Моделирование и анализ динамики несущей системы фрезерно-сверлильно-расточного станка с моностойкой
Date
2015Publisher
xmlui.dri2xhtml.METS-1.0.item-identifier-udc
621.9.011:517.962.1Another Title
Modeling and Analysis of Dynamics in Bearing System of Drilling, Milling and Boring Machine with Mono-Column
Bibliographic entry
Моделирование и анализ динамики несущей системы фрезерно-сверлильно-расточного станка с моностойкой = Modeling and Analysis of Dynamics in Bearing System of Drilling, Milling and Boring Machine with Mono-Column / Ю. В. Василевич [и др.] // Наука и техника. Серия 1. Машиностроение = Science & Technigue. Series 1. Mechanical engineering. – 2015. – № 3. – С. 9 - 19.
Abstract
Проведен МКЭ-анализ динамики несущей системы тяжелого станка. Это перспективный структурный вариант для крупногабаритного многоцелевого станка с горизонтальным ползуном. Каретка и ползун перемещаются вертикально по субтильной моностойке. В существующем станке-аналоге используется жесткая двойная стойка. Выполнены статический, модальный и гармонический анализы несущей системы с моностойкой МКЭ-моделированием до изготовления опытного образца. Расчеты для станка-аналога показали хорошее совпадение МКЭ-расчета с экспериментами. Выявлены шесть общестаночных резонансов несущей системы. Из них осциллирующие силы резания активно возбуждают три-четыре резонансные моды. Установлены диапазоны изгибно-крутильных (20–40 Гц) и клевковых резонансов (70–90 Гц). Существенно выше (от 140 Гц) начинается диапазон многоволновых резонансов, которые связаны с изгибными колебаниями ползуна и согласованными с ними выпучиваниями стенок стойки. Показана стабильность карти- ны резонансов. Наиболее опасен крутильный резонанс стойки на частоте около 40 Гц. Жесткость на шпинделе падает до 3,8 Н/мкм. Наблюдается самостабилизация крутильного резонанса. Частота крутильных колебаний почти не меняется при подъеме–опускании каретки с ползуном. Это связано с миграцией динамической оси кручения. Построены амплитудно-частотные характеристики несущей системы для различных положений каретки на стойке. Определены три интервала частот, в которых возможна обработка на станке. Первый интервал является статическим. В нем станок с моностойкой уступает станку-аналогу. Причиной является низкая статическая жесткость субтильной стойки. Второй интервал узок и находится между изгибно-крутильными и клевковыми резонансами. Наиболее эффективен третий интервал. В нем есть участок междиапазонной паузы между общестаночными и многоволновыми резонансами. Здесь наблюдается существенное увеличение динамической жесткости на шпинделе, что компенсирует субтильность стойки. Высокий потенциал динамической жесткости выявлен в направлении оси ползуна (>2000 Н/мкм). Обнаружена склонность станка к кроссингу перемещений при колебаниях. Обсуждены особенности этого эффекта. Схема с моностойкой рекомендуется к использованию на практике. Условием является переход к быстроходному главному приводу в рамках концепции высокоскоростной обработки. Требуется обеспечить жесткость осевого привода подачи.
View/ Open
Collections
- №3[11]