 0,0369 - 0,001532 = 0,818.

Внутренний тепловой перепад ступени

$$H_i = \overline{H}_0 \cdot \eta_{oi} = 38,656 \cdot 0,816 = 31,62$$
 кДж/кг.

Внутренняя мощность ступени

$$N_i = G \cdot H_i = 208, 6 \cdot 31, 62 = 6569 \text{ kBt}$$

Расчет ступеней сводят в табл. ПЗ.З.

№ 1	Наименование величины 2	Обо- зна- чение <u>3</u>	Порядок определения, расчетная формула 4 Из предварительного	Размер- мер- ность 5	Номер ступе- ни ІZ 6
I	Расход пара	G	расчета	кг/с	
2	Параметры пара перед ступенью: давление энтальпия	$P_0 \\ h_0$	Из <i>h,s</i> -диаграммы по разбивке тепло- вых перепадов по ступеням	МПа кДж/кг	
3	Кинетическая энергия на входе в ступень	Н	$H_{\rm B}^{\rm m} = \frac{c_{2\rm m}^2}{2000}^*$		
4	Тепловой перепад сту- пени по статическим параметрам пара	H_0	Из предварительного расчета	кДж/кг	
5	Располагаемый тепло- вой перепад ступени от параметров тормо- жения	\overline{H}_0	$H_0 + \chi H_{\rm B}^{\rm II}$	кДж/кг	
6	Давление за ступенью	P_2	По <i>h,s</i> -диаграмме	МПа	
7	Условная (фиктивная) скорость	Сф	44,72 $\sqrt{\overline{H}_{01}}$	м/с	
8	Средний диаметр ступени	d	Из предварительно- го расчета	М	
9	Окружная скорость на среднем диаметре	и	$n = 50 \text{ c}^{-1}$	м/с	
10	Отношение скоростей	х _ф	$\frac{u}{c_{\Phi}}$		

Результаты детального расчета ступеней цилиндра

<u>Примечание</u>. *Для первых ступеней отсеков $H_{\rm B} = 0$.

Продолжение табл. ПЗ.3

1	2	3	4	5	6
11	Степень реактивности	ρ	Из предварительного расчета		
12	Тепловой перепад соп- ловой решетки от пара- метров торможения	$\overline{H}_0^{\mathrm{I}}$	$(1-\rho)\cdot\overline{H}_0$	кДж/кг	
13	Теоретический удель- ный объем пара за соп- ловой решеткой	V_{1t}	По <i>h</i> , <i>s</i> -диаграмме	м ³ /кг	
14	Давление за сопловой решеткой	p_1	По <i>h</i> , <i>s</i> -диаграмме	МΠа	
15	Абсолютная теорети- ческая скорость выхо- да потока из сопловой решетки	C_{1t}	$44,72\sqrt{\overline{H}_{01}}$	м/с	
16	Скорость звука на вы- ходе из сопловой ре- шетки	a_{1t}	$1000\sqrt{k \cdot P_1 \cdot v_{1t}}$ P_1 , МПа, v_{1t} , м ³ /кг	м/с	
17	Число Маха	M_{1t}	$\frac{C_{1t}}{a_{1t}}$		
18	Коэффициент расхода сопловой решетки	μ_1	По рис. 3.3		
19	Выходная площадь сопловой решетки	F_1	$ \frac{G \cdot v_{lt}}{\mu_{1} \cdot c_{lt}} _{\text{ИЛИ}} $ $ \frac{G}{0,648 \sqrt{\frac{P_{0}}{v_{0}}}} $ $ P_{0}, \text{ МПа, } v_{0}, \text{ м}^{3}/кг $	M ²	
20	Эффективный угол вы- хода, выходной угол сопловой решетки	a_{19}, a_1	Принимается в предварительном расчете при $M_{1t} \le 1$, $a_1 = a_{1_3}$, при $M_{1t} > 1$, a_{1_3} определяется по рис. 4.14, 4.15		
21	Выходная высота соп- ловой решетки	l_1	Из предварительно- го расчета	ММ	

Продолжение табл. ПЗ.3

1	2	3	4	5	6
22	Профиль сопловой решетки		Из табл. П2.1 по <i>а</i> _{1э} и <i>М</i> _{1t}		
23	Хорда профиля и осе- вая ширина	B_{1t}, B_{1t}	Из табл. П2.1 по про- филю	ММ	
24	Шаг сопловой решетки	t_1	$e_{1t} \cdot \overline{t_1}$	ММ	
25	Количество сопл	<i>z</i> ₁	$\frac{\pi \cdot d}{t_1}$		
26	Скорость выхода по- тока из сопловой ре- шетки	<i>c</i> ₁	$\phi \cdot c_{1t}$	м/с	
27	Угол направления от- носительной скорости ω ₁ входа в рабочую решетку	β1	tg $\beta_1 = \frac{\sin \alpha_1}{\cos \alpha_1 - \frac{u}{c_1}}$ или из треугольника скоростей	град	
28	Относительная скорость	ω_1	$c_1 \frac{\sin \alpha_1}{\cos \beta_1}$ или из треугольника скоростей	м/с	
29	Потеря энергии сопло- вой решетки	ΔH_1	$(1-\varphi^2)\cdot\overline{H}_{01}$	кДж/кг	
30	Теоретическая относи- тельная скорость выхо- да из рабочей решетки	ω_{2t}	$44,72\sqrt{\overline{H}_{02}+\frac{\omega_1^2}{2000}}$	м/с	
31	Изоэнтропийный теп- ловой перепад рабо- чей решетки	\overline{H}_{02}	$ ho \overline{H}_0$	кДж/кг	
32	Теоретический удель- ный объем за рабочей решеткой	v_{2t}	По <i>h,s</i> -диаграмме	м ³ /кг	
33	Число Маха	M _{2t}	$\frac{w_{2t}}{a_{2t}}$		
34	Скорость звука на вы- ходе из рабочей ре- шетки	a_{2t}	$1000\sqrt{k\cdot P_2\cdot v_{2t}}$	м/с	

Продолжение табл. ПЗ.3

1	2	3	4	5	6
35	Эффективный угол вы- хода, выходной угол рабочей решетки	$egin{array}{c} \beta_{2 \scriptscriptstyle 9}, \ \beta_{2} \end{array}$	$egin{aligned} & eta_{23} = eta_2, \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $	град	
36	Коэффициент расхода рабочей решетки	μ_2	По рис. 3.3.		
37	Выходная площадь рабочей решетки	F_1	$\frac{G \cdot v_{2t}}{\mu_2 \cdot w_{2t}},$ при $M_{2t} > 1$ $F_1 = \frac{G}{0,648\sqrt{\frac{P_1}{v_1}}}$		
38	Выходная высота рабочей решетки	l_2	Из предварительного расчета	ММ	
39	Относительная ско- рость потока на выхо- де из рабочей решетки	<i>w</i> ₂	$\psi \cdot w_2$	м/с	
40	Скоростной коэффици- ент рабочей решетки	ψ	По рис. 3.8		
41	Профиль рабочей решетки		Из табл. П2.1 по _{В2э} и <i>M</i> _{2t}		
42	Хорда профиля	62	Из табл. П2.1	ММ	
43	Осевая ширина	<i>B</i> ₂	Из табл. П2.1 по вы- бранному профилю	ММ	
44	Шаг рабочей решетки	t_2	$B_2 \cdot \overline{t_2}$	ММ	
45	Количество лопаток	Ζ2	$\frac{\pi \cdot d}{t_2}$		
46	Окружное усилие, дей- ствующее на лопатки	R _u	$G\begin{pmatrix} w_1 \cdot \cos\beta_1 + \\ +w_2 \cdot \cos\beta_2 \end{pmatrix} = G\begin{pmatrix} c_1 \cdot \cos\alpha_1 + \\ +c_2 \cdot \cos\alpha_2 \end{pmatrix} =$	Н	

Продолжение табл. ПЗ.3

1	2	3	4	5	6
47	Изгибающее напря- жение	σ _{изг}	$\begin{aligned} \frac{R_{u} \cdot l_{u}}{2 \cdot z_{2} \cdot e \cdot W_{\min}} \cdot 10^{6} \\ (\text{табл. II2.1}); \\ \sigma_{\text{изг}}^{\text{доп}} &= 15 \div 20 \text{ МПа,} \\ \text{при} \\ \sigma_{\text{изг}} > \sigma_{\text{изг}}^{\text{доп}} W'_{\min} &= \\ &= W_{\min} \left[\frac{(b_{2})}{b_{2}} \right]^{3} > \sigma_{\text{изг}}^{\text{доп}}, \\ b_{2}' &= b_{2} \cdot \sqrt{\frac{\sigma_{\text{изг}}}{\sigma_{\text{изг}}^{\text{доп}}}} \end{aligned}$	МПа	
48	Угол направления аб- солютной скорости по- тока <i>c</i> ₂ на выходе из рабочей решетки	α2	$tg\alpha_2 = \frac{\sin\beta_2}{\cos\beta_2 - \frac{u}{\omega_2}}$	град	
49	Абсолютная скорость потока за решеткой	<i>c</i> ₂	$\omega_2 \frac{\sin\beta_2}{\sin\alpha_2}$	м/с	
50	Потеря энергии рабо- чей решетки	ΔH_2	$(1-\psi^2)\cdot\frac{\omega_{2t}^2}{2000}$	кДж/кг	
51	Энергия выходной скорости	$H_{\rm BC}$	$\frac{c_2^2}{2000}$	кДж/кг	
52	Энергия выходной ско- рости, используемая в следующей ступени	$\chi H_{\rm BC}$	Значения χ = 1, по рекомендациям 4.4.1	кДж/кг	
53	Располагаемая энергия ступени с учетом ис- пользования части энергии выходной ско- рости в следующей ступени	E_0	$\chi_0 H_{\rm BC}^{\rm II} + H_0 - \chi H_{\rm BC} =$ $= \overline{H}_0 - \chi H_{\rm BC}$ $\chi_0 \cong \chi$	кДж/кг	
54	Относительный лопа- точный КПД ступени	η _{οл}	$\frac{\frac{E_0 - \Delta H_1 - \Delta H_2 - (1 - \chi)H_{BC}}{E_0}}{\mu}$ $\frac{u(c_1 \cos \alpha_1 + c_2 \cos \alpha_2)}{E_0 \cdot 10^3}$		

Продолжение табл. ПЗ.3

1	2	3	4	5	6
55	Относительная вели- чина потери от утечки пара через диафрагмен- ное уплотнение	ξ _{1y}	$\frac{\mu_{1y} \cdot F_{1y}}{\mu_1 \cdot F_1 \sqrt{z_{1y}}} \cdot \eta_{\text{on}}$		
56	Число гребешков диа- фрагменного уплот- нения	Z_{1y}	Принимается от 4÷16		
57	Диаметр диафрагмен- ного уплотнения	d_{1y}	Принимается по ана- логии с подобными конструкциями тур- бин	М	
58	Радиальный зазор уплотнения	δ_{1y}	$\delta_{1y} = 0,001d_{1y}$	М	
59	Площадь кольцевого уплотнения	F_{1y}	$\pi \cdot d_{1y} \cdot \delta_{1y}$	м ²	
60	Коэффициент расхода в зазоре диафрагмен- ного уплотнения	μ_{1y}	$\Delta \cong (0,3\div 1)\delta_{1y}$		
61	Относительная величи- на потери от перетека- ния пара через пери- ферийный зазор над лопатками	ξ _{2y}	$\frac{\frac{\mu_{2y} \cdot F_{2y}}{\mu_1 \cdot F_1 \sqrt{z_{2y}}} \cdot \eta_{\text{ол}}}{\frac{\mu_{1x}}{\mu_1 \cdot F_1 \sqrt{z_{2y}}}} \frac{\eta_{1x}}{\mu_1 \mu_2}$		см. п. 4.4.3
62	Число гребешков над- бандажного уплотне- ния	Z_{2y}	Принимается 2÷4		
63	Периферийный диа- метр ступени	d_{2y}	$d + l_2$	М	
64	Величина зазора над- бандажного уплотне- ния или зазора над лопатками, не имею- щими бандажа	δ _{2y}	(0,001÷0,0015) <i>d</i> _{2<i>y</i>} см. 4.4.3	М	
65	Площадь кольцевого зазора уплотнения	F_{2y}	$\pi(d+l_2)\delta_{2y}$	M ²	

Окончание табл. ПЗ.3

1	2	3	4	5	6
66	Относительная вели- чина потери на трение	ξ_{TP}	$K_{\rm Tp} \cdot \frac{(d)^2}{F_1} \cdot \left(\frac{u}{c_{\phi}}\right)^3$ $K_{\rm TD} = (0.45 \div 0.8) 10^{-3}$		
67	Начальная и конечная степень сухости пара при изоэнтропийном истечении	$\begin{array}{c} x_0 \\ x_2 \end{array}$	По <i>h,s</i> -диаграмме		
68	Начальная и конечная степень влажности пара	У0 У2	$y_0 = 1 - x_0$ $y_2 = 1 - x_2$		
69	Относительная потеря от влажности	$\xi_{\rm BJ}$	$a \frac{y_0 + y_2}{2},$ где $a = 0,4 \div 0,9$ см. 3.4.2.		
70	Внутренний относи- тельный кпд ступени	η _{oi}	$\eta_{\text{ол}} - \xi_{1y} - \xi_{2y} - \xi_{\text{тр}} - $ $-\xi_{\text{вл}}$		
71	Внутренний тепловой перепад ступени	H_i	$\overline{H}_0 \cdot \eta_{oi}$	кДж/кг	
72	Внутренняя мощность ступени	N _i	$G \cdot H_i$	кВт	
	Тур	бина (ц	илиндр) в целом		
73	Внутренняя мощность регулирующей ступени	N^{PC}		кВт	
74	Внутренняя мощность нерегулируемых сту- пеней	$\sum_{1}^{Z} N_i$		кВт	
75	Внутренняя мощность турбины	N_i	$N^{\text{PC}} + \sum_{1}^{z} N_i$	кВт	
76	Внутренний относи- тельный КПД турбины	η_{oi}^{T}	$\frac{N_i}{G \cdot H_0}$		

<u>Примечание</u>. При расчете ЦВД характеристики ступеней отдельного отсека или цилиндра в целом мало отличается, поэтому

$$N_i^{\text{IIBJI}} = N^{\text{PC}} + \sum_{1}^{Z} N_i, \quad \sum_{1}^{Z} N_i = G \cdot z \cdot H_i, \quad H_i = \frac{H_i^I + H_i^z}{2}.$$

 $H_i^{\rm I}$, H_i^z – внутренние тепловые перепады первой и последней ступеней цилиндра (отсека).

При двух отсеках

$$N_i^{\mathrm{IIBJI}} = N_i^{\mathrm{PC}} + \sum_{\mathrm{I}}^{Z} N_i^{\mathrm{I}} + \sum_{\mathrm{I}}^{Z} N_i^{\mathrm{II}}.$$

4. Построение проточной части

Совокупность сопловых и рабочих решеток образует проточную часть турбины.

Построение проточной части производится по ее основным размерам, полученным в тепловом расчете: диаметру ступеней, высоте и ширине решеток (d, d_{κ} , l_1 , l_2 , B_1 , B_2) с учетом зазоров между неподвижными и подвижными элементами. Такое построение продольного разреза проточной части ЦВД, состоящей из двух отсеков, расположенных противотоком.

На рис. 4.2 показан продольный разрез такого ЦВД с условным изображением концевых и диафрагменных уплотнений и упрощенным изображением лопаточного аппарата. Условно или упрощенно показанные узлы выполняются отдельно с подробным изображением всех деталей в увеличенном масштабе.

Величина зазоров по оси турбины между выходными кромками сопловых решеток и входными кромками рабочих решеток (зазор Б), выходными кромками рабочих и входными сопловых (зазор Γ) зависит в основном от области давления, для которой предназначена ступень.

Для ступеней области высокого давления $B = 1,5 \div 2,5$ мм, $\Gamma = 3 \div 4,5$ мм.

Для ступеней области среднего давления $Б = 2,5 \div 4,5$ мм, $\Gamma = 5 \div 8$ мм.

Для ступеней области низкого давления $B = 5 \div 8$ мм, $\Gamma = 10 \div 18$ мм.

Величина зазоров от первой к последней ступени должна изменяться плавно.

При вычерчивании проточной части ЦВД турбин величину зазоров в принятом масштабе обычно воспроизвести технически сложно, поэтому допускается их изображение в натуральную величину.

ПРИЛОЖЕНИЕ 4

СВОДНЫЕ ТАБЛИЦЫ РЕЖИМОВ РАБОТЫ И ТЕПЛОВОГО РАСЧЕТА ТУРБИНЫ IIТ-60-12,75/1,27

Таблица П4.1

Ņ,
Ĵ,
2
5
сï,
0
Ŷ
E
10
Ξ
Ĭ.
S.
7
E
Ę
E
ŏ
Ja
~
ö
Σ
Ц
Ř
ď
b
Ξ
П
6
g
Ē
as
ΗÌ
70
ğ
\odot

		Внутр	MOIII-	HOCTE		N_i	ĸВт	12		4500	2180	2200	2240	2200	2030	2080	2180	2310	2245
		Относ	RHVTD	кпл	Mini	η_{oi}	Ι	11		0,640	0,729	0,751	0,762	0,721	0,780	0,791	0,797	0,800	0,806
	ій режим	Степень	реак-	ТИВНО-	сти	σ	%	10		10,0	11,0	12,0	12,6	14,2	16,5	16,8	16,6	15,6	16,3
	Расчетны	OTHO-	шение	скоро-	стей	u/c_0	I	6		0,252	0,478	0,485	0,485	0,494	0,524	0,522	0,513	0,499	0,503
		Адиа-	бат.	тепло-	перед.	$H_{ m a_{II}}$	ккал/кг	8		22,8	9,05	8,84	8,90	8,65	7,82	7,96	8,28	8,77	8,70
			Темпе-	ратура		t_2	°C	7	3Д	530	511	497	482	468	454	440	425	410	393
I			Давле-	ние		P_2	ата	9	Π	95,0	85,2	76,28	68,47	61, 14	55,9	49,7	44,31	39,2	34,58
I	IM		Расход	пара		G_T	h/L	5		293,0	284,0	284,0	284,0	284,0	284,0	284,0	284,0	284,0	275,5
	ный режи		Темпе-	ратура		$t_{2_{\mathrm{M}}}$	J.	4		537	534	528	524	202	491	476	460	446	423
	аксималь	Лавле-	HIMP CTV-		NIGHAL	$P_{2_{\mathrm{M}}}$	ата	3		102	L'L6	92,8	2'88	0'8/	70,4	63,1	56,3	48,0	42,6
	M		Расход	пара		$G_{\scriptscriptstyle M}$	h/L	2		370,0	357,5	357,5	357,5	357,5	357,5	357,5	357,5	357,5	346,8
		i	CTy-	пень				1		1	2	3	4	5	9	7	8	6	10
	_		_	_	-		_	_	-		_	_	_	_	_	_	_	_	_

П4.
габл.
ние 1
нча
OKC

12	2350	2360	2440	2191	2230	2260	2397		N_i	ĸВт	1730	1965	1990	2000	2280	2020	1986	2040	1350		3100	2950	3130	3750
11	0,809	0,814	0,818	0,828	0,833	0,847	0,837		η_{oi}	I	0,56	0,792	0,819	0,826	0,828	0,840	0,847	0,846	0,842		0,82	0,743	0,741	0,68
10	15,4	20,2	19,3	21,5	20,5	26,4	24,5		β	%	29	21,4	22,5	23,0	22,2	27,2	31,7	36,7	43,0		0,45	47,8	42,1	53,6
6	0,495	0,505	0,495	0,513	0,515	0,518	0,508		u/c_0	I	0,73	530	541	544	576	536	552	562	0,600		0,42	0,51	0,54	0,56
8	9,07	8,82	9,31	8,75	8,84	8,91	9,75		$H_{ m a_{II}}$	ккал/кг	6,7	12,6	12,34	12,53	14,25	13,55	13,19	13,57	12,99		29,8	25,06	28,4	37,24
7	377	361	344	328	311	294	276	Ц Ц	t_2	°C	273	248	226	203	176	150	125	x = 0,99	0,997	Ц	0,918	0,931	0,905	0,873
9	30,5	26,88	23,33	20,37	17,58	15,22	13,00)h	P_2	ата	11,0	8,8	6,98	5,48	4,13	3,10	2,3	1,26	1,20	łh	0,768	0,386	0,167	0,050
5	275,5	2,275,5	2,275,5	250,5	250,5	250,5	250,5		G_T	h/L	170	168,5	-	166,1	-	152,4	-	-	-		137,5	137,5	127	127
4	412	390	370	358	337	320	302		$t_{2_{\rm M}}$	J.	327	302	276	252	223	195	166	135	x = 0,995		x	x	x	x
3	37,6	33,1	28,4	24,9	21,6	18,6	16,0		$P_{2_{\mathrm{M}}}$	ата	13,25	11,0	8,82	06'9	5,72	3,79	2,75	1,58	1,20		0'8'0	3,93	0,170	0,054
2	346,8	346,8	346,8	314,8	314,8	314,8	314,8		$G_{\scriptscriptstyle \mathrm{M}}$	h/T	213,0	211,0	Ι	Ι	Ι	191,0	Ι	Ι	Ι		145	Ι	130	I
1	11	12	13	14	15	16	17				18	19	20	21	22	23	24	25	26		27	28	29	30

Таблица П4.2

5
-1
Ś
۲,
2
-
ö
Q
르
\Box
H
7
単
H
12
ď
5
H
а
E
E.
5
ğ
d
0
Ē
0
Ë
H
Ξ
Ð
E
ъ
Ĥ
И
.5
Q
Ц
5
a,
H
Ħ
B
2
\cup

~

		-	-		·				·		_		_		_	
Про- ходн. пло- щадь	$F_{_{\!M}}$	cm^2			13	204,0	225,2	246,2	267,3	297,6	341,4	367,0	395,0	422,0	454,0	492,0
Высота лопа- ток	I^{rr}	WW			12	22,0	28,5	31,0	33,5	37,0	42,0	45,0	48,0	51,0	54,5	58,5
Сред- ний диа- метр	$D_{ m cp}$	WW	лопатки		11	1100	5'8£8	841,0	843,5	847,5	854,0	855,0	828,0	861,0	864,5	868,5
Число лопа- ток	Z_2	Ι	Рабочие		10	130	126	126	126	126	126	126	126	126	126	126
Синус вы- ходн. угла	$Sin\beta_{29\varphi}$	Ι			6	0,4000	0,3000	0,3007	0,3011	0,3023	0,3038	0,3045	0,3055	0,3061	0,3071	0,3080
Про- филь лопат- ки	$\mathcal{N}_{\underline{0}}$	Ι		ЯД	8	1136	1092	1092	1092	1092	1092	1092	1092	1092	1092	1092
Про- ходн. пло- щадь	F_c	cm^2		IÌI	7	113,7	124,7	137,4	150,3	168,9	195,8	212,0	228,0	244,5	264,0	286,5
Высота сопла	l_c	MM	ГКИ		9	19,0	25,5	28,1	30,5	34,0	39,0	42,0	45,0	48,0	51,5	55,5
Сред- ний диа- метр	$D_{ m cp}$	WW	цие лопал		5	1100	837,5	840,0	842,5	846,0	853,0	854,0	857,0	860,0	863,5	867,5
Число сопел	Z_1	-	правляют		4	56	40	40	40	40	40	40	40	40	40	40
Синус вы- ходн. угла	$Sin\alpha_{1 \Im \varphi}$	Ι	Hai		з	0,285	0,1958	0,1850	0,1862	0,1868	0,1875	0,1880	0,1824	0,1890	0,1891	0,1893
Про- филь сопла	M_{0}	I			2	2353	2324	2324	2324	2324	2324	2324	2324	2324	2324	2324
Ę	j Ÿ				1	1	2	З	4	5	9	7	8	6	10	11

Продолжение табл. П4.2

13	534,0	580,0	631,0	711,5	784,0	850,0		$F_{_{ m JI}}$	cm^2	704,5	715,0	850,0	1010	1175	1352	1688	2130	2293
12	63,0	67,5	73,0	81,0	91,5	98,5		$l_{ m _{J}}$	ММ	63,0	66,0	77,0	89,5	102,0	115,0	142,5	178,5	231,0
11	873,0	872,5	883,0	891,0	901,5	908,5		$D_{ m cp}$	MM	1100	1096	1167	1119	1132	1145	1172	1208	1261
10	126	126	126	126	138	138		Z_2	I	120	154	154	154	154	168	168	126	126
6	0,3092	0,3112	0,3112	0,3140	0,2950	0,3021		$Sin\beta_{29\varphi}$	I	0,473	0,316	0,318	0,321	0,324	0,326	0,321	0,315	0,305
8	1092	1092	1092	1092	1128	1128	Т	M_{0}	Ι	1078	1092	1092	1092	1092	1131	1131	1132	1132
7	328,7	365,3	391,2	435,1	504,0	550,0	Эh	F_c	cm^2	520	430	575	613	719	866	1148	1490	2100
9	60,0	64,5	70,0	78,0	88,5	95,5		l_c	ММ	60,0	63,0	74,0	83,5	0,66	112,0	138,2	174,0	226,0
5	872,0	876,5	882,0	890,0	900,5	907,5		$D_{ m cp}$	ММ	1105,0	1095,0	1106,0	1118,5	1131,0	1144,0	1172,0	1208,0	1261,0
4	38	38	38	38	38	38		Z_1	Ι	72	56	56	56	56	70	68	56	40
ς	0,2000	0,2010	0,2017	0,1994	0,2011	0,2020		$Sin\alpha_{1 \Im \varphi}$	I	0,3070	0,1990	0,2000	0,2020	0,2030	0,2150	0,2200	0,2250	0,2350
7	2324	2324	2324	2324	2324	2324		$M_{\underline{0}}$	Ι	3346	2333	2333	2333	2333	2341	2341	2339	2347
-	12	13	14	15	16	17	(ا خ 5	ļ	18	19	20	21	22	23	24	25	26

Окончание табл. П4.2

13		2650	4710	0166	22130
12		150,0	313,0	432,0	665,0
11		1335	1488	1578	2000
10		120	120	94	112
6		0,341	0,323	0,400	0,530
8	Ц	1130	1146	1147	745
7	Hh	1565	3320	5400	11730
9		129,6	308,0	426,0	558,0
5		1335,0	1487,0	1677,0	1990,0
4		40	09	70	62
ς		0,2064	0,2305	0,2405	0,3835
2		2348	2335	2354	2190
1		27	28	29	30

= 13 ата $H_0^{\text{инл}} = 735 \frac{\text{ККал}}{\text{кг}}$. Максимальный расход через клапаны ЧСД имеет место при $P_0 = 16$ ата Расчетный режим ЧСД соответствует максимальному пропуску пара через клапаны ЦНД при $P_0^{\rm инл} =$

и всех полностью открытых клапанах.

Примечание: Расчетный режим ЦВД соответствует мощности N₃ = 50 000 кВт, G_{пр} = 115 т/ч, $G_{\text{Tenn}} = 86 \text{ T/H}, P_2^{\text{UBA}} = 13 \text{ ata.}$ приложение 5

Таблица П5.1

Сводная таблица теплового расчета турбины Т-110/120-12,75

Ŭ.		060-	Ē			Η	lomepa c	тупенеі	Į			
	Наименование	зна-	том				IIB	Ц				
11/11		чение	ИЗМ.	2-венечная	2	3	4	5	9	7	8	6
1	2	3	4	5	9	7	8	6	10	11	12	13
1	Расход пара через ступень	G	H/T	483,1	479,0	479,0	479,0	479	479	479	479	479
7	Параметры па-	P_0	ата	125,5	85,5	76,7	69,55	62,8	56,15	50,0	44,25	38,8
3	ра перед сту- пенью	$t_0(x_0)$	Э°	554	504	490	475	451	446	430	413	397
4	Располагаемый теплоперепад	$h_{\mathrm{a}_{\mathrm{II}}}$	ккал/кг	31,5	8,16	7,77	7,70	7,98	8,33	8,50	8,93	8,93
5	Степень реак- тивности	β	%	Ι	13,2	15,0	15,4	15,3	15,3	16,5	16,8	17,2
9	Отношение скоростей	u/C_0	I	0,290	0,506	0,512	0,517	0,512	0,500	0,498	0,490	0,491
٢	Лопаточный КПД ступени	η_{on}	Ι	Ι	0,844	0,845	0,844	0,845	0,844	0,843	0,841	0,840
8	Относитель- ный внутрен- ний КПД	η_{oi}	I	0,622	0,777	0,808	0,812	0,816	0,820	0,822	0,823	0,830
6	Внутренняя мощность	N_i	kВт	I	3540	3500	3480	3630	3810	3900	4100	4130

Продолжение табл. П5.1

12 13	40 40	715	c,1/ co	c,11/ C0 867 873	867 873 0,228 0,225	00 1,1,5 867 873 0,228 0,225 403,4 448	60 7,1,5 867 873 867 873 9,228 0,225 403,4 448 164 136	60 7,1,5 867 873 867 873 867 873 9,228 0,225 9,228 0,225 403,4 448 164 136 68,5 75	00 1,1,0 867 873 867 873 0,228 0,225 1,228 0,225 403,4 448 164 136 68,5 75 868,5 87,5	60 1,1,5 867 873 867 873 9,228 0,225 403,4 448 164 136 68,5 75 868,5 87,5 0,361 0,38	
	40	61		863	863 8 0,227 0	863 8 863 8 0,227 0 376 4	863 8 863 8 0,227 0 376 4 164	863 863 863 863 863 863 863 863 863 863	863 863 863 863 863 863 864,5 8664,5 8664,5 8666,5 8666,5 8666,5 8666,5 8666,5 8666,5 8666,5 8666,5 8666,5 8666,5 8666,5 8666,5 86666,5 8666,5 8666,5 8666,5 8666666,5 8666,5 8666,5 8666666,5 8666,5 8666,5 86666666,5 86666666666	863 863 863 863 0,227 0 376 4 164 164 64,5 6 864,5 8 0,360 0	
•	40	57		859	859 0,2205	859 8,205 0,2205 339	859 859 0,2205 339 164	859 859 0,2205 339 164 164 50,5	859 859 0,2205 339 164 164 50,5 860,5	859 859 0,2205 339 164 164 50,5 860,5 0,3595	
`	40	53,5		855,5	855,5	855,5 855,5 9,220 316	855,5 80,220 316 164	855,5 855,5 316 316 164 57	855,5 855,5 816 316 164 164 57 857	855,5 855,5 0,220 316 164 164 857 857 857	
T	40	50		852	852 0,2195	852 0,2195 293,5	852 852 0,2195 293,5 164	852 852 0,2195 293,5 164 164	852 852 0,2195 293,5 164 164 853,5 853,5	852 852 0,2195 293,5 164 164 853,5 853,5 0,3575	
`	40	46		848	848 0,219	848 848 0,219 268	848 848 0,219 268 164	848 848 0,219 268 164 49,5	848 848 0,219 268 164 164 49,5 849,5	848 848 0,219 268 164 164 49,5 849,5 0,357	
•	40	42		844	844 0,2185	844 8,2185 2,43	844 0,2185 243 164	844 844 0,2185 243 243 164 164 45,5	844 844 0,2185 243 243 164 164 45,5 845,5	844 844 0,2185 243 243 164 164 45,5 845,5 0,356	
0	140	31		952	952 0,4125	952 0,4125 -	952 0,4125 - 104	952 0,4125 - 104 35,0	952 0,4125 - 104 35,0 953	952 0,4125 - 104 35,0 953 0,539	
	52	21,5		950	950 0,2393	950 0,2393	950 0,2393 - 104	950 0,2393 - 104 26,5	950 0,2393 0,2393 0,2393 0,2393 26,5 26,5 951	950 0,2393 - 104 104 26,5 951 0,295	
٢		MM		MM	MM	MM - cM ²	MM - CM ²	MM - CM ² - MM	MM CM ² MM MM	MM - CM ² - MM MM	
	Z_1	l_1		D_1	D_1 sin $\alpha_{1\Im}$	D_1 sin α_{13} F_1	$\begin{array}{c} D_1\\ Sin\alpha_{13}\\ F_1\\ F_2\\ Z_2\end{array}$	$\begin{array}{c c} D_1 \\ Sin\alpha_{13} \\ F_1 \\ F_2 \\ Z_2 \\ l_2 \end{array}$	D_1 E_1 F_1 F_1 L_2 D_2	D_1 E_1 E_1 E_2 D_2 D_2 sin β_{23}	
4	Число сопло- вых лопаток	Высота сопло- вых лопаток		Средний диа- метр диафраг- мы	Средний диа- метр диафраг- мы Sin эффектив. угла выхода	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- щадь сопловой решетки	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- щадь сопловой решетки число рабочих лопаток	Средний диа- метр диафраг- мы Sin эффектив. Угла выхода Выходная пло- щадь сопловой решетки Число рабочих лопаток Высота рабо- чих лопаток	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- щадь сопловой цадь сопловой решетки Число рабочих лопаток Высота рабо- чих лопаток Средний диа- метр колеса	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- цадь сопловой решетки Число рабочих лопаток Высота рабо- чих лопаток Средний диа- метр колеса Sin эффект. угла выхода	
T	$10 \frac{1}{E}$	$11 \frac{1}{E}$)	12	12 N 13 5 1	12 N 13 13 14 1 14 1 14 1	$\begin{array}{c c} 12 \\ \hline 12 \\ \hline 13 \\ 14 \\ 14 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15$	12 N 13 S 13 S 14 1 14 1 15 1 15 1 16 1 16 1	$\begin{array}{c c} 12 \\ 12 \\ 13 \\ 13 \\ 12 \\ 11 \\ 11 \\ 11 \\$	12 N 13 S 13 S 14 1 14 1 14 1 15 J 16 L 17 C 17 C 17 C 17 C 17 C 17 C 17 C 17 C	
	060-	ц Ц				Home	ера ступе	еней			
-------	--------------------------------	-------------------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------	---------------
3	на-	- H-H-H					ЧСД				
че	ние	ИЗМ.	10	11	12	13	14	15	16	17	18
	3	4	5	9	L	8	6	10	11	12	13
	G	\mathbf{h}/\mathbf{I}	455	452	425	425	425	406	406	406	396
,	P_0	ата	33,0	27,85	23,4	19,4	15,5	12,4	9,75	7,69	5,83
t_0	(x_0)	Ъ°	379	357	336	315	290	265	240	215	190
	$h_{\mathrm{a}_{\mathrm{II}}}$	ккал/кг	11,61	11,39	11,36	13,37	12,92	13,31	12,60	13,99	16,20
	β	%	16,45	16,45	16,7	17,2	18,5	22,6	25,2	26,9	27,9
1	l/C_0	Ι	0,537	0,537	0,542	0,503	0,515	0,522	0,542	0,523	0,516
-	ηол	Ι	0,8475	0,848	0,847	0,844	0,845	0,849	0,850	0,846	0,848
	η _{οί}	I	0,795	0,8295	0,817	0,828	0,842	0,843	0,855	0,850	0,838
	N_i	кВт	4880	4970	4660	5470	5375	5245	5100	5620	6255
	Ne		ст- 157469	ст- 169505	ст- 159460						

12 13	46 72		156 178	156 178 1159 1221	156 178 1159 1221 0,232 0,229	156 178 1159 1221 0,232 0,229 1319 1565	156 178 1159 1221 0,232 0,229 1319 1565 128 134	156 178 1159 1221 1159 1221 0,232 0,229 1319 1565 128 134 128 134 160 182	156 178 1159 1221 1159 1221 0,232 0,229 1319 1565 1319 1565 1319 1565 1319 1565 1319 1565 1319 1565 1128 134 160 182 1160 1222	156 178 1159 1221 1159 1221 0,232 0,229 1319 1565 1319 1565 128 134 128 134 160 182 1160 1222 0,348 0,344
11	50		136	136	136 1138 1138 10,229	136 1138 0,229 1115	136 1138 0,229 1115 128	136 1138 0,229 1115 128 140	136 1138 0,229 1115 1115 128 140 1140	136 1138 1138 1138 1115 1115 128 128 140 1140 1140 1350
10) 50		5 114	5 114 9,5 1116	5 114 3,5 1116 26 0,225	5 114 3,5 1116 26 0,225 28 900	5 114 3,5 1116 26 0,225 ,8 900 6 166	5 114 3,5 1116 26 0,225 8 900 6 166 6 166	5 114 3,5 1116 26 0,225 6 0,225 6 166 6 166 1,5 1117 1,5 1118	5 114 3,5 1116 26 0,225 ,8 900 ,6 166 ,5 117 1,5 1118 1,5 1118 1,5 1118 38 0,350
<u>د</u>	0 50	2 0 0 2	0,1 V.	., ⁷ , ⁷ , ¹ , ¹	2, 7 2, 7, 7 84 1099 225 0,22	8,3 762, 71, 70, 71, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70	84 1099 8.3 762, 56 166	84 1099. 84 1099. 225 0,22 8,3 762, 8,3 762, 56 166	5,0 7 / 3,0 84 1099 225 0,22 8,3 762, 56 166 5,5 101, \$5,5 1101	5,0 7 / 3,0 84 1099 225 0,22 8,3 762, 56 166 5,5 101, 35,5 1101 35,5 1101 866 0,366
R	50 50	17,5 82		79,5 108	,217 0,2	79,5 108 ,217 0,2 ,564 528	79,5 108 ,217 0,2 564 528 166 16	79,5 108 ,217 0,2 ,564 528 166 16 81 85	79,5 108 79,5 108 ,217 0,2 ,564 528 166 16 81 85 081 108	79,5 108 79,5 108 ,217 0,2 564 528 166 16 166 16 81 85 081 108 081 108 364 0,3
9	50	70,5 7		1072,5 10	1072,5 10 0,217 0	1072,5 10 0,217 0, 515 ;	1072,5 10 0,217 0, 515 2 166 2	1072,5 10 0,217 0, 515 4 166 1 74 1	1072,5 10 0,217 0, 0,215 5 515 5 166 1 74 1	1072,5 10 0,217 0, 515 5 166 1 74 1 1074 1 0,363 0
S	60	62,5		1064,5 1	0,216	1064,5 1 0,216 451	1064,5 1 0,216 451 451 166	1064,5 1 0,216 - 451 - 451 - 166 - 56,0	1064,5 1 0,216 - 451 166 56,0 1066 10	1064,5 1 0,216 4 451 451 166 56,0 56,0 1066 0,362 0,362
4		MM		MM	WW –		MM 	MM MM	MM CM ² CM ² MM	MM CM ² CM ² MM MM
e	Z_1	l_1		D_1	D_1 sin α_{1_3}	$\frac{D_1}{\sin \alpha_{1_3}}$	D_1 $\sin lpha_{1_3}$ F_1 Z_2	D_1 $sin \alpha_{1_3}$ F_1 Z_2 l_2	D_1 F_1 F_1 Z_2 L_2 D_2	D_1 E_1 E_1 E_2 L_2 D_2 sin β_{2_3}
7	Число сопло- вых лопаток	Высота сопло- вых лопаток		Средний диа- метр диафраг- мы	Средний диа- метр диафраг- мы Sin эффектив. угла выхода	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- цадь сопловой решетки	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- щадь сопловой решетки Число рабочих лопаток	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- щадь сопловой решетки Число рабочих лопаток Высота рабо- чих лопаток	Средний диа- метр диафраг- мы Sin эффектив. угла выхода Выходная пло- щадь сопловой решетки Число рабочих лопаток Высота рабо- чих лопаток Средний диа- метр колеса	Средний диа- мы мы мы мы Sin эффектив. Уілта выходаа Выходная плю- щадь сопловой решетки Число рабочих лопаток Высота рабо- чих лопаток Средний диа- метр колеса Sin эффект. Угла выхода
-	11 E	$12 \frac{1}{E}$) (;		$\frac{15}{14}$	13 14 14 2 15 1 15 1 15 1 15 1	13 n 15 n	13 13 13 13 13 13 13 13 13 13 13 13 13 1	13 13 14 15 14 15 14 15 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	13 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15

				3	5		-	C	8	5	10	
	ΪН	25	145	0,213	0,91;	41,1	83,9	0,50(0,678	0,622	4315	70
	ſΠ	24	145	0,548	0,945	32,73	44,7	0,523	0,816	0,738	4080	50
зней	0	23	356	1,245	0,959	33,96	64,5	0,441	0,720	0,689	9690	58
ера ступе	Ш	22	356	2,08	0,981	20,9	41,2	0,538	0,8245	0,784	6785	56
Ном		21	360,5	1,85	0,975	43,07	61,7	0,371	0,673	0,638	11530	56
	ЧСД	20	360,5	2,90	0,995	19,07	31,4	0,526	0,8305	0,811	6485	64
		19	396	4,16	159	16,25	29,0	0,535	0,835	0,845	63,20	60
Ļ	ЕД. ИЗМ.		h/T	ата	°C	ккал/кг	%	Ι	Ι	Ι	кВт	
	Ооозна- чение		G	P_0	$t_0(x_0)$	$h_{\mathrm{a}\mathrm{A}}$	d	u/C_0	пoл	η_{oi}	N_i	Z_1
	Наименование		Расход пара через ступень	Параметры пара	перед ступенью	Располагаемый теплоперепад	Степень реактив- ности	Отношение ско- ростей	Лопаточный КПД ступени	Относительный внутренний КПД	Внутренняя мощность	Число сопловых лопаток
J.	л <u>е</u> П/П		1	2	3	4	5	9	7	8	6	10
						мижэ	d инн	ואפזואו	лэяв	I		

Окончание табл. П5.1

	ДНД	25	544)	1914	0.230	0000		10585		94		505	1915	0,520		17180	
	Ι	24	354		1743	0 200	040,0		4580		128		360	1744	0,395		7660	
еней	0	23	69E	100	1524	0 2075	<i>ciuc</i> ,u		5370		98		375	1525	0,398		7020	
ера ступе	II	22	627	1	1434	VLCO	0,4/4		3445		116		285	1435	0,387		4880	
Ном		21	675	í.	1434	22000	0,002,0		3580		86		285	1435	0,410		5240	
	ЦОН	20	227		1351	0.750	4C7,0		2495		112		232	1352	0,3965		3865	
		19	195	2/1	1279	1960	107,0		2048		112		200	2180	0,394		3141	
*11	ЕД. ИЗМ	.INICIA	MM		ММ		I		cm^2		-		ММ	WМ			cm^2	
06 20000	О003На- чение		I_i	*1	D_1	dino.	sund ₁₃		F_1		Z_2		l_2	D_2	$sin\beta_{23}$		F_2	
	Наименование		Высота сопловых	лопаток	Средний диаметр пиафратмы	Sin эффективного	угла выхода	Выходная пло-	щадь сопловой	решетки	Число рабочих	JUILATOK	Высота рабочих лопаток	Средний диаметр колеса	Sin эффект. угла выхода	Выходная пло-	щадь рабочей	
N _c	<u>а</u> мг		11		12	12	C1		14		15		16	17	18		19	
													атки	поп э	иноде	ď		

приложение 6

Таблица П6.1

Сводная таблица теплового расчета турбины Т-250/300-23,5

ų. M	Наименование	We-) L				ЦГ	3Д			
<u>п/п</u>	OCHOBHLIX	у сл. обозн.	ЕД. ИЗМ.			Ном	ера ступе	зней турб	ИНЫ		
	параметров			1	2	3	4	5	9	7	8
1	2	3	4	5	9	7	8	6	10	11	12
1	Расход пара через ступень	в	KU/C	248,4	244,7	244,7	244,7	244,7	244,7	244,9	244,9
2	Параметры пара	P_1	$k\Gamma/cM^2$	228	187	164,8	146,6	130,5	115,9	102,3	88,8
3	перед ступенью	$t_i(x_i)$	J.	556	526	508,5	491	473	456	438	417,5
4	Адиабатический теплоперепад	$h_{ m all}$	ккал <u>/</u> кг	16	8,7	8,5	8,5	8,5	8,5	6'6	9,6
5	Реакция ступени	σ	0%	Ι	14,15	14,8	15,6	16,3	17,1	16,25	17,45
9	Характеристика ступени	u/c_0	Ι	0,421	0,400	0,492	0,495	0,496	0,500	0,503	0,508
7	Относ. внутрен. КПД	μ	Ι	0,667	0,785	0,807	0,811	0,8165	0,820	0,796	0,823
8	Число сопловых лопаток	Z_1	Ι	65	78	78	78	78	78	32	32
6	Высота сопло- вых лопаток	l_1	ММ	22	39	42,5	47	51	56,5	55,5	62

12	929	0,190	343,5	102	65,5	930,5	0,305	583,5
11	922,5	0,189	304	102	59	924	0,3035	519,5
10	858,5	0,191	291	128	60	860	0,301	487,5
6	853	0,1905	260	128	54,5	854,5	0,2995	438
8	849	0,1895	237,5	128	50,5	850,5	0,2985	402,5
7	844,5	0,189	213	128	46	846	0,2975	863,5
9	842	0,185	195,0	128	42,5	842,5	0,2985	
5	1100	0,240	152,2	108	25	1100	0,363	313,4
4	WМ	Ι	cm^2	-	Η	WW	Η	cm^2
3	D_1	$sin \alpha_{13\varphi}$	F_1	Z_2	l_2	D_2	$sin\beta_{29\varphi}$	F_2
2	Средний диа- метр диафрагм	Синус угла вы- хода	Выходная пло- щадь	Число лопаток на колесе	Высота рабочих лопаток	Средний диа- метр колеса	Синус угла вы- хода	Выходная пло- щадь
1	10	11	12	13	14	15	16	17

, V	Наименование	11	ļ		th	3Д			ЦC	Д-1	
ц П/П	OCHOBHЫX	у сл. обозн.	ЕД. ИЗМ.			Ном	ера ступе	зней турб	ины		
	параметров			6	10	11	12	13	14	15	16
1	2	3	4	5	9	L	8	6	10	11	12
1	Расход пара че- рез ступень	Э	KU/C	244,9	244,9	232,4	232,4	208,0	20,8	173,9	173,9
2	Параметры пара	P_1	$k\Gamma/cM^2$	75,8	66,2	56,8	47,5	36	28,2	24,05	20,35
3	перед ступенью	$t_i(x_i)$	J.	398	377,5	357,5	337,5	565	528	505	481,5
4	Адиабатический теплоперепад	$h_{ m a \pi}$	ккал/кг	9,6	9,7	9,7	9,7	21,4	13,5	13,7	13,7
5	Реакция ступени	φ	%	19,55	19,75	20,7	21,8	19,85	20,2	21,5	23,45
9	Характеристика ступени	u/c_0	Ι	0,512	0,512	0,515	0,520	10,406	0,495	0,506	0,514
7	Относ. внутрен. КПД	\mathfrak{n}_i	Ι	0,829	0,834	0,836	0,841	0,779	0,889	0,860	0,857
8	Число сопловых лопаток	Z_1	Ι	38	38	38	38	58	38	38	38
6	Высота сопло- вых лопаток	l_1	MM	67	75	80	91	86	106	114	131
10	Средний диа- метр диафрагм	D_1	MM	934	942	947	958	1095	1109	1117	1134

1	2	с	4	5	9	7	8	6	10	11	12
1	Синус угла вы- хода	$sin\alpha_{13\varphi}$	Ι	0,1995	0,200	0,201	0,202	0,239	0,266	0,241	0,242
2	Выходная пло- щадь	F_1	cm^2	392	443,5	478	553	707,5	982	963,5	1129
13	Число лопаток на колесе	Z_2	Ι	102	102	102	102	114	106	118	118
14	Высота рабочих лопаток	l_2	Ι	71	62	84	95	06	110	118	135
15	Средний диа- метр колеса	D_2	MM	936	944	949	960	1096	1110	1118	1135
16	Синус угла вы- хода	$sin\beta_{2^{3}\varphi}$	Ι	0,3065	0,3085	0,310	0,343	0,333	0,406	0,3675	0,364
17	Выходная пло- щадь	F_2	cm^2	639,5	728,5	776	12	13	14	1522,5	1751,5

N.	Наименование	Vo-	- 1			ЦС	Д-1			ЦC,	Д-2
ц/П	OCHOBHLIX	у сл. обозн.	ЕД. ИЗМ.			Ном	ера ступе	ней турб	йны		
	mapamerpub			17	18	19	20	21	22	23	24
1	2	3	4	5	9	7	8	6	10	11	12
1	Расход пара че- рез ступень	G	KL/C	164,9	164,9	164,9	160,7	160,7	160,7	94,4	94,4
7	Параметры пара	P_1	$k\Gamma/cM^2$	17,15	14,4	12,0	9,95	8,2	6,7	5,36	3,92
3	перед ступенью	$t_i(x_i)$	℃	457,5	433	408	383	358	333	311	275
4	Адиабатический теплоперепад	$h_{ m all}$	ккал <u>/</u> кг	13,7	13,7	13,7	13,7	13,7	13,7	19,1	19,3
5	Реакция ступени	σ	%	24,9	27,3	29,6	32,2	35,0	38,25	29,8	36,3
9	Характеристика ступени	u/c_0	Ι	0,620	0,528	0,537	0,646	0,559	0,575	0,548	0,550
٢	Относ. внутрен. КПД	μ	Ι	0,857	0,863	0,866	0,869	0,871	0,8745	0,841	0,856
8	Число сопловых лопаток	Z_1	Ι	38	34	56	56	48	40	62	54
6	Высота сопло- вых лопаток	l_1	ММ	141	160	183	203	231	265	187	227
10	Средний диа- метр диафрагм	D_1	MM	1144	1163	1186	1206	1234	1268	1390	1430

	2	3	4	5	9	7	8	6	10	11	12
-	Синус угла вы- хода	$sin\alpha_{13\varphi}$	I	0,245	0,246	0,252	0,256	0,263	0,265	0,215	0,226
	Выходная пло- щадь	F_1	cm^2	1241	1437,5	1721	1968	2357	2799,5	1760	2305
	Число лопаток на колесе	Z_2	Ι	118	118	118	98	86	86	152	152
	Высота рабочих лопаток	l_2	Ι	145	164	187	236	236	270	192	232
	Средний диа- метр колеса	D_2	ММ	1145	1164	1187	1236	1236	1270	1392	1432
	Синус угла вы- хода	$sin\beta_{2^3\varphi}$	I	0,362	0,358	0,354	0,345	0,345	0,339	0,320	0,307
	Выходная пло- щадь	F_2	cm^2	1887	2149	2471	3164,5	3164,5	3655,5	2685	3200

	Наименование		Ľ			ЦСД-2			IÌI	Ц
<u>п/п</u>	OCHOBHLIX HADAMATDOD	у сл. обозн.	ЕД. ИЗМ.			Номера	ступеней 1	урбины		
	шарамыров			25	26	27	28	29	30	31
1	2	3	4	5	9	L	8	6	10	11
1	Расход пара че- рез ступень	G	KT/C	91,2	91,2	45,5	45,5	73,5	69,5	69,5
2	Параметры пара	P_1	$K\Gamma/CM^2$	2,79	1,92	0,995	0,569	0,79	0,437	0,1985
3	перед ступенью	$t_i(x_i)$	Э°	239	200	143	<i>L</i> 6	147,5	96,5	0,981
4	Адиабатический теплоперепад	$h_{\mathrm{a} \mathrm{I}}$	ккал <u>/</u> кг	20,3	19,3	23,7	20,4	25,55	29,74	27,21
5	Реакция ступени	β	%	34,5	39,1	40,15	47,9	46,0	52,0	53,0
9	Характеристика ступени	u/c_0	I	0,545	0,567	0,545	0,602	0,635	0,637	0,749
7	Относ. внутрен. КПД	μ	Ι	0,860	0,8525	0,830	0,853	0,855	0,879	0,8355
8	Число сопловых лопаток	Z_1	Ι	46	56	52	62	50	62	62
6	Высота сопло- вых лопаток	l_1	MM	250	280	290	370	414	598	886
10	Средний диа- метр диафрагм	D_1	MM	1453	1483	1543	1623	1869	2054	2342

Окончание табл. П6.1

0/891011 $0,309$ $0,2425$ $0,302$ $0,289$ $0,280$ $0,348$ 4030 3415 5700 7100 10720 22090 90 110 94 94 98 92 285 295 375 420 625 920 1485 1545 1525 1870 2075 2370 $0,404$ $0,3355$ $0,386$ $0,3665$ $0,374$ $0,433$ 5370 4800 7390 8930 14160 27090	· ·	¢	Γ		ι	`	ſ	c	0	10	
0,3090,24250,3020,2890,34840303415570071001072022090901110949498922852953754206259201485154515251870207523700,4040,33550,3860,36550,3740,43353704800739089301416027090	2 3 4 2 2	3 4 S	4 د	c	_	9	/	8	у	10	11
4030341557007100107202209090110949498922852953754206259201485154515251870207523700,4040,33550,3860,36650,3740,43353704800739089301416027090	Синус угла вы- хода – 0,250	$\sin \alpha_{13\phi}$ - 0,250	- 0,250	0,250		0,309	0,2425	0,302	0,289	0,280	0,348
90110949498922852953754206259201485154515251870207523700,4040,33550,3860,36650,3740,43353704800739089301416027090	Выходная пло- F_1 $c_{\rm M}^2$ 2860 шадь	F_1 cm^2 2860	cm ² 2860	2860		4030	3415	5700	7100	10720	22090
285 295 375 420 625 920 1485 1545 1525 1870 2075 2370 0,404 0,3355 0,386 0,3665 0,374 0,433 5370 4800 7390 8930 14160 27090	Число лопаток Z2 - 142 на колесе 2 - 142	Z ₂ – 142	- 142	142		06	110	94	94	86	92
1485 1545 1525 1870 2075 2370 0,404 0,3355 0,386 0,3665 0,374 0,433 5370 4800 7390 8930 14160 27090	Высота рабочих l_2 – 255 лопаток	<i>l</i> ₂ – 255	- 255	255		285	295	375	420	625	920
0,404 0,3355 0,386 0,3665 0,374 0,433 5370 4800 7390 8930 14160 27090	Средний диа- D_2 мм 1455 метр колеса	D ₂ MM 1455	мм 1455	1455		1485	1545	1525	1870	2075	2370
5370 4800 7390 8930 14160 27090	Синус угла вы- $\sinh_{23\varphi}$ – 0,343 хода	$sin\beta_{2^{3}\varphi}$ - 0,343	- 0,343	0,343		0,404	0,3355	0,386	0,3665	0,374	0,433
	Выходная пло- F_2 c_{M} 3995 шадь	F_2 cm^2 3995	cm ² 3995	3995		5370	4800	7390	8930	14160	27090

приложение 7

ПРОДОЛЬНЫЕ РАЗРЕЗЫ ПАРОВЫХ ТУРБИН

Рис. П7.1. Продольный разрез турбины К 220-4,4/25 XT3, ОАО «Турбоатом»

Продолжение рис. П7.1

Рис. П7.4. Продольный разрез турбины К-1200-24,0/50 ЛМЗ, ПАО «Силовые машины»

ПРИЛОЖЕНИЕ 8

Таблица П8.1

Механические свойства конструкционных материалов паровых турбин

Марка стали	Механические свойства, не менее			
	σ _{0,2} , МПа	σ _в , МПа	σ _s , %	Ψ, %
20×12ВНМФШкп 60	568,4755	735	15	40
15×11МФкп 60	568,4755	755	14	50
15×11МФкп 70	666,4813,4	784	13	40
20×13Шкп 50	490675	666,4	18	50
20×13Шкп 60	568,4755	755	14	50
12×13Шкп 55	539686	686	15	50
15×11МФШкп 55				
ЭИ736Л	6883	784	13	40

Учебное издание

ПАНТЕЛЕЙ Наталья Всеволодовна НЕРЕЗЬКО Андрей Викторович

ПАРОВЫЕ ТУРБИНЫ ТЕПЛОВЫХ И АТОМНЫХ Электростанций

Пособие

для студентов специальностей 1-43 01 04 «Тепловые электрические станции» и 1-43 01 08 «Проектирование и эксплуатация атомных электрических станций»

> Редактор Е. В. Герасименко Компьютерная верстка Н. А. Школьниковой

Подписано в печать 28.07.2021. Формат 60×84 ¹/₁₆. Бумага офсетная. Ризография. Усл. печ. л. 10,00. Уч.-изд. л. 7,82. Тираж 100. Заказ 101.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/173 от 12.02.2014. Пр. Независимости, 65. 220013, г. Минск.