ДИСТАНЦИОННАЯ КАЛИБРОВКА ИЗМЕРИТЕЛЯ КОМПЛЕКСНЫХ КОЭФФИЦИЕНТОВ ПЕРЕДАЧИ И ОТРАЖЕНИЯ VNA 25-37

Асп. ТОЛОЧКО Т. К., кандидаты техн. наук, доценты ГУСИНСКИЙ А. В., КОСТРИКИН А. М.

Белорусский государственный университет информатики и радиоэлектроники

Назначение калибровочных лабораторий передача размеров единиц физических величин (ФВ) через калибровку потребителям. Для того чтобы соответствовать требованиям стандарта СТБ ИСО/МЭК 17025, методы передачи размеров единиц ФВ должны непрерывно совершенствоваться [1]. Одним из путей совершенствования является калибровка средств измерений (СИ) с использованием компьютерных сетей, которая находит все большее распространение благодаря малым срокам реализации таких услуг и снижению их стоимости. В статье рассмотрен пример реализации данного подхода дистанционная калибровка измерителя комплексных коэффициентов передачи и отражения VNA 25-37.

Измеритель изготовлен научно-исследовательской лабораторией аппаратуры и устройств СВЧ Белорусского государственного университета информатики и радиоэлектроники, которая специализируется на разработке автоматизированных средств измерений для качественной настройки и производства устройств миллиметрового диапазона длин волн, а также решает проблемы их метрологического обеспечения [2–5]. Отличительной особенностью приборов лаборатории является возможность проведения их дистанционной калибровки путем реализации технологии «клиент – сервер».

Порядок работы с системой, реализующей технологию «клиент – сервер». Технология «клиент – сервер» использует ТСР/IР протокол и состоит из двух частей: серверной части программного обеспечения (ПО), устанавливаемого на персональном компьютере (ПК), входящем в состав измерителя, а также клиентской части ПО, устанавливаемого на ПК метрологической службы (МС).

Связь и взаимодействие ПК измерителя и ПК МС может осуществляться по локальной

сети, сети Internet, а также по другим сетям, физически реализующим компьютерную сеть, поддерживающую протокол TCP/IP.

Порядок работы с системой, реализующей технологию «клиент-сервер», заключается в следующем. При установке ПО на ПК, входящий в состав измерителя, указывается тип установки *Custom*, а при выборе компонентов – *Server*. При установке ПО на ПК МС указывается тип установки – *Custom* и выбор компонентов – *Client*. После установки в папке «Программы» главного меню «Пуск» появляется папка *BSUIR & MWM lab*, а в ней – ярлык *VNA Server* для серверной части ПО и ярлык *VNA Client* – для клиентской части ПО.

После запуска программы сервера VNA Server на ПК измерителя появляются окно и ярлык в правом нижнем углу окна, сигнализирующий о состоянии сервера и позволяющий управлять им через контекстное меню. На рис. 1 приведен внешний вид окна сервера.

Рис. 1. Внешний вид окна сервера

В окне сервера находятся следующие управляющие элементы:

• кнопка *Start server* – приведение сервера в режим ожидания;

• кнопка *Stop server* – остановка сервера;

• флажок Auto-start server – возможность старта сервера автоматически при запуске программы; • кнопка *Hide* – скрытие окна программы, с возможностью восстановления через ярлык в правом нижнем углу;

• кнопка *Exit* – выход из программы с автоматической остановкой сервера;

• кнопка *Help* – вызов справки.

В окне сервера также располагаются информационные элемент, в том числе список *Clients IP* – информация об адресах подключившихся пользователей.

Для организации работы механизма «клиент – сервер» VNA со стороны сервера на ПК измерителя необходимо запустить программу VNA Server – нажать кнопку Start server.

После запуска программы *VNA Client* на ПК МС появляется окно (рис. 2).

Рис. 2. Внешний вид окна управления измерителем комплексных коэффициентов передачи и отражения VNA 25-37

В этом окне расположено меню Server, внешний вид которого приведен на рис. 3.

<u>C</u> onnect
Disconnect Connect options
<u>W</u> ith query

Рис. 3. Внешний вид меню Server

Меню *Server* служит для выбора параметров настройки соединения на ПК измерителя и содержит следующие пункты:

• *Connect* – установка соединения с сервером;

• *Disconnect* – разрыв соединения с сервером;

• *Connect options* – настройка параметров соединения.

При выборе этого пункта появляется окно, при помощи которого можно задать режим поиска сервера:

• по IP адресу – кнопка IP address;

• по имени – кнопка *Name* и организовать список наиболее используемых адресов и имен (рис. 4).

Connect options		×
Server • IP address	194 . 168 . 0 . 1]
C Name	main comp	
194.168.0.1 main comp	Add Remove Set active	
	OK Cancel	

Рис. 4. Внешний вид окна режима поиска сервера

При установке флажка *With query* при измерениях на сервере появляются запросы с картинками, аналогичными тем, которые возникают на ПК MC.

Для организации работы механизма «клиент – сервер» VNA со стороны клиента необходимо:

• запустить программу VNA Client;

• выбрать в меню Server пункт Connect options и в появляющемся окне ввести или IP адрес сервера, например 194.168.0.1, или имя сервера (только для локальных сетей), например «main comp»;

• выбрать в меню Server пункт Connect.

Признаками установления соединения служат:

• на сервере в списке *Clients IP* появляется адрес клиента;

• на дисплее ПК МС становятся доступными кнопки Setup, Calibration, Measurement и внизу окна в строке состояния появляется надпись вида Server IP: xxxxx, где xxxxx – имя или адрес сервера.

После этого система «клиент – сервер» VNA готова к проведению измерений. **Организация дистанционной калибров**ки. Дистанционная калибровка устраняет необходимость периодически посылать СИ в метрологическую службу для проведения калибровки. Вместо этого МС посылает потребителю эталонные меры и с помощью специализированного ПО, позволяющего сотруднику МС управлять СИ, проводит дистанционные измерения через компьютерные сети.

Для проведения дистанционной калибровки используются три основных компонента: СИ, ПО, эталонные меры (ЭМ).

Рассматриваемый измеритель комплексных коэффициентов передачи и отражения VNA 25-37 предназначен для автоматизированного измерения *S*-параметров волноводных устройств, имеющих волноводный канал сечением $7,2\times3,4$ мм в диапазоне частот 25,86–37,5 ГГц с цифровым отсчетом измеряемых величин и воспроизведением их частотных характеристик на экране ПК, входящего в состав измерителя. Внешний вид измерителя приведен на рис. 5.

Рис. 5. Внешний вид измерителя комплексных коэффициентов передачи и отражения VNA 25-37

ПО, используемое в измерителе, и компьютерные сети позволяют МС управлять измерителем, выбирать режим работы, форму отображения и документирования результатов измерений.

При проведении дистанционной калибровки измерителя VNA 25-37 в качестве мер модулей коэффициентов отражения и КСВН использовались волноводные нагрузки Э9-129, а в качестве мер коэффициентов передачи – аттенюатор поляризационный Д3-36А. Меры фазового сдвига НМФС-1 разработаны лабораторией и аттестованы в Белорусском государственном институте метрологии. Они представляют собой отрезки волноводов с фиксированной разностью длин, обеспечивающей разность фазовых набегов 90° и 180° на средней частоте диапазона. В диапазоне частот f = (25,86-37,5) ГГц применялись меры длиной 5,00 ± 0,01 мм и 6,60 ± 0,01 мм (для воспроизведения фазового набега 90°) и меры длиной 5,00 ± 0,01 мм и 8,23 ± 0,01 мм (для воспроизведения фазового набега 180°) [6].

Зависимости воспроизводимых фазовых сдвигов приведены на рис. 6.

Рис. 6. График зависимости $\phi_{o(n)}$ от частоты в диапазоне 25,86–37,5 ГГц

Результаты, полученные при дистанционной калибровке. При оформлении результатов калибровки метрологической службой составляется протокол, который содержит информацию о калибруемом СИ, эталонных СИ, условиях проведения калибровки, результаты наблюдений, расчет неопределенности результатов измерений.

Так как при калибровке в соответствии с требованиями [7] рассчитываются неопределенности результатов измерений, приведем алгоритмы и результаты отдельных расчетов для измерителя VNA 25-37.

Расчет неопределенности измерения КСВН. Математическая модель измерения при определении неопределенности измерения КСВН имеет следующий вид:

$$K_{CTU} = K_{CTU_{\mathrm{H}}} + \Delta_{\mathrm{yT}} + \Delta_{\mathrm{kB}} + \Delta_{\mathrm{pac}}, \qquad (1)$$

где K_{CTU} – действительное значение КСВН; $K_{CTU\mu}$ – показание калибруемого измерителя VNA 25-37; Δ_{3T} – неопределенность, обусловленная неидеальностью меры КСВН; $\Delta_{\text{кв}}$ – неопределенность из-за конечного разрешения калибруемого измерителя VNA 25-37; $\Delta_{\text{рас}}$ – неопределенность, обусловленная рассогласованием в измерительном тракте.

Анализ входных величин представлен в табл. 1. Результаты экспериментальных иссле-

дований приведены на рис. 7, 8. На рисунках штриховыми линиями показаны границы, в рамках которых находятся неопределенности результатов измерений.

Таблица 1

Входная величина		
	Тип неопределенности	A
	Вид распределения	Нормальное
К _{СТИн}	Оценка величины	$\overline{K}_{CTU_{\rm H}} = \frac{1}{n} \sum_{i=1}^{n} K_{CTU_{\rm H}i},$
	где К _{СТИиі} – результат і-го наблю n – количество наблюдений	одения;
	Стандартная неопределенность	$u(\bar{K}_{CTU_{\rm H}}) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (K_{CTU_{\rm H}i} - \bar{K}_{CTU_{\rm H}})^2}$
	Тип неопределенности	В
	Вид распределения	Прямоугольное
	Оценка величины	0
Δ	Интервал, в котором находится	значение входной величины: $\pm a_1$,
Tet	из руководства по эксплуата	ции (РЭ) мер КСВН
	Стандартная неопределенность	$u(\Delta_{3T}) = \frac{a_1}{\sqrt{3}}$
	Тип неопределенности	В
	Вид распределения	Прямоугольное
	Оценка величины	0
	Интервал, в котором находится	значение входной величины: $\pm a_2$,
Δ_{kb}		где <i>a</i> ₂ – 1/2 единицы младшего разряда
		калибруемого измерителя
	Стандартная неопределенность	$u(\Delta_{\rm KB}) = \frac{a_2}{\sqrt{3}}$
$\Delta_{ m pac}$	Тип неопределенности	В
	Вид распределения	Арксинусоидальное
	Оценка величины	0
	Интервал, в котором находится из ГОСТ 20271.1-91	значение входной величины: $\pm a_3$,
	Стандартная неопределенность	$u(\Delta_{\text{pac}}) = \frac{a_3}{\sqrt{2}}$

Рис. 7. График зависимости $K_{CTU} \pm U_{K_{CTU}}$ (k = 1,41; p = 95 %) от частоты в диапазоне 25,86–37,5 ГГц, эталонная мера с $K_{CTU} = 1,4$

Рис. 8. График зависимости $K_{CTU} \pm U_{K_{CTU}}$ (k = 1,41; p = 95 %) от частоты в диапазоне 25,86–37,5 ГГц, эталонная мера с $K_{CTU} = 2,0$

Расчет неопределенности измерения ослабления. Математическая модель измерения при определении неопределенности измерения ослабления имеет следующий вид:

$$A = A_{\mu} + \Delta_{\rm эт} + \Delta_{\rm кв} + \Delta_{\rm pac}, \, дБ,$$
(2)

где A – действительное значение ослабления, дБ; A_{μ} – показание калибруемого измерителя VNA 25-37, дБ; $\Delta_{\rm эт}$ – неопределенность, обусловленная неидеальностью эталонного аттенюатора, дБ; $\Delta_{\kappa B}$ – неопределенность из-за конечного разрешения калибруемого измерителя VNA 25-37, дБ; Δ_{pac} – неопределенность, обусловленная рассогласованием в измерительном тракте, дБ.

Анализ входных величин представлен в табл. 2.

Результаты экспериментальных исследований приведены на рис. 9, 10.

Таблица	2
тиолици	4

		1 <i>u0</i> лици 2
Входная величина		
	Тип неопределенности А	
	Вид распределения Нормальное	
	Оценка величины $\overline{A} = \frac{1}{2} \sum A$	
	$n_{\rm W} = n \sum_{i=1}^{n_{\rm W}} n_{i}$	
A_{μ}	гле A_{i} – результат <i>i</i> -го наблюления лБ	
	$n = \kappa_0 \pi u = r = 0$ наблюдения, дв,	
	Стандартная неопределенность $u(\overline{A}) = \left(\frac{1}{\sqrt{2}}\sum_{n=1}^{n} (A_{n} - \overline{A})^{2}\right)^{2}$	
	$\sqrt{n(n-1)\sum_{i=1}^{n}(x_{ii}-x_{ij})}$	
	Тип неопределенности В	
	Вид распределения Прямоугольное	
	Оценка величины 0	
^	Интервал, в котором находится значение входной величины: $\pm a_4$,	
Δ_{3T}	из РЭ аттенюатора	
	<i>a</i>	
	Стандартная неопределенность $u(\Delta_{3T}) = \frac{4}{\sqrt{3}}$	
	Тип неопределеницости В	
	Вил распределенности В	
	Оценка величины 0	
Δ_{rp}	Интервал в котором нахолится значение вхолной величины: +a _c	
	гле $q_5 - 1/2$ елиницы млалшего разряла	
12	калибруемого измерителя	
	Стандартная неопределенность $u(\Delta_{\text{кв}}) = \frac{u_5}{\sqrt{2}}$	
	$\sqrt{3}$	
$\Delta_{ m pac}$	Рип всопределенности – В	
	Оценка релиции 0	
	из ГОСТ 20271.1–91	
	a	
	Стандартная неопределенность $u(\Delta_{\text{pac}}) = \frac{\omega_{6}}{\sqrt{2}}$	
	$\sqrt{2}$	

Рис. 9. График зависимости $A \pm U_A$ (k = 2,0; p = 95 %) от частоты в диапазоне 25,86–37,5 ГГц, установленное значение ослабления A = 10 дБ

Рис. 10. График зависимости $A \pm U_A$ (k = 2,0; p = 95 %) от частоты в диапазоне 25,86–37,5 ГГц, установленное значение ослабления A = 30 дБ

Расчет неопределенности измерения фазы коэффициента передачи. Математическая модель измерения при определении неопределенности измерения фазы коэффициента передачи имеет следующий вид:

$$φII = φIII + ΔэT + ΔKB + Δpac, град,$$
(3)

где фп – действительное значение фазы коэффициента передачи, град; фпи – показание калибруемого измерителя VNA 25-37, град; Д_{эт} –

неопределенность, обусловленная неидеальностью МФС, град; $\Delta_{\kappa B}$ – неопределенность из-за конечного разрешения калибруемого измерителя VNA 25-37, град; Δ_{pac} – неопределенность, обусловленная рассогласованием в измерительном тракте, град.

Анализ входных величин представлен в табл. 3.

Результаты экспериментальных исследований приведены на рис. 11, 12.

Входная величина		
	Тип неопределенности	A
	Вид распределения	Нормальное
	Оценка величины	$\overline{\phi}_{nn} = \frac{1}{n} \sum_{i=1}^{n} \phi_{nni},$
Ф _{пи}	где ф _{пиі} – результат і-го наблю <i>n</i> – количество наблюдений	дения, град;
	Стандартная неопределенности	ь $u(\overline{\varphi}_{\mathrm{пи}}) = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} (\varphi_{\mathrm{пи}i} - \overline{\varphi}_{\mathrm{пи}})^2}$
	Тип неопределенности	В
	Вид распределения	Прямоугольное
	Оценка величины	0
$\Delta_{ m \tiny 9T}$	Интервал, в котором находится	я значение входной величины: ± <i>a</i> ₇ , из РЭ МФС
	Стандартная неопределенности	$b u(\Delta_{3T}) = \frac{a_7}{\sqrt{3}}$
	Тип неопределенности	В
	Вид распределения	Прямоугольное
	Оценка величины	0
	Интервал, в котором находится	я значение входной величины: $\pm a_8$,
$\Delta_{\rm KB}$		где $a_8 - 1/2$ единицы младшего разряда
		калиоруемого измерителя
	Стандартная неопределенности	$\int_{\Delta} u(\Delta_{\rm KB}) = \frac{a_8}{\sqrt{3}}$
	Тип неопределенности	В
$\Delta_{ m pac}$	Вид распределения	Арксинусоидальное
	Оценка величины	0
	Интервал, в котором находится из ГОСТ 20271.1–91	я значение входной величины: $\pm a_9$,
	Стандартная неопределенности	$b \ u(\Delta_{\rm pac}) = \frac{a_9}{\sqrt{2}}$

Рис. 11. График зависимости
 $\phi \pm ~U_{\phi_{\rm n}}~(k$ = 1,65; p = 95 %) от частоты в диапазоне 25,86-37,5 ГГц при воспроизвеот частоты в диапазоне 25,86-37,5 ГГц при воспроизведении фазового набега 90° на средней частоте дении фазового набега 180° на средней частоте

240,000

200,000

ф, град

Вестник БНТУ, № 5, 2007

37,5

вывод

Реализация метода дистанционной калибровки средств измерений предоставляет возможность оперативного проведения метрологических работ, повышает производительность за счет уменьшения времени калибровки и одновременной калибровки нескольких средств измерений, автоматизирует и систематизирует учет реального состояния средств измерений.

Вопрос разработки нормативных документов для дистанционной калибровки приобретает актуальность как на уровне национального метрологического законодательства, так и через внедрение специальных требований в международные и региональные стандарты.

ЛИТЕРАТУРА

1. **Общие** требования к компетентности испытательных и калибровочных лабораторий: СТБ ИСО/МЭК 17025.

2. Новые средства радиоизмерений в миллиметровом диапазоне длин волн / А. В. Гусинский [и др.] // Метрология и приборостроение. – 2004. – № 1. – С. 38–43.

3. Гомодинные анализаторы СВЧ цепей коротковолновой части миллиметрового диапазона длин волн / А. В. Гусинский [и др.] // Известия Белорусской инженерной академии. – 1999. – № 1 (7)/1. – С. 41–43.

4. **Измеритель** коэффициентов передачи и отражения трехмиллиметрового диапазона длин волн / А. В. Гусинский [и др.] // Известия Белорусской инженерной академии. – 2002. – № 2 (14)/2. – С. 18–19.

5. Свирид, М. С. Автоматическая калибровка векторного анализатора цепей / М. С. Свирид, А. В. Гусинский, А. М. Кострикин // СВЧ-техника и телекоммуникационные технологии: материалы 14-й Междунар. конф. – Севастопаль, 2004. – С. 628–629.

6. Галыго, А. В. Метрологическое обеспечение векторных анализаторов цепей в диапазоне частот (25,86–37,5) ГГц. / А. В. Галыго // Метрология и измерительная техника: материалы конф. – Харьков, 2006. – Т. 1. – С. 247–255.

7. Ефремова, Н. Ю. Оценка неопределенности в измерениях / Н. Ю. Ефремова. – Минск: БелГИМ, 2003.

Поступила 9.06.2007

УДК 621.319.4

ЭЛЕКТРОЕМКОСТНЫЕ ДАТЧИКИ С КОЛЬЦЕВЫМИ ЭЛЕКТРОДАМИ

Канд. техн. наук, доц. ДЖЕЖОРА А. А.

Витебский государственный технологический университет

Датчики (первичные преобразователи) являются основной частью любого измерительного устройства. Обоснованный выбор конструкции и параметров первичного преобразователя позволяет определять метрологические характеристики всего измерительного устройства, решает вопросы осуществимости технического решения поставленной задачи. Исследование первичных преобразователей, оптимизация их конструкций возможны либо физическим, либо математическим моделированием преобразователя и объекта контроля. Эти исследования часто характеризуются значительным объемом,

я вимым. Поэтому основная нагрузка накладывается на математическое моделирование. Математическое моделирование неразрывно связано о с широким использованием различных методов и средств математики, с огромным количеством вычислений и расчетов, использованием специализированных программ. В статье дается расчет математической мо-

в статье дается расчет математической модели кольцевого первичного преобразователя для достаточно общего случая, когда объектом

трудоемкостью и затратностью, что с учетом

сложности структуры объектов контроля дела-

ет физическое моделирование трудноосущест-