Союз Советских Социалистических Республик



Государственный комитет СССР по делам изобретений и открытий

## ОПИСАНИЕ (11)726209 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву -

(22) Заявлено 24.04.78.(21) 261 0046/22-02

с присоединением заявки № --

(23) Приоритет -

Опубликовано 05.04.80. Бюллетень №13

Дата опубликования описания 08.04,80.

(51)M. Ka.<sup>2</sup> C 23 C 9/02

(53)УДК<sub>621.785</sub>. .51.06(088.8)

(72) Авторы изобретения

Г. В. Борисенок, Л. Г. Ворошнин, Л. А. Васильев, Л. С. Ляхович, Н. И. Иваницкий, Ю. Н. Громов и Н. А. Витязь

(71) Заявитель

Белорусский ордена Трудового Красного Знамени политехнический институт

## (54) СОСТАВ ДЛЯ НИОБИРОВАНИЯ ТВЕРДОСПЛАВНОГО ИНСТРУМЕНТА

Изобретение относится к химико-термической обработке твердосплавного инструмента, в частности к средам для создания на его поверхности износостойких
карбидных покрытий, и может быть использовано при производстве твердых
сплавов, а также в машиностроительной,
приборостроительной, горнодобывающей и
других отраслях промышленности, использующих твердосплавный инструмент.

В настоящее время известна среда для повышения износостойкости твердосплавного инструмента путем осаждения из газовой фазы на его поверхности покрытий из карбида ниобия. Среда в качестве ниобийсодержащего соединения содержит пентахлорид ниобия, а углеропсодержащего газа — пропан или метан [1]. Изделие, помещенное в такую среду нагревают до 1000—1100°С и выдерживают 1 час. В результате обработки на поверхности тверпосплавного инструмента образуется покрытие из карбида ниобия. Повышение стойкости упрочненного таким образом

тверпосплавного инструмента (сплав ВК8) при обработке серого чугуна составляет 1,3-3,6 раза, а при обработке титаново го сплава ВТ8 - 1,6-3,5 раза

К недостаткам указанной среды следует отнести технологические трудности проведения процесса в связи с использованием вэрывоопасных и высокотоксичных хлорсодержащих атмосфер, а также относительно невысокое (1,3-3,6 раза) повышение эксплуатационной стойкости упрочненного инструмента.

Целью изобретения является разработка состава для ниобирования спеченного твердосплавного инструмента, обеспечивающего, по сравнению с известной средой, большее повышение износостойкости твердосплавного инструмента при значительном увеличении технологической и экономической эффективности обработки.

Поставленная цель достигается путем использования состава, содержащего окись ниобия, окись алюминия, порошок алюми-

2

 Окись ниобия
 36-56

 Алюминий
 10-24

 Хлористый аммоний
 1-3

 Окись алюминия
 Остальное

Процесс ниобирования в предлагаемом составе проводят при температурах 950— 10 ~15 мкм. 1100°С в течение 1—6 час в контейнерах без использования вакуума или защитных атмосфер. При этом на поверхности тверносплавного инструмента формируется износостойкое покрытие, состоящее из кар— 15 дены в таблице.

бидов ниобия (  $NBC = HC - NB_QC$ ) толинной 7-15 мкм.

Пример. Проводят ниобирование деталей из сплава ВК 8 при 1100°С с выдержкой 4 час в шахтной силитовой печи без использования вакуума или защитных атмосфер. При этом на поверхности твердосплавного инструмента формируется износостойкое покрытие толщиной 10 ~15 мкм.

Результаты испытания износостойкости твердосплавных пластин из сплава ВК 8 в исходном состоянии и после ниобирования в предлагаемой среде представлены в таблице.

| No.                                     | Состав                             |          | ľ                                       | Обрабатывае-<br>,мый материал     | Режим резания                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |             | Стойкость                                            |                    | Повы-                           |
|-----------------------------------------|------------------------------------|----------|-----------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|------------------------------------------------------|--------------------|---------------------------------|
| nn                                      | насыща-<br>ющей<br>среды,<br>вес.% | :        | на слоя,<br>мкм                         |                                   | V,<br>м/мин                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>t,</b><br>мм | S,<br>мм/об | пластин до<br>износа по<br>задней гра-<br>нић= 0,8мм |                    | шение<br>Стой-<br>кости,<br>раз |
| 74                                      |                                    |          |                                         |                                   | and the second s |                 |             | исход-<br>ная ′                                      | после<br>ХТО       |                                 |
|                                         | Окись ни-<br>обия                  | 36       |                                         | Чугун НВ                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0             | 0,2         | 6,0                                                  | 23                 | 3,9                             |
|                                         | Алюминий                           | 10       | .•                                      | 235                               | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0             | 0,2         | 2,0                                                  | 7                  | 3,5                             |
|                                         | Хлористый<br>аммоний               | 3        | 4-6                                     | •                                 | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0             | 0,2         | 1,0                                                  | 2,8                | 2,8                             |
|                                         | Окись алю-<br>миния                | 51·      |                                         | Сталь ШХ15<br>НВ 330              | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,0             | 0,3         | 8,0                                                  | 20                 | 2,5                             |
|                                         |                                    |          | e i i i i i i i i i i i i i i i i i i i | Титановый<br>сплав ВТ 8<br>НВ 310 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,5             | 0,1         | 60                                                   | 126                | 2,1                             |
| 2.                                      | Окись нио-                         |          |                                         |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |                                                      |                    |                                 |
|                                         | бия                                | 46<br>17 |                                         | <b>Чугун</b><br>НВ 235            | 100<br>150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,0<br>2,0      | 0,2<br>0,2  | 6,0<br>2,0                                           | 28<br>7 <b>.</b> 7 | 4,7<br>3,9                      |
| •                                       | Алюминий<br>Хлористый<br>аммоний   |          | 5-8                                     |                                   | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,0             |             | 1,0                                                  | 3,1                | 3,1                             |
|                                         | Окись алко<br>миния                | -<br>35  | 5                                       | Сталь                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |             |                                                      |                    |                                 |
|                                         | er f                               |          |                                         | Ш <b>Х</b> 15<br>НВ 330           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,0             | 0,3         | 8,0                                                  | 23                 | 2,9                             |
| - * · · · · · · · · · · · · · · · · · · |                                    |          |                                         | Титановый<br>сплав ВТ 8<br>НВ 315 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,5             | 0,1         | 60                                                   | 1.55               | 2,6                             |

| No | Состав                            |         | Толши           | Обрабатывае-<br>мый материал      | Режим               | резани   | Я           | Стойкость                                            |              | Повы-                           |
|----|-----------------------------------|---------|-----------------|-----------------------------------|---------------------|----------|-------------|------------------------------------------------------|--------------|---------------------------------|
| пп | насыша<br>ющей<br>среды,<br>вес.% |         | на слоя,<br>мкм |                                   | <i>V</i> ,<br>м/мин | Ł,<br>MM | S,<br>мм/об | пластин до<br>износа по<br>задней гра-<br>ни =0,8 мм | по<br>гра-   | шениє<br>стой-<br>кости,<br>раз |
|    |                                   |         |                 |                                   |                     |          |             | исход-<br>ная                                        | после<br>ХТО |                                 |
|    | Окись ни <b>о</b> -<br>бия        | 56      |                 | Чугун                             | 100                 | 2,0      | 0,2         | 6,0                                                  | 24 ·         | 4,0                             |
|    | <b>Винимо</b> и.А                 | 24      |                 | HB 235                            | 150                 | 2,0      | 0,2         | 2,0                                                  | 6,8          | 3,4                             |
|    | Хлористый<br>аммоний              |         | 8-12.           |                                   | 200                 | 2,0      | 0,2         | 1,0                                                  | 2,2          | 2,2                             |
|    | Окись алю-<br>миния               | -<br>19 | •               | Сталь<br>Ш <b>X</b> 15<br>НВ 330  | 60                  | 1,0      | 0,3         | 8,0                                                  | 19           | 2,4                             |
|    | ·                                 | ,       |                 | Титановый<br>сплав ВТ 8<br>НВ 315 | 60                  | 0,5      | 0,1         | 60                                                   | 132          | 2,2                             |

Из представленных данных можно сделать вывод, что предложенная среда обеспечивает следующие преимущества:

- 1. Использование типового термического оборудования, обеспечивающего получение температур 900-1100°C.
- 2. Более значительное по сравнению с известной средой повышение эксплуатационной стойкости режущего инструмен— 35

Предлагаемая среда обеспечивает повышение стойкости инструмента в 2,5 раз больше, чем известная среда.

Формула изобретения

Состав для ниобирования твердосилавного инструмента, включающий соедине-

ние ниобия, о т л и ч а ю щ и й с я тем, что, с целью повышения износостой-кости обрабатываемого инструмента и упрощения технологии, он дополнительно содержит алюминий, клористый аммоний и окись алюминия, а в качестве соединения ниобия окись ниобия при следующем соотношении компонентов, вес.%:

| Окись ниобия      | 36-56     |  |  |  |
|-------------------|-----------|--|--|--|
| Алюминий          | 10-24     |  |  |  |
| Хлористый аммоний | 1- 3      |  |  |  |
| Окись алюминия    | Остальное |  |  |  |

Источники информации, принятые во внимание при экспертизе 1. Сборник "Металлургия". Минск, 1973, с. 14-20.

Составитель Л. Бурлинова

Редактор Е. Братчикова Техред М. Келемеш Корректор М. Вигула
Заказ 610/24 Тираж 1074 Подписное

ЦНИИПИ Государственного комитета СССР

по делам изобретений и открытий

Филиал ППП "Патент", г.Ужгород, ул.Проектная, 4

113035, Москва, Ж-35, Раушская наб., д. 4/5