Сложный вид функции отклика (рис. 1) свидетельствует о наличии кризиса теплообмена при десорбции, аналогично кризису кипения жид-кости на горячей поверхности.

Впервые такое явление было отмечено в [2].

ЛИТЕРАТУРА

1. Красовский Г. И., Филаретов Г. Ф. Планирование эксперимента. – Мн.: Изд-во БГУ, 1982. – 302 с.

2. Несенчук А. П., Седнин В. А., Романюк В. Н. К вопросу о состоянии дисперсной системы в термическом промышленном десорбере // Науч. и прикл. пробл. энергетики: Республ. межвед. сб. – Мн., 1986. – С. 51–53.

Представлена кафедрой ПТЭиТ

Поступила 20.03.2001

УДК 678.654:518.61

МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ В КОЛЬЦЕВЫХ ДИФФУЗОРАХ ДЛЯ ОПРЕДЕЛЕНИЯ ИХ СОПРОТИВЛЕНИЯ И СТРУКТУРЫ ПОТОКА В ОТРЫВНЫХ ЗОНАХ

Докт. техн. наук, проф. КОРТИКОВ Н. Н.

Санкт-Петербургский государственный технический университет

Инженеры КУЗНЕЦОВ Н. Б., ЯКУНИН А. И.

ГУП «Завод имени В. Я. Климова»

Для проектирования выхлопных диффузоров турбовинтовых двигателей (ТВД) вертолетов разработан целый ряд методик, основанных на эмпирическом и полуэмпирическом подходах [1-4]. Потери энергии в диффузорах складываются из потерь на трение о стенки и на расширение потока. Коэффициент потерь (сопротивления диффузора $\xi_{\rm d}$) определяется как отношение потерь напора к скоростному напору на входе или как сумма коэффициентов потерь на трение и расширение

$$\xi_{\rm g} = \Delta p^* / \left(\frac{1}{2}\rho_{\rm BX}W_{\rm BX}^2\right) = \xi_{\rm TP} + \xi_{\rm pacum}, \qquad (1)$$

где $\Delta p^* = p^*_{BX} - p^*_{BbIX}$ — разность полных давлений на входе и выходе; ρ_{BX} — плотность на входе; W_{BX} — скорость на входе; ξ_{TP} — коэффициент сопротивления трения; ξ_{pacuu} — то же, расширения, связанный с расширением сечения диффузора.

Однако в некоторых случаях, помимо определения интегральных характеристик диффузора (в том числе ξ_{d}), бывает необходимо знать локальные (поле скоростей в выходном сечении, местоположение точек отрыва потока и последующего его присоединения и др.), что приводит к необходимости применения CFD (Computational Fluid Dynamics) технологий. В их основе лежит метод контрольного объема и конечноразностная аппроксимация уравнений Навье—Стокса и энергии с помощью противопоточной (UDS), центральной (CD), квадратичной (QUICK) и монотонной реконструктивной (MARS) разностных схем [5]. Решение системы разностных уравнений производится на основе процедуры SIMPLE [6].

Программный комплекс STAR-CD [6] позволяет при постановке задач о турбулентном течении в каналах переменного сечения использовать следующие модели турбулентности: «стандартная» k- ε модель [7], RNG k- ε (здесь вводится поправка на деформацию объема жидкости), Chen k- ε (учитываются эффекты неравновесности процессов переноса турбулентности при несовпадении времени производства и диссипации); квадратичная нелинейная модель (QNL), учитывающая анизотропию тензора рейнольдсовых напряжений.

Возможности CFD технологий и STAR-CD еще не полностью изучены для диффузорных течений с отрывными зонами, поэтому целью данной работы является создание математической модели и эффективной расчетной процедуры на основе CFD пакета STAR-CD, позволяющей проводить вычислительные эксперименты по определению сопротивления кольцевых диффузоров ТВД вертолетов в условиях формирования развитых отрывных зон.

Постановка задачи. В работе рассматриваются диффузоры серии H и В [4] (рис. 1). Геометрические характеристики диффузоров представлены в табл. 1, в которой введены следующие обозначения: $n = F_{\text{вых}}/F_0$ – отношение площадей поперечного сечения на выходе и входе кольце-

вого диффузора; $\alpha_{3\kappa B} = 2 \arctan \left[\sqrt{\frac{F_0}{\pi L^2}} (\sqrt{n} - 1) \right]$ — эквивалентный угол диффузора [3].

Таблица I

Обозна- чение диффу- зора	β, град.	<i>L</i> , мм	<i>г</i> ₀ , мм	<i>г</i> _{вт} , мм	<i>г</i> _{вых} , мм	n	α _{экв} , град.
H 11	11,8	96,2	86,5	60,0	106,6	2,0	30
B - 30	30	80,5	86,5	60,0	27,0	1,88	32

Математическая формулировка модели включает систему дифференциальных уравнений сохранения импульса, теплоты и уравнение неразрывности:

$$\frac{\partial}{\partial x_{j}} \left(\rho \overline{u_{j}} \overline{u_{i}} - \tau_{i,j} \right) = \frac{\partial p}{\partial x_{i}}; \qquad (2)$$

$$\frac{\partial}{\partial x_j} \left(\rho \overline{u}_j h \right) = \overline{u}_j \frac{\partial p}{\partial x_j} + \frac{\partial \overline{u}_i}{\partial x_j} \tau_{ij} ; \qquad (3)$$

$$\frac{\partial}{\partial x_j} \left(\rho \overline{u}_j \right) = 0 , \qquad (4)$$

115

Рис. 1. Схемы кольцевых диффузоров вертолетных ТВД [4]: а – диффузора В; б – диффузора Н; r₀ – радиус периферии на входе; r_{вт} – радиус втулки; β – угол раскрытия диффузора; *L* – длина диффузора

где x_j — координаты ортогональной системы координат (j = 1, 2, 3); u_j — осредненные по времени проекции скорости; p — давление; ρ — плотность; τ_{ij} — компоненты тензора напряжений; $h = c_p T$ — энтальпия; T — температура; c_p — удельная теплоемкость при постоянном давлении; черта сверху означает осреднение по времени.

Компоненты тензора напряжений т_{іј} связаны с элементами тензора напряжений в виде

$$\tau_{ij} = 2\mu S_{ij} - \frac{2}{3}\mu \frac{\partial \overline{u_k}}{\partial x_k} \delta_{ij} - \rho \overline{u_i u_j}.$$
⁽⁵⁾

Здесь u'_i, u'_j – пульсации проекций скорости; μ – динамическая вязкость; δ_{ij} – символ Кронекера; $S_{ij} = \frac{1}{2} \left(\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i} \right)$ – компонента тензора деформаций; $\rho \overline{u_i u_j}$ – элемент тензора рейнольдсовых (турбулентных) напряжений. В качестве уравнения состояния принимается

$$p = \rho RT;$$
 $R = 287 \, \text{Дж}/(\kappa \Gamma \cdot \Gamma \rho a \text{д})$. (6)

Моделирование процесса переноса турбулентности осуществляется с помощью выражения

$$-\rho \overline{u_i u_j} = 2\mu S_{ij} - \frac{2}{3} \left(\mu_t \frac{\partial \overline{u}_k}{\partial x_k} + \rho k \right) \delta_{ij} , \qquad (7)$$

где $\mu_t = f_{\mu}(c_{\mu}\rho k^2/\epsilon); \ \mu_t$ – турбулентная вязкость; c_{μ}, f_{μ} – эмпирические величины; $k = \frac{1}{2}u_iu_j$, ϵ – кинетическая энергия пульсации скорости и скорости диссипации турбулентности соответственно. Они определяются с помощью уравнений:

$$\frac{\partial}{\partial x_j} \left(\rho \overline{u}_j k - \frac{\mu_{3\Phi}}{\sigma_k} \frac{\partial k}{\partial x_j} \right) = \mu_t P - \rho \varepsilon - \frac{2}{3} \left(\mu_t \frac{\partial \overline{u}_i}{\partial x_i} + \rho k \right) \frac{\partial \overline{u}_i}{\partial x_i}; \quad (8)$$

$$\frac{\partial}{\partial x_{j}} \left(\rho \overline{u} \varepsilon - \frac{\mu_{3\Phi}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x_{j}} \right) = \frac{\varepsilon}{k} \left[c_{\varepsilon 1} P - \frac{2}{3} \left(\mu_{t} \frac{\partial \overline{u}_{i}}{\partial x_{i}} + \rho k \right) \frac{\partial \overline{u}_{i}}{\partial x_{i}} \right] - \frac{1}{2} \left(- c_{\varepsilon 2} \rho \frac{k^{2}}{\varepsilon} + c_{\varepsilon 4} \rho \varepsilon \frac{\partial \overline{u}_{i}}{\partial x_{i}} + \Phi_{RNG} + \Phi_{CHEN} \right)$$

$$(9)$$

Здесь
$$\Phi_{RNG} = c_{\mu}\eta^{3}(1 - \eta / \eta_{0})\rho \frac{k^{2}}{(1 + \beta_{0}\eta^{3})\varepsilon}; \quad \Phi_{CHEN} = c_{\varepsilon 5}\mu_{t}P / k$$
 – допол-

нительные слагаемые в (9) для RNG k-є и Chen k-є моделей турбулентности; $\mu_{3\Phi} = \mu + \mu_t$; $P = 2S_{ij} \frac{\partial \overline{u}}{\partial x_i}$; $\eta = Sk / \varepsilon$;

$$\begin{split} S &= (2S_{ij}S_{ij})^{0.5}; \ c_{\mu} = (0,085...0,09); \ \sigma_{k} = (0,719...1,0); \ \sigma_{\epsilon} = (0,719...1,22); \\ c_{\epsilon 1} &= (1,15...1,44); \ c_{\epsilon 2} = (1,68...1,9); \ c_{\epsilon 4} = (-0,387...-0,33); \ c_{\epsilon 5} = 0,25; \ \eta_{0} = \\ &= 4,38; \ \beta_{0} = 0,012. \end{split}$$

Рейнольдсовы напряжения в модели QNL определяются с помощью функциональных выражений вида [5]

$$\rho u_{i}u_{j}/k = f(\mu_{t}/k, S_{ij}, \Omega_{ij}), \qquad (10)$$

117

где $\Omega_{ii} = \partial \overline{u_i} / \partial x_i - \partial \overline{u_i} / \partial x_i$ — элемент тензора завихренности.

Граничные условия включают: условия прилипания и адиабатичности на стенках кольцевого диффузора для проекций скорости и энтальпии; «логарифмический закон» для вычисления *k* и є в ближайшей к твердой стенке расчетной точке; условие симметрии на боковых гранях расчетной области в окружном направлении.

Для диффузора B-30 расчетная область содержала 135×60 ячеек (первое число соответствует числу разбиений по оси Z, второе – по радиусу x), для диффузора H-11 использовалась сетка 170×50. В обоих случаях ближайший к твердой стенке узел сетки попадал в область «логарифмического закона», где $y^+ = \rho u_x x/\mu = 30...58$ ($u_t = \tau_{cr}^{0,5}/\rho$ – динамическая скорость; τ_{cr} – напряжение трения на стенке диффузора). Число итераций для достижения сходимости по поправкам проекций скорости и характеристикам турбулентности (невязка устанавливалась равной 10⁻⁴) изменялось от 494 до 940 в зависимости от выбора модели турбулентности.

Проверка справедливости численного алгоритма проводилась на основе контроля выполнения постоянства температуры торможения на входе и выходе (расхождение не превышало 0,04 % при величине 300 K) и массового расхода (расхождение – 0,06 %). Расчеты проводились при задании на входе в диффузоры степени турбулентности, равной 1 %, и масштаб турбулентности составлял 10^{-4} м.

Результаты расчетов. По результатам расчетов можно выделить четыре характерные участка течения газа в диффузоре (рис. 2). В подводящем канале (участок 1) происходит формирование турбулентного пограничного слоя, который совместно с положительным градиентом давления в диффузоре приводит к отрыву потока в точке S с образованием слоя смешения (участок 2) и рециркуляционной зоны (участок 3) с последующим присоединением (точка R) в области релаксации потока (участок 4). Компьютерная визуализация течения представлена на рис. 2.

Рис. 2. Расчетное поле скоростей в диффузоре В-30: 1 — подводящий кольцевой канал с пограничным слоем на стенках; 2 — слой смешения; 3 — рециркуляционная зона; 4 — область релаксации; S — точка отрыва; R — точка присоединения

Местоположения точек отрыва и присоединения потока соответствовали сечениям диффузоров, где коэффициенты сопротивления трения $C_f = 2\tau_{cT}/(\rho_{BX}w_{BX}^2)$ на стенках принимали нулевые значения (рис. 3,

диффузор H-11). В зависимости от модели турбулентности происходит изменение местоположения точки отрыва потока S и особенно точки присоединения R («стандартная» k- ε модель приводит к затягиванию отрыва потока и характеризуется наименьшей длиной отрывной зоны).

Рис. 3. Распределение коэффициента сопротивления трения C_f в окрестности отрывной зоны кольцевого диффузора: 1 — стандартная k-є модель турбулентности; 2 — RNG k-є модель; 3 — Chen k-є модель; 4 — квадратичная нелинейная модель

Адекватность математической модели и расчетной процедуры проверялась сравнением результатов расчета с опытными данными [4] по коэффициентам сопротивления ξ_g (табл. 2) в зависимости от используемой модели турбулентности.

7	аблица	2
	-	

Модель турбулентности	Расчет	Опыт	Расхождение, %	Диффузор
«Стандартная» к-є	0,1154	0,125	4,42	H-11
RNG <i>k</i> -ε	0,1063		14,96	
Chen k-ε	0,1101		11,92	
QNL	0,1425		14,0	
Идельчик И. Е. [3]	0,1529		23,3	
Chen k-ε	0,299	0,325	8	B-30
Идельчик И. Е. [3]	0,1516		53,3	

Методика [3] (табл. 2) включала определение ξ_{rp} и ξ_{pacuu} по формулам:

$$\xi_{\rm TP} = \frac{\lambda (1 - 1/n^2)}{8 \sin(\alpha_{\rm 3KB}/2)}; \quad \lambda = (1,8 \, {\rm Re} - 1,64)^{-2}; \tag{11}$$

$$\xi_{\text{pacui}} = \varphi_{\text{pacui}} (1 - 1/n)^2; \quad \varphi_{\text{pacui}} = 3.2k_g [\text{tg}(\alpha_{\text{экв}}/2)]^{1.25}, \quad (12)$$

119

где Re = $\rho_{BX} w_{BX} (r_0 - r_{BT})/\mu$, k_g – коэффициент неравномерности (для конических диффузоров $k_g = 1,0$ [3]).

Данные табл. 2 показывают улучшение сходимости результатов расчета с опытными данными при использовании алгоритма STAR-CD для рассмотренных выше моделей турбулентности. Использование модели QNL приводит к завышению потерь, что, по-видимому, связано с недостаточной корректностью в применении данной модели с выбранной расчетной сеткой. Опытные данные [8] указывают на существенную анизотропию турбулентности в области изменения y⁺ от 1,5 до 20.

Обработка результатов расчета по диагностике точек отрыва и присоединения потока (рис. 3) позволила предложить (аналогично тому, как сделано для диффузора с прямоугольным поперечным сечением [9]) зависимости для определения местоположения точки отрыва в кольшевом диффузоре:

$$n_s = F_s / F_0 = 1 + 0.22\tilde{z}_s + 0.03\tilde{z}_s^2, \quad \tilde{z}_s = z / b;$$
(13)

$$\alpha_{_{3KB,S}} = \arctan(0.51 - 0.256\tilde{z}_s), \qquad (14)$$

где z_s — продольная координата сечения отрыва; n_s , F_s , $\alpha_{3KB,s}$ — степень расширения, площадь поперечного сечения, эквивалентный угол в сечении отрыва; $b = r_0 - r_{BT}$ (0,47 $\leq \tilde{z}_s \leq 1,49$).

Выражение для определения местоположения точки присоединения потока на стенке выходного канала кольцевого диффузора записывается в виде

$$\alpha_{_{\mathsf{ЭKB},r}} = \operatorname{arctg}\left[\sqrt{\frac{F_0}{\pi z_r^2}}(\sqrt{n} - 1)\right] = \operatorname{arctg}(0,79 - 0,061\tilde{z}_r), \quad (15)$$

где z_r — продольная координата сечения присоединения потока;

.

$$\widetilde{z}_r = z_r / b \quad (5,0 \le \widetilde{z}_r \le 7,6).$$

выводы

1. CFD технологии на базе STAR-CD позволяют улучшить соответствие результатов расчета и опытных данных по сопротивлению диффузоров и диагностировать местоположения точек отрыва и присоединения газового потока.

2. Отмечается важность «гармонизации» свойств расчетной сетки и модели турбулентности для правильного описания физического процесса в отрывных зонах кольцевого диффузора. Предпочтительными являются «стандартная» k-є и Chen k-є модели турбулентности.

3. Получены аппроксимационные зависимости для определения местоположения и протяженности отрывных зон в кольцевых диффузорах ТВД вертолетов. 1. По в х И. Л. Техническая гидромеханика. –Л.: Машиностроение, 1969. – 524 с.

2. Дейч М. Е., Зарянкин А. Е. Газодинамика диффузоров и выходных пат-рубков турбомашин. – М.: Энергия, 1970. – 384 с.

3. И дельчик И.Е. Справочник по гидравлическим сопротивлениям. – М.: Ма-

шиностроение, 1992. – 672 с. 4. Гуревич Д. В. Экспериментальное исследование диффузорных выпускных трактов вертолетных ТВД // Силовые установки вертолетов: Сб. ст. / Под ред. М. М. Масленникова. - М.: Гос. изд-во обор. пром., 1959. - С. 59-113.

5. Methodology. STAR-CD Version 3.05. Computational Dynamics Limited, 1998. - 83 c.

6. Патанкар С. Численные методы решения задач теплообмена и динамики жидкости. – М.: Энергоатомиздат, 1984. – 152 с. 7. Белов А. И., Исаев С. А., Коробков В. А. Задачи и методы расчета

отрывных течений несжимаемой жидкости. – Л.: Судостроение, 1989. – 256 с.

8. Шишов Е.В. Турбулентный перенос теплоты и импульса в отрывных рециркуляционных течениях // Тепломассообмен - ММФ-96. - Т. 1. - Конвективный тепломассообмен. - Ч. 2. - Мн., 1996. - С. 86-90.

9. Ч ж е н П. Отрывные течения. – М.: Мир, 1972. – Т. 1. – 299 с.

Представлена кафедрой

теоретических основ теплотехники

Поступила 2.11.2000

УЛК 621.183

МЕТОД РАСЧЕТА ПРОПУСКНОЙ СПОСОБНОСТИ **ДРОССЕЛЬНО-РЕГУЛИРУЮШЕГО КЛАПАНА** ДЛЯ ДВУХФАЗНОГО ПОТОКА

Канд. техн. наук, доц. НАЗАРОВ В. И.

Белорусская государственная политехническая академия

Определение пропускной способности дроссельно-регулирующих клапанов для среды, проходящей через последний и изменяющей свое агрегатное состояние, представляет собой сложную задачу. Еще сложнее обстоит дело с расчетом пропускной способности клапанов при наличии двухфазной среды на входе.

В настоящее время имеется ряд методик, применение которых в разных случаях обеспечивает более или менее приближенные результаты расчета. Одним из принятых приближенных методов расчета регулирующих клапанов при изменении агрегатного состояния среды является «метод теплового баланса» [1]. Он заключается в том, что необходимую пропускную способность подсчитывают как сумму пропускных способностей, определенных раздельно для жидкости и половинного количества пара, образовавшегося при дросселировании. Данный метод расчета не нашел широкого применения, так как не гарантирует правильного