Использование MPC в качестве демпфера влечет за собой распределение энергии колебания по частотам кратным частоте собственных колебаний системы. Если воздействие нелинейности механической возвращающей силы проявляется только в областях смещений соизмеримых с Q, то воздействие нелинейности силы гидродинамического сопротивления проявляется во всем диапазоне скоростей сдвига и более существенно там, где неньютоновские свойства жидкости максимальны, т.е. при больших значениях эффективной вязкости MPC.

ЛИТЕРАТУРА

1. Reizina, C. M. Dinamics of vibrotesting system when using controlled damping fluids with hereditary factor. / C. M. Reizina, A. Bubulis, E. V. Korobko, G. K. Voronovich // JVE International Ltd.Vibroengineering PROCEDIA. October 2014.Volum 3. ISSN 2345 – 0533.

2. Шульман, З. П Магнитореологический эффект / З. П. Шульман, В. И. Кордонский — Мн.: техника, 1982. – 85с.

3. Варгафтин, И. В. Теплофизические свойства веществ: справочник. –Госэнергоиздат, 1959. – 369 с.

4.Сапожков, Н. А. Электроакустика. – М.: Связь. 1978. – 272 с.

5. Шульман, З. П. Нестационарные процессы конвективного переноса в наследственных средах. / З. П. Шульман, Б. М. Хусид — Мн.: Наука и техника, 1983. – 256 с.

6. Кордонский, В. И Теплообмен звуковой катушки динамического громкоговорителя с магнитным зазором заполненным МРС / В. И. Кордонский, В. И. Кузьмин, К. И. Щекинова — Магнитная гидродинамика, 1984. №2. – С.127–132.

УДК 539.2:669.(6-8)

Гольцев М.В.¹, Белая О.Н.¹, Неумержицкая Е.Ю.², Шепелевич В.Г.³ МИКРОСТРУКТУРА БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВА In₄₄Sn₅₃Zn₃

1. Белорусский государственный медицинский университет

2. Белорусский национальный технический университет

3. Белорусский государственный университет

Минск, Беларусь

Фольги сплава In₄₄Sn₅₃Zn₃, полученные высокоскоростным затвердеванием, состоят из β- и γ-фаз и дисперсных частиц цинка, размер которых не превышает 1 мкм. Фольги имеют микрокристаллическую структуру и текстуру (101) β-фазы и (0001) γ-фазы. Для фольг исследуемого сплава образование текстуры особенно важно из-за того, что β-фаза имеет тетрагональную кристаллическую решетку, а кристаллическая решетка γ-фазы и цинка является простой гексагональной.

В связи с ограничением применения в электронной промышленности свинца, изза его высокой токсичности, в настоящее время широко изучаются сплавы, в которых свинец заменяется висмутом, индием, цинком [1-3]. Однако из-за высокой стоимости указанных компонентов по сравнению со стоимостью свинца целесообразно, при изготовлении легкоплавких сплавов, применять энерго- и ресурсосберегающие технологии. К таким технологиям относится, например, высокоскоростное затвердевание [4–6], которое позволяет создать микроструктуру и обеспечить механические свойства сплава, недостижимые при использовании традиционных технологий получения и обработки сплавов [5]. В работе исследована микроструктура быстрозатвердевших фольг сплава системы In–Sn, по составу близкому эвтектическому и содержащего дополнительно цинк, перспективного в качестве бессвинцового легкоплавкого припоя с температурой плавления, близкой к 120 °C.

Сплав In-Sn-Zn получен сплавлением компонентов, чистота которых не менее 99,99 %, в кварцевых ампулах. Затем из них изготовлены фольги путем центробежной кристаллизации капли расплава на внутренней полированной поверхности быстровращающегося медного цилиндра диаметром 20 см. Скорость охлаждения расплава, как показал расчет [5], находится в пределах 10⁵...10⁶ К/с. В результате кристаллизации получались фольги длиной до 10 см, шириной до 1 см и толщиной (20...80) мкм. В слое фольги, прилегающем к поверхности А, контактирующей с поверхностью кристаллизатора, и в слое, прилегающем к противоположной поверхности фольги В, концентрации компонентов отличаются не более, чем на 1 % от средних значений: In – 43,9; Sn – 52,9 и Zn – 3,2 ат. %. В дальнейшем сплав будет обозначаться In44Sn53Zn3. Концентрации олова и индия в исследуемом сплаве и эвтектике отличаются примерно на 6 и 9 ат. % соответственно. Исследование микроструктуры фольг проведено с помощью растрового электронного микроскопа LEO 1455VP, имеющего приставку для проведения рентгеноспектрального микроанализа. Определение объемной доли фаз и удельной поверхности межфазных границ быстрозатвердевших фольг сплава In44Sn53Zn3 осуществлено метолом секуших [7]. Погрешность измерения параметров микроструктуры равна 8%. Текстура исследована рентгеноструктурным анализом, используя дифрактометр ДРОН-3, с помощью обратных полюсных фигур. Полюсные плотности дифракционных линий рассчитаны методом Харриса [8]. Рентгеноструктурным анализом при исследовании быстрозатвердевших фольг установлено наличие дифракционных отражений β-фазы (In₃Sn) (002, 200, 202 и др.), дифракционных отражений у-фазы (InSn₄) (0001, 1010, $10\overline{1}\overline{2}$ и др.) и слабых дифракционных отражений цинка (0002, $10\overline{1}2$, $10\overline{1}0$ и др.), т.е., быстрозатвердевший сплав In44Sn53Zn3 состоит из β-фазы, γ-фазы и цинка.

Изображение микроструктуры поверхности фольги *A*, прилегающей к кристаллизатору, сплава In₄₄Sn₅₃Zn₃ через 5 ч после ее изготовления приведено на рисунке 1. На сером фоне наблюдаются темные дисперсные выделения, многие из которых имеют вытянутую форму.

Рис.1. Изображение микроструктуры поверхности А фольги сплава In44Sn53Zn3

Результаты определения фазового состава быстрозатвердевшего сплава подтверждаются рентгеноспектральным микроанализом. На рис. 2 представлено распределение интенсивности спектральных линий $L_{\alpha 1}$ компонентов при сканировании поверхности электронным пучком. Участки с максимальными концентрациями индия и олова соответствуют β-фазе и γ-фазе соответственно. Максимумы в распределении цинка соответствуют темным частицам, линейный размер которых не превышает 1 мкм.

Рис. 2. Распределение интенсивности линий L_{α1} компонентов при сканировании поверхности электронным пучком

Параметры микроструктуры быстрозатвердевшей фольги, определенные через 5 ч. после изготовления фольги, представлены в таблице 1. Их значения на поверхности *A* и *B* различаются в пределах погрешности. Объемная доля выделений цинка составляет 1. Часть цинка находится в β - и γ -фазах, образуя твердый раствор. С течением времени выдержки быстрозатвердевшей фольги при комнатной температуре наблюдается увеличение объемной доли выделений цинка благодаря распаду твердых растворов на основе β - и γ -фаз [9]. Средняя длина хорд dZn сечений частиц цинка увеличивается со временем выдержки фольг при комнатной температуре. Выделения цинка имеют преимущественно форму тонких пластинок. Отношение их максимальной и минимальной хорд сечения достигает пяти. Многие рядом расположенные пластины либо параллельны, либо расположены под определенным углом, что свидетельствует о их зарождении и росте после кристаллизации β - и γ -фаз. Многие частицы цинка, располагаясь на границах основных фаз, декорируют их. Удельная поверхность межфазной границы цинка с β - и γ -фазами SZn- \ni \approx 0,2 мкм-1и со временем выдержки при комнатной температуре увеличивается.

Параметры микро-	Поверхность фольги		
структуры	A	В	
VZn	0,009	0,010	
dZn, мкм	0,17	0,19	
SZn-э, мкм-1	0,22	0,21	

Таблица 1 – Параметры микроструктуры фольги сплава In44Sn53Zn3

Быстрозатвердевшие фольги исследуемого сплава In₄₄Sn₅₃Zn₃ являются микрокристаллическими, при этом средний размер зерен не превышает 10 мкм. Среди факторов, определяющих свойства сплавов, большое значение имеет текстура. Для фольг исследуемого сплава образование текстуры особенно важно из-за того, что β-фаза имеет тетрагональную кристаллическую решетку, а кристаллическая решетка γ-фазы и цинка является простой гексагональной. В таблице 2 приведены полюсные плотности дифракционных линий β- и γ-фаз соответственно. При этом рентгеновское излучение падало на поверхности A и B исследуемой фольги.

Дифракционные линии β-фазы	Поверхности фоль- ги		Дифракционные	Поверхности фольги	
	А	В	линии ү-фазы	А	В
002	0,2	0,6	1011	0,2	0,6
102	0,0	0,0	1120	0,3	0,4
200	0,7	1,7	0002	5,7	3,9
201	2,2	1,7	1121	0,2	0,4
202	2,6	1,2	2020	0,3	0,5
220	0,3	0,8	1012	0,2	0,8
-	-	-	2021	0,1	0,3

Таблица 2 – Значения полюсных плотностей дифракционных линий β- и γ-фазы сплава In44Sn53Zn3

Наибольшей полюсной плотностью характеризуются дифракционные линии (202) β-фазы и (0002) γ-фазы. Таким образом, высокоскоростное затвердевание сплава In₄₄Sn₅₃Zn₃ вызывает формирование четкой текстуры (0001) γ-фазы и слабовыраженной текстуры (202) β-фазы. Аналогичные текстуры β- и γ-фазы наблюдались при высокоскоростном затвердевании сплавов, состоящих только из β- и γ-фаз [10, 11].

Формирование текстур в фазах исследуемого сплава можно объяснить в рамках теории необратимых процессов. Из-за значительного переохлаждения расплав находится в состоянии со значительным избытком энтальпии. Согласно принципу максимальной скорости работы сил диссипации, рассмотренным Г. Циглером [12], переход переохлажденного расплава в равновесное состояние идет таким путем, чтобы скорость понижения энтальпии сплава в процессе кристаллизации должна быть максимальной. Поэтому направление кристаллизации, совпадающее с направлением теплоотвода, должно быть перпендикулярным к наиболее плотноупакованным плоскостям, имеющим наибольшее межплоскостное расстояние. Выполнение этого принципа было подтверждено при исследовании текстуры в металлах, имеющих гранецентрированную кристаллическую решетку [13, 14].

Фольги сплава In₄₄Sn₅₃Zn₃, полученные высокоскоростным затвердеванием, состоят из β - и γ -фаз и дисперсных частиц цинка, размер которых не превышает 1 мкм. Фольги имеют микрокристаллическую структуру и текстуру (101) β -фазы и (0001) γ -фазы.

ЛИТЕРАТУРА

1. Андрющенко, М. Бессвинцовая пайка. Альтернативные сплавы. / М. Андрющенко // Электроника: наука, техника, бизнес. – 2004. – № 5. – С. 47–49.

2. Ochoa, F. Effect of cooling rate on the microstructure and mechanical behavior of Sn-3.5 Ag Solder / F. Ochoa, J.J. Williams, N. Chawla // JOM. – 2003. – V.55, № 6. – P. 56–60.

3. Hui-Wei, Miao. Thermal cycling test in Sn-Bi and Sn-Bi-Cu solder joints / Miao Hui-Wei, Duh. Jenq-Gong // J. of materials science: materials in electronics. – 2000. – V. 11. – P. 609–618.

4. Высокоскоростное затвердевание расплавов (теория, технология и материалы) / [В. А. Васильев, Б. С. Митин, И. Н. Пашков и др.]. — М.: СП ИНТЕРМЕТ ИНЖИНИРИНГ. – 1998. – 400 с.

5. Мирошниченко, И. С. Закалка из жидкого состояния / И. С. Мирошниченко// М.: Металлургия/ — 1982. – 168 с.

6. Шепелевич, В. Г. Быстрозатвердевшие легкоплавкие сплавы / В. Г. Шепелевич // Минск: БГУ – 2015. – 192 с.

7. Салтыков, С. А. Стереометрическая металлография / С. А. Салтыков// М.: Металлур-гия. – 1976. – 272 с.

8. Русаков, А. А. Рентгенография металлов / А. А. Русаков// М.: Атомиздат. – 1977. – 480 с.

9. Шепелевич, В. Г. Структура и механические свойства быстрозатвердевших фольг сплава Sn-14 ат. % In-6,5 ат. % Zn / В. Г. Шепелевич, Е. С. Метто, С. В. Гусакова, О. В. Гусакова // Материалы 10-й Международной научно-техн. конф. «Приборостроение-2017» (1–3 ноября 2017 г., Минск, Республика Беларусь). — Минск: БНТУ, 2017. – С. 244–246.

10. Ван Цзинцзе. Структура быстрозатвердевшей β-фазы системы In–Sn / Ван Цзинцзе, В. Г. Шепелевич // Вестник БГУ. Сер. 1. – 2010. – (№ 3). – С. 27 – 29.

11. Ван Цзинцзе. Структура и микротвердость быстрозатвердевшей γ-фазы системы In–Sn / Ван Цзинцзе, В. Г. Шепелевич // Вестник БГУ. Сер. 1. – 2011. – (№ 1). – С. 22–24.

12. Циглер, Г. Экстремальные принципы термодинамики необратимых процессов в механике сплошной среды / Г. Циглер // М.: Мир. 1966. – 136 с.

13. Li, D. Y. A Possible Pole for Surface Packing Density in the Formation of (111) Texture in Solidified FCC Metals / D. Y. Li, J. A. Szpunar // J. Mater. Sci. Lett. 1994. — Vol. 13.- P. 1521 - 1523.

14. Shepelevich, V. G. Texture of rapidly solidified foils of aluminium and its alloys / V. G. Shepelevich, P. A. Sivtsova, E. Yu. Vasilevich, E. S. Gutko // J. of Alloys and Compounds. 2005. — Vol. 403. – P. 265–269.

УДК629.621.432.691.9.048.4

Чигринова Н.М., Мир СадриСейеда Амин ИССЛЕДОВАНИЕ ПРОЦЕССА ПОЛУЧЕНИЯ ПОКРЫТИЙ РАЗЛИЧНОЙ ЦВЕТОВОЙ ГАММЫ МЕТОДОМ АНОДНОГО МИКРОДУГОВОГО ОКСИДИРОВАНИЯ

Белорусский национальный технический университет

Минск, Беларусь

В данной работе представлены результаты литературного обзора по возможности использования метода анодного микродугового оксидирования для формирования покрытий различной цветовой гаммы и приведены некоторые составы красящих пигментов, способных повлиять на цвет покрытия, не снижая химическую активность электролита.

Ключевые слова: АМДО, состав электролита, пигменты, покрытия.

Введение и постановка проблемы

Известные и широко применяемые в настоящее время технологии создания защитных покрытий – газопламенные, плазменные, ионно-плазменные методы, лазерная обработка, воздействие на поверхность сильнотоковыми электронными пучками, механическое легирование, твердое хромирование, не позволяют получать разноокрашенные поверхностные слои [1–3].

Получить цветные покрытия на поверхности металлических объектов возможно в случае применения гальванических методов. Однако, большинство из них – цинкование, кадмирование, меднение, хромирование, никелирование являются не только вредными, но и не гарантируют получения покрытий толщинами более 50–70 мкм и их адгезия к поверхности часто не удовлетворяет необходимым эксплуатационным требованиям. При создании гальванических покрытий на обрабатываемой поверхности образуются металлические пленки толщиной от долей мкм до десятых долей мм, наносимой