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1. MEASUREMENTS 
 

One of the main tasks of any physical experiment is the measurement 
of different physical quantities. 

Physical quantity is a property of a physical object or phenomenon 
that can be quantified by measurement. 

Measurement consists in comparing the required physical quantity 
with another quantity taken as a standard or unit.   

All the measurements could be considered as either direct or indirect. 
Direct measurement occurs when you take a measurement explicitly  
of the object's characteristic you want to measure. For instance, you can 
directly measure an object length with a measuring tape, room tempe-
rature with a thermometer, electrical current with an amperemeter, or an 
object weight with a chemical balance. In contrast, indirect measurement 
occurs when you measure something else and then convert the obtained 
quantities according to some mathematical expressions into a measure-
ment of the characteristic in question. As an example, measurement of an 
object density is indirect: it consists in a preliminary measurement of a 
mass and volume of a physical object and subsequent calculation of the 
object density as a ratio of the measured mass and volume. 

Any measurement gives a result that is somewhat different from the 
true value of the measured quantity. Often, the very concept of the “true 
value” of a physical quantity does not exist in nature. For example, if we 
measure the diameter of a wire, then we will encounter the fact that the 
cross section of the wire is not perfectly round, but is an ellipse, the pa-
rameters of which, moreover, change slightly from one section of the 
wire to another. Therefore, in practice, the actually solved problem is 
determining the mean value of the measured quantity which would most 
accurately characterize the object under study. 

The result of the observation of a physical quantity is a reading, giving 
one value of the measured quantity. The measurement result, as a set of 
actions, is obtained after mathematical processing of all the readings. 

A measurement with single observations is a measurement in which 
each reading is taken at different values of other physical quantities  
associated with the measurand. 

A measurement with multiple observations is a measurement in which 
all readings are obtained at fixed values of other physical quantities  
associated with the measurand. 
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When directly measuring a physical quantity, three consecutive ope-
rations have to be performed: 

1. Choice of the device, its verification and adjustment. 
2. Observation of instrument readings (for multiple observations, the 

operation will be repeated several times). 
3. Calculation of the mean value of a physical quantity from the 

measurement results and error estimation. 
 
 

2. ERRORS OF MEASUREMENTS 
 

Any measurement is accompanied by errors. Each measurement gives 
the value of the determined quantity x with some absolute error ∆x. This 
means that the true value lies in the interval 

 
,x x x x x                                     (2.1) 

 
where x  is the mean value of the quantity obtained as the closest to 

the true when measured. 

The interval of values ;x x x x       which contains the true 

value of the measured quantity with a certain degree of reliability (confi-
dence probability p) is called the confidence interval. 

The confidence probability p is the probability with which the confi-
dence interval includes the true value of the measured value. 

Thus, the error is characterized by a confidence interval (Fig. 2.1). 
 

 
 

Fig. 2.1. Measurement result 



6 

The smaller is the confidence interval, the higher is the accuracy of 
the measurement. 

The measurement error can be represented either as an absolute error 
or as a relative error. 

The absolute error ∆x is equal to the modulus of difference between 
the boundary of the confidence interval and the mean value, i. e. is the 
half-width of the confidence interval. The absolute error is measured in 
the same units as the quantity itself. 

The relative error shows the proportion taken by the error from the 
mean value of the quantity. It is equal to the ratio of the absolute error to 
the mean value of a given physical quantity and is usually expressed as a 
percentage: 

 

100 %.x
x

x


                                       (2.2) 

 
The most complete representation of the measurement result is as  

follows: 
 

,  units;x x x     100 %.x
x

x


                     (2.3) 

 

The reciprocal of the relative error, ,
x

x
 is called accuracy. The 

smaller is the relative error, the higher is the measurement accuracy. 
To compare the results of measurements of the same physical quan-

tity, carried out using different instruments or different methods, one 
should check the overlap of the corresponding confidence intervals.  
If the confidence intervals do overlap, then the measurement results are 
in agreement within the error. However, if the measurements do not have 
common values, then the results are inconsistent (Fig. 2.2). 
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Fig. 2.2. Comparing the results of two measurements of the same value 

 
3. ANALYSIS OF ERRORS 

 
Summarizing the above, it is impossible to absolutely accurately  

determine the true value of a physical quantity. The reasons for the  
occurrence of the measurement errors are different and may be due to the 
characteristics of the object under study, measuring instruments and  
other reasons. 

According to the impact on the measurement result, the following 
types of errors can be distinguished (Fig. 3.1). 
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Fig. 3.1. Types of errors classified by impact on results 
 

Random error is an error that changes randomly when measurements 
are repeated. 

Systematic error is an error that remains constant when measurements 
are repeated. 

Gross error is an error that significantly exceeds what is expected 
under given conditions. 

According to the sources of errors, the following types of errors are 
distinguished (Fig. 3.2). 

 

 
 

Fig. 3.2. Types of errors classified by their origin 
 

Instrumental error is an error of measuring instruments. 
Methodological error is an error due to the imperfection of the mea-

surement method. Methodical errors include errors that are due to the  
accepted simplifications and assumptions in the measurement of the 
model, the inaccuracy of the empirical formulas used in the calculations, 
the limited accuracy of the constants used in the equations, and the like. 



9 

Additional error is an error due to the influence of factors that are not 
taken into account in the model of the measurement object. Such factors 
can include both environmental factors (temperature, moisture, dirt,  
vibration, electrostatic or magnetic fields, etc.), and the human factor 
(imperfection of the operator's senses or his inattention). 

In general, all three of these sources of errors can give both syste-
matic and random contributions into the total measurement error. The 
specific contributions of these components depend on the organization  
of the experiment. 

When carrying out measurements in the educational laboratory, the 
experiment is organized in such a way that: 

1. The instrument error has only a systematic component. 
2. The additional error has only a random component. 
3. Methodical error can be neglected. 
4. The accuracy of instrument readings is guaranteed. 
 

3.1. Random Errors 
 

Random errors are the measurement errors which are randomly 
changing from count to count. 

Random errors may change the result both up and down with the 
same probability, and the larger is the error, the less often it appears in 
the experiment. 

Random errors are due to irregularly changing experimental condi-
tions (temperature changes, ground vibrations, disturbance of the air,  
and the like), poor repeatability of the instrument readings, imperfection 
of the experimenter's senses, etc. 

It is impossible to eliminate a random measurement error, but it  
can be mitigated by increasing the number of readings (experiment  
repetitions). 

 
3.2. Systematic Errors 

 
Systematic errors are the measurement errors whose value does not 

change from experiment to experiment. 
A systematic error changes the result of the experiment always in the 

same direction and by the same amount, i. e. it is constant in sign and 
magnitude. 
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Systematic errors may be due to a malfunction or incorrect adjust-
ment of the measuring device (inaccurate breakdown of the scale of the 
ruler, inaccurate weight of calibration weights, slow stopwatch, etc.), as 
well as features of the object under study and do not depend on the num-
ber of measurements. 

Taking into account and excluding (or reducing) the systematic error 
is one of the most difficult problems in the theory of measurements. 
Methods for solving this problem depend on specific types of measure-
ments, and there is no some general methodology for solving it. 

A systematic error due to inaccuracy or malfunction of the measuring 
instrument can be established by checking the instrument. If a systematic 
error caused by the device is detected, you can:  

1) replace the device with a serviceable one;  
2) adjust or repair the device;  
3) determine the sign and magnitude of the error and introduce  

a correction;  
4) in some cases, it is possible to change the measurement procedure 

in order to eliminate the systematic error. 
For accurate measurements, the systematic error is estimated based 

on the results of measuring the desired value by various fundamentally 
independent methods using different equipment. 
 

3.3. Instrument Errors 
 

Instrument error is an error due to the limited accuracy of the used 
instrument. 

For example, using an ordinary millimeter ruler, one cannot achieve 
micron accuracy, as well as using ordinary wristwatches, it is impossible 
to measure time with an accuracy of up to a millisecond. That is, the use 
of a particular instrument determines the maximum accuracy that can be 
achieved with its help. 

The instrument error can be reduced by using a device of a higher  
accuracy class (for example, instead of a ruler, take a caliper; if this is 
not enough, take a micrometer, etc.). 

 
3.4. Gross Errors 

 

Gross Errors are abnormally large errors that completely distort the 
measurement result. 
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Gross errors are caused by abrupt changes in the experimental condi-
tions (for example, power surges in the electrical network) or inattentive 
actions of the experimenter. 

Results containing gross errors must be identified and excluded  
from consideration. In practice, for a more reliable elimination of gross 
errors, several additional measurements are often specially made, and the  
largest and smallest values are discarded before starting the processing 
of the results. 
 
 

4. EVALUATION OF ERRORS FOR DIRECT  
MEASUREMENTS 

 
4.1. Evaluation of Random Errors 

 
Let us consider a direct measurement of the value x, in which n read-

ings were obtained: x1, x2, x3,…, xn. 
In the presence of random errors, the observed values of the measured 

quantity are randomly scattered relative to its true value. In this case, the 
best value is found as the most probable of a series of readings, and the 
error is characterized by the width of the confidence interval, which in-
cludes the true value with a given confidence probability. 

The best estimate of the true value of x is the sample mean value ,x  

which can be calculated as the arithmetic mean: 
 

1 2

1

... 1
,

n
n

i
i

x x x
x x

n n 

  
                           (4.1) 

 
where xi is the i-th reading of value x. 

To estimate the scatter of readings relative to the best value, the 
standard deviation (standard error) from the mean value is used: 

 

   2
1

1
.

1

n

i
i

x x
n n 

  


                            (4.2) 
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Then the random error of multiple measurements rx  will be calcu-
lated by the formula: 

 

, .r n px t                                           (4.3) 
 

Here ,n pt  is a Student’s coefficient (dimensionless confidence coef-

ficient), which shows how many times it is necessary to increase the 
standard deviation from the mean value in order to obtain a given  
reliability of the result with a given number of readings. The Student's 
coefficient depends in a complex way on the reliability (confidence 
probability) p and the number of measurements n. Its value can be  
determined from statistical tables (see Appendix C). 

Note that when performing laboratory work in a physical workshop, 
the standard confidence probability is p = 0.95. 

The greater the confidence probability, the more reliable the estimate 
of the confidence interval and, at the same time, the wider its boundaries. 

In the simplest case, one can calculate a random error as modulo 
mean deviation of the readings from the mean value :x  

 

1

1
.

n

r i
i

x x x
n 

                                     (4.4) 

 

This estimate of the random error is not strict, it gives a slightly  
overestimated error value and does not allow one to accurately estimate 
the probability with which the sought value should fall within the confi-
dence interval, but due to its simplicity it is used quite often. 

 
4.2. Evaluation of Instrument Errors 

 

To characterize measuring instruments, the concept of accuracy class 
is often used. 

The accuracy class is the ratio of the absolute instrument error ax   

to the limit value maxx  of the measured quantity (its highest value that 
can be measured on the scale of the instrument): 

 

max

100.ax
k

x


                                        (4.5) 
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There are 7 classes of instrument accuracy: 0.1; 0.2; 0.5; 1.0; 1.5; 2.5; 
4.0. Instruments of accuracy class 0.1; 0.2; 0.5 is used for accurate labor-
atory measurements. They are called precision instruments. For technical 
measurements, one can use instruments of classes 1.0; 1.5; 2.5; 4.0. 

The accuracy class of the device is indicated on the scale of the  
device. If there is no such designation on the scale, then this device is out 
of class. 

Having determined the accuracy class k and the limit value on the scale 
of the instrument, it is easy to calculate its absolute instrument error: 

 

max .
100a
x

x k                                        (4.6) 

 
For optimal use of the device, one should select the device so that the 

measured value falls at the end of the scale of the device. This provides 
the smallest relative error. 

If the accuracy class of the device is unknown, then the instrument  
error is taken equal to half of the scale division value: 

 

.
2a
с

x                                            (4.7) 

 
Scale division value c is a distance between adjacent scale marks. 
If the device has an additional vernier scale that increases the mea-

surement accuracy, then the instrument error is estimated as half scale  
division value of the vernier scale. 

 
4.3. Evaluation of Total Error 

 
The total absolute error of direct measurements is equal to the quad-

ratic sum of all its components 
 

 2 .m
m

x x                                      (4.9) 

 
Here m is the number of different contributions to the total error. 
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As it was discussed above, when performing laboratory work of a 
physical practicum, all contributions to the error can be neglected, except 
for random error rx  and instrument error .ax  So the total absolute 
error of direct measurement will be calculated by the formula: 

 

   22
.r ax x x                                 (4.10) 

 
4.4. Rounding of Errors 

 
Significant digits (figures) are the digits of a number that are mean-

ingful in terms of accuracy.  
Significant digits are counted starting the first non-zero digit in a 

number, but they do include all the subsequent zero (and obviously non-
zero) digits. Importantly, all zeros at the beginning of a number (does not 
matter before or after the decimal point) are not significant. All zeros to 
the power of ten in the standard number representation are not significant 
(Fig. D.1 in Appendix D).  

For example, in number 0.0540 there are 3 significant digits: 5, 4 and 

last 0. In number 51.037 10  there are 4 significant digits: 1, 0, 3 and 7. 
All the significant digits can be divided into three groups: correct, 

doubtful and incorrect digits. A doubtful digit of a number is a digit in 
the position that corresponds to the position of the first significant digit 

in the absolute error value. For example,   32.43 0.07 10 ,   here 7 is the 

first significant digit in the absolute error and 3 is the doubtful digit in 
the mean value. 

All the digits placed on the left from the doubtful digit are called  
correct digits. 

All the digits placed on the right from the doubtful digit are called  
incorrect digits. It makes no sense to provide such incorrect digits and it 
is recommended to exclude them by rounding the mean value to a doubt-
ful digit according to the rounding rules. 

The absolute errors have no correct digits, the first significant digit of 
an absolute error is already doubtful. All other significant figures in the 
absolute error are incorrect and in the educational laboratory they  
must be excluded from the reported result by rounding up the first signi-
ficant figure. 
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However, to avoid unnecessary coarsening of the final result, if the 
first significant digit in the absolute error is "1" or "2", there remains one 
more significant digit. 

After correctly rounding first the error and then the mean value, the 
number of decimal places in the absolute error and in the mean value 
should be the same. 

Here are some examples of the correct recording of the final result: 

   2 59.5 0.8;  2.350 0.013;  5.6 0.4 10 ;  1.03 0.25 10 .       

 
4.5. Algorithms for Processing Direct Measurements 

 
Basic algorithm: 
1. Determine the instrument error ax  (Eq. 4.7 or 4.6). 

2. Calculate the mean value of the measurement x  (Eq. 4.1). 

3. Calculate the standard deviation of the mean value   (Eq. 4.2). 
4. Determine the Student's coefficient ,n pt  for the given reliability  

p = 0.95 and the obtained number of readings n (Appendix C). 
5. Calculate the random error rx  (Eq. 4.3). 

6. Calculate the total error x  (Eq. 4.10). 
7. After rounding, write the result of processing measurements  

in the form: 
 

units;x x x    100 %.x
x

x


   

 
Where “units” corresponds to the required units, for example, “s” for 

seconds. 
Simplified algorithm: 
1. Determine the instrument error ax  (Eq. 4.7 or 4.6). 

2. Calculate the mean value of the measurement x  (Eq. 4.1). 

3. Calculate the random error rx  as the modulo average deviation of 

the measurement result from the mean value x  (Eq. 4.4). 

4. Calculate the total error x  (Eq. 4.10). 
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5. After rounding, write the result of processing measurements  
in the form: 

 

units;x x x    100 %.x
x

x


   

 
Examples of recording the final result: 
 

5.08 0.14 s; 2.8 %;tt      

 
  36.4 0.7 10  m; 11 %.LL       

 
 

5. EVALUATION OF ERRORS FOR INDIRECT 
MEASUREMENTS  

 
5.1. Evaluation of Errors for Functions  

of Several Variables 
 

Let be  , ,...F F x y  a functional relationship between the indirectly 

measured value F and the variables x and y, the values of which are 
found by direct measurements ( ,x x x    ,...).y y y    

The mean value of the function F  is determined by the mean  

values of the variables x and y: 
 

 , ,... .F F x y                                 (5.1) 

 
Now we can obtain an expression for the absolute error .F  If we fix 

the values of all arguments except one, for example x, then the increment 
of the function when its argument changes has the form: 

 

   , ,... , ,... .xF F x x y F x y                   (5.2) 
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If the value x  is small, then the function  F F x  can be consi-

dered as linear in the interval ;x x x x       and the error xF   

can be expressed in terms of the partial derivative of the function F with  
respect to x: 

 

.x
F

F x
x


  


                                       (5.3) 

 
The value xF  describes the error F due to the error .x  Similarly, 

the contribution yF  due to the error y  and the contributions of the 

remaining arguments in F  are determined. 
The total absolute error F  of indirect measurement F is calculated 

either using quadratic summation or modulo summation of its compo-
nents introduced by each argument: 

 
22

...;
F F

F x y
x y

               
                      (5.4) 

 

... .
F F

F x y
x y

 
     

 
                           (5.5) 

 
Relation (5.4) is applied when two conditions are met. First, the error 

of the arguments is due to the influence of many factors, among which 
there is no dominant factor. Secondly, the errors of the arguments are not 
statistically related. 

In all other cases, one should use the relation (5.5). It often overesti-
mates the errors of indirect measurements, however, when estimating 
errors, it is better to overestimate rather than underestimate. 

The relative error of indirect measurements F  is calculated accor-
ding to the definition: 

 

.F
F

F


                                           (5.6) 
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Appendix E contains expressions corresponding to the absolute and 
relative errors calculated using Eq. 5.5 for the most common functional 
dependencies in physical practice. 

 
5.2. Algorithm for Processing Indirect Measurements 

 
1. Using the known dependence of the indirectly measured quantity 

 , ,...F F x y  on the arguments, determine the average value of the 

function F  from the mean values of the arguments (Eq. 5.1). 

2. Obtain an analytical expression for calculating the absolute error 
F  of the indirect measurement (Eq. 5.4 or 5.5, see also Appendix E). 
3. Obtain an analytical expression for calculating the relative error 

F  of the indirect measurement (Eq. 5.6, see also Appendix E). 

4. Estimate the resulting expressions for F  and F  by the comp-
lexity of calculations. Start calculations with the least time-consuming 
expression. 

5. Using Eq. 5.6, calculate the missing error ( F  or ).F  
6. After rounding, write down the result of processing the indirect 

measurement in the form: 
 

units;F F F    100 %.F
F

F


   

 
 

6. LABORATORY WORK ON PROCESSING THE  
RESULTS OF MEASUREMENTS “MEASUREMENT  

OF BODY MASS BY INDIRECT METHOD” 
 

Objectives: 
1. To learn how to measure with a vernier caliper and micrometer. 
2. To determine the mass of a wood cylinder by an indirect method, 

sequentially using three instruments: a ruler, a vernier caliper, a mic-
rometer. 

3. To study the method for estimating the errors of direct and indirect 
measurements. 
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Equipment: 
1. Millimeter ruler. 
2. Vernier caliper. 
3. Micrometer. 
4. Wood cylinder. 

 
Procedure 

 
In this work, we shall measure a mass 

of a given body by an indirect method The 
studied body is a straight cylinder (Fig. 
6.1) made from a solid piece of wood (spe-
cifically, dry beech). Therefore, its mass 
can be determined indirectly using the fol-
lowing calculation formula: 

 
2

.
4

d
m V h               (6.1) 

 

Here,   is the density of the body material and 2( / 4)V d h   is the 
body volume, calculated from the measured diameter d and height h of 
the cylinder. 

Direct measurements are reduced to determining the linear dimen-
sions of the cylinder (d and h). Then, using the tabular value of the den-
sity of dry beech ρ = 650 kg/m3, you need to calculate the mass of the 
cylinder. As a result of the experiment, it is necessary to find the mean 
value of the cylinder mass and evaluate the absolute and relative errors 
with which the cylinder mass was measured. The final result should be 
presented in the form: 

 
.m m m                                         (6.2) 

 
6.1. Length Measurement Instruments 

 
The most common instruments used to measure linear dimensions  

include a ruler, a vernier caliper and a micrometer. Each of them can be 

 
 

 

Fig. 6.1. Cylinder parameters 
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used to measure the height and the diameter of our wood cylinder, but 
with a different accuracy. 

 
Ruler 
The simplest and the least accurate instrument is a ruler. It has a uni-

form scale along its straight measuring edge (Fig. 6.2). The distance  
between adjacent marks of the scale is called the scale division value c. 
Typically, the scale division value of the ruler c = 1 mm, although the 
most accurate metal rulers often have a scale with c = 0.5 mm. 

 

 
 

Fig. 6.2. Taking readings with a ruler 

 
The length is measured with rulers in units of scale divisions covered, 

rounded up to the nearest integer number. 
The instrument error is equal to half of the scale division value: 

1 mm
0.5  mm

2 2a
с

     (for a standard millimeter-scale ruler). 

 
Vernier Caliper 
To measure linear dimensions with approximately 10 times higher 

precision, one should use a vernier caliper (Fig. 6.3). It was invented  
in 1631 by French scientist Pierre Vernier (1580–1637). 
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Fig. 6.3. Vernier caliper 
 

The main idea of the vernier caliper is the usage of the second scale 
(vernier scale) that can moves along the ruler with the main scale. The 
vernier scale is marked with divisions slightly smaller than the divisions 
of the main scale. For example, a vernier scale could have 11 markings 
for every 10 on the main scale. That is 10 divisions on the vernier scale 
correspond to 9 divisions on the main scale. This means that the vernier 
divisions are each 90 % of the main scale divisions. In general case, the 
value of a vernier scale division 1c  is equal to 

 

 
1 0

1
  ,

N
c c

N


                                     (6.3) 

 

where 0c  is the value of main scale division, N is the number of divi-
sions of the vernier scale. The number of divisions N determines the  
resulting accuracy of the vernier caliper. 

The difference between the value of one main scale division and the 
value of one vernier scale division is known as the least count c of the 
vernier scale: 

 

0
0 1– .

c
c c c

N
                                       (6.4) 
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For instance, for the caliper with N = 10 shown in Fig. 6.3, the least 
count c is equal to 1/10 = 0.1 mm. For the most popular vernier calipers 
with N = 20, the least count c is equal to 1/20 = 0.05 mm. 

Connection between a main scale division and a vernier scale division 
is illustrated in Fig. 6.4.  

 

 
 

Fig. 6.4. Vernier caliper with N = 20: connection between a main scale division с0  
and a vernier scale division с1 

 
When the measured distance b is smaller than the value of main scale 

division 0c  (Fig. 6.5), it is evidently that  
 

 0 1 0 / ,b m c c mc N mc     

 
where m is the integer showing which of the marks on vernier scale is 
aligned with a mark on the main scale. 

 

 
 

Fig. 6.5. Vernier caliper: about operating principle 
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When the measured distance x is larger than the value of main scale 
division 0c  (Fig. 6.6), then x is a sum of the readings of the main and 
vernier scales ,x a b a mc     where m is the same integer taken at 
the vernier scale, while a is the length taken in terms of the scale division 
values 0c  at the main scale. 

 

 
 

Fig. 6.6. Taking readings with a vernier caliper 
 

The instrument error of a vernier caliper is taken equal to half of the 
least count value: 

 

.
2a
с

x   

 
For instance, for the calipers with N = 10,  
 

0.1 mm
0.05 mm.

2 2a
с

     

 
For the calipers with N = 20,  
 

0.05 mm
0.025 mm.

2 2a
с

     

 
It is important to note that the presence of a vernier scale introduces 

an additional source of errors, the so-called zero error. In particular, for 
a properly adjusted caliper, the first marks on both scales must be 
aligned with each other for zero-sized objects. Any discrepancy between 
them introduces an additional systematic error. 
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How to use the vernier caliper: 
1. Check for the zero error: close the jaws and make sure that zero 

mark on the main scale and zero mark on the vernier scale are coincident 
(if not, then adjust the position of vernier scale). 

2. Take the measured object and place it in between jaws: 
 use the outside jaws to measure external diameter or width of an 

object; 
 use the inside jaws to measure internal diameter of an object. 
3. Take the reading: Actual reading = Main scale + Vernier scale: 
 main scale reading: zero mark on the vernier scale indicates the 

main scale reading (the nearest left integer); 
 vernier scale reading: a mark on the vernier scale, which strictly  

coincides with a mark on the main scale, gives a reading of the vernier scale. 
 

Micrometer 
To measure linear dimensions with even higher precision, you can 

use a micrometer caliper (Fig. 6.7). Although the first version of a  
micrometer (used with a telescope for precise astronomical observations) 
was invented around 1638 by an English astronomer William Gascoigne 
(1612–1644), its modern look and applications for measuring lengths of 
small objects originate from the middle of the XIX century only. 

 

 
 

Fig. 6.7. Micrometer 
 

A micrometer caliper (more often called simply a micrometer) con-
sists of U-shaped frame fitted with an anvil at one side and a screwed 
spindle at the other side. The spindle passes through the frame and sleeve 



25 

with the main scale and is attached to a thimble with a ratchet and an 
additional rotating scale. In contrast to the vernier caliper, the micro-
meter works on the principle of screw, i. e., small distance converts into 
large by measuring the orientation of the screw. 

When measuring, the object is placed between the anvil and the spin-
dle. Using the ratchet, the screw is moved until it touches the measured 
object, and the ratchet actuates (producing the controllable pressure on 
the measured objects). 

A reading is again determined as a sum of two values – the reading in 
terms of the scale division values 0c  taken on the main scale and the 
reading in terms of the micrometer scale division values c taken on the 
rotating scale. Usually, the scale division value of the main scale is 

0 0.5 mm,c   and the rotation scale is divided into N = 50 intervals,  

resulting in the micrometer least count value 
0.5

0.01 mm.
50

c    The 

instrument error for micrometer is determined in the same way as for the 
caliper: half of the least count value: 

 
0.01

0.005 mm.
2 2a
с

x     

 
The way to take a reading with micrometer is illustrated in Fig 6.8. 

The whole reading is taken as a sum of readings on the main scale and 
rotation scale. The main scale marks every mm (top panel) and a half of 
mm (bottom panel), and the reading on the main scale is given by its  
intersection with the edge of the thimble. The rotation scale is divided 
into 50 intervals, resulting to readings with the accuracy of 0.01 mm.  
To read the rotation scale, find its mark aligned with the datum line and 
multiply its value by the least count value. 

How to use the micrometer: 
1. Take a micrometer and check the zero error.  
2. Place the object in between the anvil and spindle and rotate the 

thimble until the ratchet clicks once or twice.  
3. Lock the lock nut to prevent further uncontrollable rotation of the 

spindle. 
4. Take readings on the main scale and on the rotating scale.  
5. Add both values: Actual reading = Main scale + Rotating scale. 
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Fig. 6.8. Taking readings with a micrometer 
 

6.2. Processing of measurement results 
 

First of all, we should process the results of direct measurements.  
Random errors are equally probable in sign. This means that when 

you carry out a sufficiently large number of experiments, approximately 
half of the experiments will have positive errors, and the other half of the 
experiments will have negative errors. When calculating the mean value, 
positive and negative errors are mutually compensated, and we get a 
more accurate result. Therefore the best measurement value is the mean 
value calculated as the arithmetic mean of all measurement results.  

For example, when measuring the value of x, the mean value is calcu-
lated by the formula: 

 

1
.

1 n

i
i

x x
n 

                                         (6.5) 

 
To determine the total (combined) error of the measurements, we first 

calculate the mean random error using the following formula: 
 

1 1

1 1
.

n n
i

r i r
i i

x x x x
n n 

                              (6.6) 

 

The difference between the result of each measurement ix 	and the 

best value x  taken modulo so that the calculated random errors i
rx
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are not compensated when summing. After that, we calculate the  
total error Δx: 

 

   22
.r ax x x                                   (6.7) 

 

The final result of the experiment will be represented in the form: 
 

.x x x                                          (6.8) 
 

After processing the results of measurements of the cylinder dimen-
sions, we obtain the best values of the diameter d  and height ,h   

as well as the total errors ∆d and ∆h. 
The best value of the mass of the cylinder is determined by substitu-

ting in the formula (6.1) the best values of the diameter and height: 
 

2

ρπ .
4

d
m h                                    (6.9) 

 

To determine the error of indirect measurements of mass, it is neces-
sary to differentiate the working formula (Eq. 6.1): 

 

2 22
.

4 4 4

m m m
m h d

h d

d d h d
h d h

  
      

  


       

                  (6.10) 

 

To simplify the calculations, it is more convenient to start with calcu-
lating the total relative mass error: 

 

2 2

2

1 2 ρπ
ρπ π ρ

4 4 4
ρπ

4
2 ρ

;

m
m d d h d

h d h
m d

h

h d

h d

 
         

 

  
  





  (6.11) 

or 
2 .m h d                                       (6.12) 
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Here  ,   ,  and   d h
d h

d h 
  

   


  are relative errors of height, 

diameter and density, respectively. If the table from which the density of 

wood 3 650 kg/m   was taken does not indicate the error ,  then we 

assume 30.5 kg/m .   
Substituting the obtained values ∆d and ∆h and the known value of 

  into Eq. 6.11, we obtain the value of the relative error .m  

Then, using the obtained value m  and the value m  calculated with 

the Eq. 6.9, we calculate the total absolute mass error :m  

 
.mm m                                        (6.13) 

 
The final result of the experiment should be presented in the form: 

 
m m m    units; m  = …%.                      (6.14) 

 
6.3. Experiments 

 
Experiment 1. Ruler measurements: 
1.1. Calculate the instrument error of the ruler. Enter the data in the 

Table 6.1. 
1.2. Measure the diameter d and the height h of a wood cylinder with 

a ruler several times (3–5 times). The diameter should be measured  
in different directions, and the height should be measured in different 
places of the cylinder. Fill Table 6.1 with the readings.  

1.3. Calculate the mean values of d 	and ,h  write the result in the 

table, leaving one digit more. Using the mean values, calculate the mean 

random errors rd  and .rh  Enter the data in the Table 6.1. 

1.4. Evaluate the total error of the diameter d  and the total error of 
the height h  (see Eq. 6.7). Enter the data in the Table 6.1. 
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Table 6.1 
Ruler measurements 

 

n 
Diameter 
d, 10–3 m 

Random 
error 
i
rd , 10–3 m

Height 
h, 10–3 m 

Random 
error 

,i
rh  10–3 m

Instrument 
error 
,a  10–3 m

1      
2      
3      
4      
5      

Mean 
values 

d    d   h   rh   a   

Total 
errors 

d   h   
 

 
1.5. Write the final results of direct measurements of the diameter and 

the height in the form1: 
 

m;  ...%;dd d d      

 
m;  ...%.hh h h      

 
1.6. Calculate the mass of the cylinder (Eq. 6.9) using the mean  

values of d  and h  obtained with a ruler. 

1.7. Evaluate the relative error m  (Eq. 6.11) and absolute error m  
(Eq. 6.13) of indirect measurement of the cylinder mass with a ruler. 

1.8. Write the final result of indirect measurement of mass with a ruler 
in the form: 

 
ruler g;  ...%.mm m m      

                                                            
1 In error we leave one significant digit, always rounding up. The number of 

decimal places in the average value should be the same as in the error. 
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Experiment 2: Vernier caliper measurements: 
2.1. Calculate the instrument error of the vernier caliper. Enter the da-

ta in the Table 6.2.  
2.2. Measure the diameter d and the height h of a wood cylinder with 

a vernier caliper several times (3–5 times). The diameter should be 
measured in different directions, and the height should be measured in 
different places of the cylinder. Fill Table 6.2 with the readings. 

2.3. Calculate the mean values of d 	and ,h  write the result in the 

table, leaving one digit more. Using the mean values, calculate the mean 

random errors rd  and rh  in the Table 6.2. 

2.4. Evaluate the total error of the diameter d  and the total error of 
the height h  (see Eq. 6.7). Enter the data in the Table 6.2. 

 
Table 6.2 

 

Vernier caliper measurements 
 

n 
Diameter
d, 10–3 m

Random 
error 

,i
rd  10–3 m

Height 
h, 10–3 m 

Random 
error 

,i
rh  10–3 m

Instrument 
error 
,a  10–3 m

1      
2      
3      
4      
5      

Mean 
values 

d    d   h   rh   a   

Total 
errors 

d   h    

 
2.5. Write the final results of direct measurements of the diameter and 

the height in the form: 
 

m;  ...%;dd d d      
 

m;  ...%.hh h h      
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2.6. Calculate the mass of the cylinder (Eq. 6.9) using the mean  
values of d and h  obtained with a vernier caliper. 

2.7. Evaluate the relative error m  (Eq. 6.11) and absolute error m  
(Eq. 6.13) of indirect measurement of the cylinder mass with a vernier 
caliper. 

2.8. Write the final result of indirect measurement of mass with  
a vernier caliper in the form: 

 
caliper g;  ...%.mm m m      

 
Experiment 3: Micrometer measurements:  
3.1. Calculate the instrument error of the micrometer. Enter the data 

in the Table 6.3. 
 

Table 6.3 
 

Micrometer measurements 
 

n 
Diameter
d, 10–3 m

Random 
error 

,i
rd  10–3 m

Height 
h, 10–3 m 

Random 
error 

,i
rh  10–3 m

Instrument 
error 
,a  10–3 m

1      
2      
3      
4      
5      

Mean 
values 

d    d   h   rh   a   

Total 
errors 

d   h    

 
3.2. Measure the diameter d and the height h of a wood cylinder with 

a micrometer several times (3–5 times). The diameter should be mea-
sured in different directions, and the height should be measured in dif-
ferent places of the cylinder. Fill Table 6.3 with the readings. 
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3.3. Calculate the mean values of d 	and ,h  write the result in the 

table, leaving one digit more. Using the mean values, calculate the mean 

random errors rd  and .rh  Enter the data in the Table 6.3. 

3.4. Evaluate the total error of the diameter d  and the total error of 
the height h  (see Eq. 6.7). Enter the data in the Table 6.3. 

3.5. Write the final results of direct measurements of the diameter and 
the height in the form: 

 
m;  ...%;dd d d      
 

m;  ...%.hh h h      

 
3.6. Calculate the mass of the cylinder (Eq. 6.9) using the mean  

values of d and h  obtained with a micrometer. 

3.7. Evaluate the relative error m  (Eq. 6.11) and absolute error m  
(Eq. 6.13) of indirect measurement of the cylinder mass with a mic-
rometer. 

3.8. Write the final result of indirect measurement of mass with  
a micrometer in the form: 

 
micro g;  ...%.mm m m      

 
Discussion 

 
1. Compare the results of mass measurement with three instruments. 

Are they in agreement? If not, explain the cause of the discrepancy. 
2. Which instrument allowed getting the most accurate result? What 

is the basis for such a conclusion? 
3. Measurements of which quantity gave the greatest contribution to 

the mass error and why? 
4. Make the report. 
5. Answer the control questions. 
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7. CONTROL QUESTIONS 
 
1. What is a measurement? What types of measurements do you 

know? 
2. What is the meaning of confidence probability? 
3. What are absolute and relative measurement errors? How are they 

related? How is absolute error related to confidence interval? 
4. What is measurement accuracy? How does it relate to confidence 

interval?  
5. In what case the results of measurements of the same physical 

quantity by different instruments are in agreement? 
6. How are measurement errors classified? 
7. What is a random measurement error? Where does it come from? 

Is it possible to eliminate it? 
8. What is the systematic measurement error? Where does it come 

from? Is it possible to eliminate it? 
9. What is the instrument measurement error? Where does it come 

from ? Is it possible to eliminate it? 
10. What is a gross error? Where does it come from?  
11. What types of errors should be taken into account when perform-

ing laboratory work in a physical workshop? 
12. What value is taken as the best value of the measured value? How 

to determine it? 
13. Write the formulae to calculate random error. 
14. What is the accuracy class? How to determine the instrument  

error with and without information about the accuracy class? 
15. How to calculate total measurement error?  
16. Describe the algorithms for processing direct measurements. 
17. What formulae are used to calculate the error of indirect measu-

rements? Specify in which cases they can be applied. 
18. Describe the algorithm for processing indirect measurements. 
19. What is the least count of the vernier scale? How can we estimate 

its value for the vernier caliper and micrometer? 
20. How the instrument error of devices with a vernier scale (caliper, 

micrometer) is estimated? 
21. How to take caliper readings? 
22. How to take micrometer readings? 
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Appendix A 
 

Powers of ten and SI prefixes 
 

Power Prefix Abbreviation 
1018 exa E 
1015 peta P 
1012 tera T 
109 giga G 
106 mega M 
103 kilo k 
102 hecto h 
101 deka da 
10–1 deci d 
10–2 centi c 
10–3 milli m 
10–6 micro  
10–9 nano n 
10–12 pico p 
10–15 femto f 
10–18 atto a 

 

Appendix B 
 

Greek alphabet 
 

Alpha     

Beta     

Gamma   

Delta     

Epsilon     

Zeta     

Eta   

Theta     

Iota     
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End of appendix B 
 

Kappa     
Lambda     

Mu   

Nu     

Xi     

Omicron     

Pi     

Rho   

Sigma     

Tau     

Upsilon     

Phi   ,   

Chi   

Psi   

Omega     
 

Appendix C 
 

Student’s coefficients tp,n 
 

Number of  
measurements n 

Confidence probability p 

0.9 0.95 0.99
2 6.31 12.71 63.66 
3 2.92 4.30 9.92 
4 2.35 3.18 5.84 
5 2.13 2.78 4.60 
6 2.02 2.57 4.03 
7 1.94 2.45 3.71 
8 1.90 2.37 3.50 
10 1.83 2.26 3.25 
20 1.73 2.09 2.86 

Infinite 1.65 1.96 2.58 
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Appendix D 
 

Rules for calculations with approximate numbers 
 

Significant digits in an approximate number 
All the digits in the number are significant digits with one exception: 

if the digit is a zero that is used just to locate the decimal point then it is 
not significant (fig. D.1). 

 

 
 

Fig. D.1. To definition of significant digits:  
three significant digits are detected 

 
Rounding when calculating approximate numbers: 
1. When adding and subtracting approximate numbers, as a final  

result, one should leave as many decimal places as there were in the 
number with the least number of decimal places: 
 

4.22 1.6 5.82 5.8;    
 

3.055 1.05 8.6 10.605 10.6;     
 

7 20.6 27.6 28.    
 
2. When multiplying and dividing, as a final result, one should leave 

as many significant digits as there were in the number with the least 
number of significant digits: 
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5.20 3.0 15.60 16;    
 

5
2 4

3

3 10
4.00 10 8 10 ;

1.5 10


   


 

 

26.25 20
250 3 10 .

0.5


    

 

3. When raising an approximate number to a power (extracting a 
root), the final result must have as many significant figures as there are 
in the base (radical expression): 

 
35.20 140.608 141;   

 

6 39.00 10 3.00 10 ;    
 

500 22.3607 22.4.   
 

4. When taking a logarithm, the mantissa stores as many significant 
digits as there are in the original number: 

 

ln5.20 1.6487 1.65;   
 

lg250 2.39794 2.40;   
 

if  ln 1.80,x   then exp(1.80) 6.049647 6.05.x     
 

5. When recording the results of intermediate calculations, one 
should save a reserve digit (the digit to the right of the doubtful one): 
 

4.22 1.6 6.752 6.75.    
 

For the intermediate result keep the reserve digit 5 after the doubtful 
digit 7. For the final result, the correct rounding would be 6.8: 

 
3

3 36.444 10
3.222 10 3.22 10 .

2.0


     

 

6. If tabular data is used in the calculations, then all of their numbers 
are correct. 
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Appendix E 
 

Expressions of absolute and relative  
errors for indirect measurements 

 
Function 
(Indirect  

Measurement) 
Absolute Error F  Relative Error F

F

F


   

F x   F x     F x
x

x


     

nF x   
1n nF

F nx x x
x

       F xn    

F x y   F x y      F
x y

x y

  
 


 

F x y   F x y      F
x y

x y

  
 


 

F xy  F y x x y      F x y
x y

x y

 
        

x
F

y
  

2

1 x
F x y

y y
      F x y

x y

x y

 
        

xF e   
xF e x F x        F x     

 lnF x    xF x
x


       F xF


    

sinF x   cosF x x      ctgF x x      

cosF x   sinF x x      tgF x x      

 
F o o t n o t e: Here ,  and  n  are constants, x and y are variables. 
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