(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ЕВРАЗИЙСКОМУ ПАТЕНТУ

(45) Дата публикации и выдачи патента

2019.03.29

(21) Номер заявки

201650020

(22) Дата подачи заявки

2016.09.22

(51) Int. Cl. *C23C 4/10* (2016.01) **C23C 4/12** (2016.01)

(54) СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПЛОТНОГО КЕРАМИЧЕСКОГО ПОКРЫТИЯ

(43) 2018.03.30

(96) 2016/EA/0069 (BY) 2016.09.22

(71)(73) Заявитель и патентовладелец:

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ (BY)

(72) Изобретатель:

Руденская Наталия Александровна, Руденская Мария Владимировна (ВУ), Швейкин Геннадий Петрович (RU)

(56) BY-C1-17995 BY-C1-19377 JP-A-2009161789 KR-B1-100859672 US-A1-4492766

Изобретение относится к области нанесения газотермических покрытий, более конкретно - к (57) способам нанесения плазменных покрытий на детали, эксплуатируемые в условиях износа, высоких температур, коррозионных сред и ударных нагрузок. Задача предлагаемого технического решения состоит в создании покрытия, упрочненного высокобарными фазами стишовита и характеризующегося высокой плотностью в сочетании с высокой микротвердостью составляющих покрытие фаз. Поставленная задача достигается тем, что процесс ведут с использованием как дозвукового, так и сверхзвукового плазменного потоков и керамических микрокомпозитов с оболочкой из SiO₂ при соотношении компонентов оболочки и ядра 30-50 и 50-70 соответственно, при этом дисперсность частиц SiO₂ составляет менее 20 мкм.

Изобретение относится к области нанесения газотермических покрытий, более конкретно - к способам нанесения плазменных покрытий на детали, эксплуатируемые в условиях износа, высоких температур, коррозионных сред и ударных нагрузок.

Известен способ (аналог) получения износостойкого керамического покрытия с пористостью 1,2% [1]. В качестве материала основы используют керамику, плазмообразующим газом является азот и поддерживают ток дуги плазмотрона 450-550 А.

Недостатками известного способа являются недостаточно высокая микротвердость составляющих покрытие фаз в сочетании с недостаточно низкой пористостью напыленного слоя.

Задача предлагаемого технического решения состоит в создании покрытия, упрочненного высокобарными фазами стишовига и характеризующегося высокой плотностью в сочетании с высокой микротвердостью составляющих покрытие фаз.

Поставленная задача достигается тем, что процесс ведут с использованием как дозвукового, так и сверхзвукового плазменного потоков и керамических микрокомпозитов с оболочкой из SiO_2 при соотношении компонентов оболочки и ядра 30-50 и 50-70 соответственно, при этом дисперсность частиц SiO_2 составляет менее 20 мкм.

Таким образом, отличительными признаками заявляемого способа являются следующие: использование плазменных потоков дозвукового и сверхзвукового плазмотронов, состав и вид исходных микрокомпозитов, дисперсность материала оболочки микрокомпозитов.

Авторами предлагаемого технического решения обнаружен неизвестный ранее эффект упрочнения плазменных покрытий, сущность которого заключается в значительном повышении плотности материала покрытия и одновременно микротвердости составляющих покрытие фаз. Плазменные керамические покрытия, характеризующиеся пористостью 0,46-0,87% получены впервые.

Реализация предлагаемого процесса возможна при сочетании следующих условий. Использование плазменного потока для нагрева частиц и обеспечения высокой скорости их движения. Использование сверхзвукового плазмотрона позволяет увеличить количество стишовита до 8,3-12,6%, то есть в 1,2-5,7 раза. При этом пористость покрытий уменьшается в 1,26-2,17 раза с одновременным повышением микротвердости составляющих покрытие фаз в 1,12-1,48 раза.

Другим условием осуществления способа является вид и состав используемых для напыления микрокомпозитов. Это частицы сложного состава: с ядром из TiO_2 и Al_2O_3 и оболочкой из SiO_2 , при соотношении компонентов 30-50 и 50-70 соответственно. Это оптимальное соотношение, установленное экспериментально (см. табл.).

Еще одним условием осуществления способа является дисперсность частиц SiO_2 , используемых для изготовления микрокомпозитов, менее 20 мкм. Поскольку стишовит формируется из фазы SiO_2 , то именно частицы SiO_2 нужно интенсивно нагреть, а микрокомпозитам средней дисперсности придать высокую скорость движения. Интенсивный нагрев осуществляется в наружных объемах частиц. Именно при таких условиях и формируются высокобарные фазы в виде стишовита.

Оптимальным является использование сверхзвукового плазмотрона и микрокомпозитов, содержащих $50\%~{\rm SiO_2}$ в оболочке, при этом формируется слой, содержащий 12,6% стишовита, а пористость покрытия составляет 0,46-0,69% с микротвердостью составляющих покрытие фаз до $4700~{\rm kг/mm}^2$ при нагрузке $100~{\rm r}$.

Причину полученного результата можно объяснить следующим образом: в процессе напыления микрокомпозитов формируются высокобарные фазы стишовита, которыми упрочняется покрытие. Поскольку стишовит характеризуется высокой плотностью (на 60% плотнее кварца) и высокой твердостью, то и напыленные слои отличаются необычными свойствами.

Предлагаемый способ может быть осуществлен следующим образом.

Композиционный порошок готовят как микрокомпозиты в виде ядер, содержащих TiO_2 и Al_2O_3 , и оболочек из SiO_2 , причем оболочки формируются из частиц дисперсностью менее 20 мкм. Для напыления порошок подают в пдазменный поток, сформированный дозвуковым или сверхзвуковым плазмотроном, при мощности 47-52 KBA, плазмообразующий газ: смесь воздуха с природным газом в соотношении 4:1.

Пористость покрытий измеряют с помощью оптического микроскопа методом секущей и на электронном микроскопе.

Рентгенофазовые исследования покрытий проводят на трансмиссионном дифрактометре Stadi P и на приборе Bruker.

Пример 1. Для получения покрытия берут оксидный порошок дисперсностью 40-71 мкм, содержащий в оболочке 50 мас.% SiO_2 дисперсностью менее 20 мкм. Этот порошок подают по срез сопла дозвукового плазмотрона с целью напыления его на стальные образцы (Ст.3). В качестве плазмообразующего газа используют смесь воздуха и природного газа в соотношении 4:1, при мощности плазмотрона 47 КВА. Получают покрытие, содержащее 6,5 мас.% стишовита.

Пример 2. Для получения покрытия берут оксидный порошок дисперсностью 40-71 мкм, содержащий в оболочке 50 мас.% SiO_2 дисперсностью менее 20 мкм. Этот порошок подают по срез сопла сверхзвукового плазмотрона с целью напыления его на стальные образцы (Ст.3). В качестве плазмообразую-

щего газа используют смесь воздуха и природного газа в соотношении 4:1, при мощности плазмотрона 52 КВА. Получают покрытие, содержащее 12,6 мас.% стишовита.

Остальные примеры осуществления способа приведены в таблице.

Состав оболочки исходного порошка	Вид плазменного генератора	Количество высокобарной фазы – стишовита, %	Микротвердость, H_{100} , кг/мм ²	Пористость, %
20 % SiO2	дозвуковой	1,6		
30 % SiO2	дозвуковой	2,2	3179	}0,87-1
50 % SiO2	дозвуковой	6,5	3565	
65 % SiO2	дозвуковой	6,7	4023	}0, 46-0,69
30 % SiO2	сверхзвуковой	8, 3	4578	
50 % SiO2	сверхзвуковой	12,6	4700	

Таким образом, впервые получены высокоплотные плазменные покрытия, упрочненные высокобарными фазами в виде стишовита.

Источники информации:

1. Патент РБ № 17995. Способ получения износостойкого покрытия. Руденская Н.А., Соболев С.А., Соколова Н.В., Руденская М.В., Кравченко Н.Л. Опубл. 28.02.2014.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения высокоплотного керамического покрытия, заключающийся в том, что процесс ведут с использованием как дозвукового, так и сверхзвукового плазменного потоков и керамических микрокомпозитов с оболочкой из частиц SiO_2 при соотношении компонентов оболочки и ядра, в мас.%, 30-50 и 50-70 соответственно, при этом дисперсность частиц SiO_2 составляет менее 20 мкм.

