Методика определения наладочных параметров технологического оборудования при двухсторонней обработки линз

Козерук А.С., Кузнечик В.О., Шамкалович В.И., Каролик Е.П., Подскребкин И.В. Белорусский национальный технический университет

Получение деталей с точными исполнительными поверхностями зависит от рабочего-оптика, который в каждом случае подбирает наиболее выгодные наладочные параметры станка. Данные непроизводительные затраты времени могут быть уменьшены, если выполнить расчет величины съема припуска с обрабатываемой поверхности в зависимости от значения регулируемых параметров процесса формообразования.

За основу такого расчета принимается гипотеза Ф. Престона. На основании данной гипотезы была построена математическая модель. Выполнен расчет параметра $Q=p\cdot v$ для следующих наладочных параметров технологического оборудования: величины амплитуды L возвратно-вращательного движения инструмента, скоростей вращения детали ω_{∂} и входного звена исполнительного механизма станка ω_{2} , диаметра инструмента d_{u} .

Сущность теоретических исследований заключалась в следующем: для сферических поверхностей рассматриваемого радиуса кривизны установили известные на практике значения ω_0 , ω_2 , d_u и рассчитывали Q в точках диаметрального сечения линзы для различных значений L. Назначив L_{optim} и прежние ω_0 и ω_2 определили d_u , при котором обеспечивается одинаковый съем припуска по поверхности линзы.

Далее приняли оптимальные L и d_u , а ω_{∂} оставили прежним и провели расчет Q для различных ω_2 . Аналогично определили значение скорости вращения детали ω_{∂} . Численные исследования для плоской поверхности линзы показали, что оптимальные значения амплитуды колебательных движений второго инструмента и число его двойных ходов в минуту аналогичны первому случаю, а d_u меньше.

Следовательно, при выборе размера инструмента для получения высокоточных деталей в условиях свободного притирания необходимо учитывать не только диаметр изделия, но и радиус кривизны обрабатываемой поверхности. Проведенные экспериментальные исследования согласуются с результатами численных исследований.