Методы синтеза алгебраической нормальной формы функций многозначной логики
Another Title
Synthesis methods of algebraic normal form of many-valued logic functions
Bibliographic entry
Соколов, А. В. Методы синтеза алгебраической нормальной формы функций многозначной логики = Synthesis methods of algebraic normal form of many-valued logic functions / А. В. Соколов, О. Н. Жданов, О. А. Айвазян // Системный анализ и прикладная информатика. - 2016. – № 1. - С. 69 - 76.
Abstract
Стремительное развитие методов помехоустойчивого кодирования, криптографии, теории синтеза сигналов, основанных на принципах многозначной логики, диктуют необходимость более полного изучения форм представления функций многозначной логики. В частности, для булевых функций широкое распространение получила алгебраическая нормальная форма, известная также как полином Жегалкина, которая хорошо описывает многие криптографические свойства булевых функций. В настоящей статье формализуется понятие алгебраической нормальной формы функции многозначной логики. Предложены методы синтеза алгебраической нормальной формы 3-функций и 5-функций, которые работают по аналогии с преобразованием Рида-Маллера для булевых функций: на основе рекуррентно синтезируемых матриц преобразования. Выдвинута гипотеза, определяющая правила синтеза матриц как для перехода от таблицы истинности к коэффициентам алгебраической нормальной формы, так и обратного преобразования для любого, наперед заданного количества переменных 3-функции либо 5-функции. В статье также введено определение алгебраической степени нелинейности функций многозначной логики и S-блока подстановки, основанных на принципах многозначной логики. Так, разработанный метод синтеза алгебраической нормальной формы 3-функций применен к известной конструкции рекуррентного синтеза S-блоков длины N = 3k, в результате чего вычислены их алгебраические степени нелинейности. Полученные результаты могут стать основой как для дальнейших теоретических исследований, так и для практического применения: разработки новых криптографических примитивов, корректирующих кодов, алгоритмов сжатия информации, сигнальных конструкций, алгоритмов блочного и поточного шифрования, основанных на перспективных принципах многозначной логики. Кроме того, методы синтеза алгебраической нормальной формы функций многозначной логики являются основой для их программной и аппаратной имплементации.
View/ Open
Collections
- №1[10]