ЛИТЕРАТУРА

1.Hrininh K. Investigation the processof super fineg rindin gof component sof pharmaceutica land cosmetic p roductson the bead mill/ K. Hrininh, R. Hordeichuk, O. Gubenia // Proceedings of University of Ruse. – 2018. – Volume 57, Book 10.3.

2. Mende S. Rapl M. Mill performance matched to the task. Throughput enhanced by optimizing cooling and disc configuration // European Coatings Journal. – 2014. – N 12. pp. 88–91.

3. Postma P.R., Suarez-Garcia E., Safi C., Yonathan K., Oliveiri G., Barbosa M.J., Wijffels R.H., Eppink M.H.M. Energy efficient bead milling of microalgae: Effect of bead size on disintegration and release of proteins and carbohydrates // Bioresource Technology. – 2017. – Volume 224. – P. 670-679.

4.Кузнецова М.М., Мараховский М.Б., Алексина А.А. Определение энергозатрат процесса измельчения твердых материалов / М.М. Кузнецова, М.Б. Мараховский, А.А. Алексина // Журнал технической физики. – 2015. – Том 85. - № 5. – С. 145–147.

5. Кустова С.П., Бойко М.О. Розробка технології мазі Фенсукциналу // Сучасна фармацевтична технологія. – 2011. -№5 (16). – с. 71-74.

УДК. 621.891:621.793

ВЛИЯНИЕ ПАРАМЕТРОВ ЛАЗЕРНОЙ ОБРАБОТКИ НА ФАЗОВЫЙ СОСТАВ, МИКРОТВЕРДОСТЬ И ИЗНОСОСТОЙКОСТЬ ПОКРЫТИЙ ИЗ НЕРЖАВЕЮЩИХ СТАЛЕЙ

канд. техн. наук, доцент, **О.В. Дьяченко, С.М. Криуша,** ФММП БНТУ, г. Минск,

канд. техн. наук, доцент М.А. Кардаполова, ОНИЛ «Плазменные и лазерные технологии» БНТУ, г. Минск

Резюме - исследовано влияние режимов лазерной обработки на фазовый состав, микротвердость и износостойкость покрытий из нержавеющей стали без и после легирования аморфным бором и B₄C.

Ключевые слова: лазерная обработка, фазовый состав, легирование, микротвердость, интенсивность изнашивания.

Введение. Детали с покрытиями из нержавеющей стали хорошо зарекомендовали себя в условиях работы в агрессивных средах. Основным их недостатком является пониженная твердость и износостойкость.

Одним из методов данной проблемы является использование комбинированной технологии, включающей плазменное напыление диффузионно-легированного бором порошка ПР-Х18Н9 на основе аустенитной стали. Полученные покрытия обладают гомогенной структурой и благодаря лазерной обработке возможно управлять их свойствами. Данный метод предусматривает длительное, 3 – 5 часовое диффузионное борирование порошка из стали ПР-Х18Н9 [1]. На основании ранее проведенных экспериментальных исследований была предпринята попытка получения износостойких беспористых покрытий из шликерных обмазок [2, 3]. В процессе лазерного легирования происходит расплавление обмазки и части материала подложки. После остывания формируется зона упрочнения, состоящая из зоны затвердевшего металла и зоны термического влияния, представляющая собой область закаленного металла. Свойства зоны легирования зависят от концентрации легирующих элементов и получения фаз различной степени стабильности и дисперсности, образующихся в процессе охлаждения. Режимы лазерного облучения: плотность мощности излучения и его диаметр, а также концентрация легирующих компонентов в обмазке определяют строение и состав зоны термического влияния [4, 5]. На интенсивность изнашивания покрытий из порошков на железной основе могут оказывать влияние режимы лазерной обработки, а также дополнительное легирование [3, 6] Целью работы является изучение влияния параметров лазерной обработки и дополнительного легирования В_{АМ} и В4С на фазовый состав, микротвердость и износостойкость покрытий из нержавеющей стали AISI 316Lsi.

Основная часть. Исследованию подвергали образцы из стали 3, на которую методом гиперзвуковой металлизации (ГМ) наносили нержавеющую сталь AISI 316Lsi. Напыление осуществляли при помощи установки AMД-10. В состав установки входили метализационный аппарат, пульт управления и блок коммутации. Давление сжатого воздуха 0,45...0,6 МПа при давлении пропан-бутана 0,25...0,4 МПа. Проволока для напыления d = 1,6 мм. Толщина нанесенного слоя составила 0,6 мм. Использовали покрытие из нержавеющей стали AISI 316Lsi без и с нанесенным слоем легирующих обмазок B_{AM} и B_4C . Оплавление образцов осуществляли лазером ЛГН-702 мощностью N = 800 Вт при диаметре пятна лазерного луча от 1 до 2 мм со скоростями перемещения от 100 мм/мин до 1500 мм/мин. Для исследования фазового состава использовался рентгеновский дифрактометр ДРОН – 3,0,при скорости поворота образца 1 град/мин в медном монохроматизированном излучении в максимально возможном интервале углов от 10° до 75° для качественного и количественного фазового анализа. Микротвердость исследовали на приборе ПМТ-3 путем вдавливания в испытуемый образец четырехгранной алмазной пирамиды с углом при вершине 136° при нагрузке 100 г (0,98 H) (ГОСТ 9450 – 76). Интенсивность изнашивания измерялась для трех видов оплавленных лазером покрытий: без легирования, легированных B_{AM} и B_4C . Покрытия оплавлены на скоростях от 100 до 1500 мм/мин. Нагрузка составила 11,17 H, время испытания 10 мин. Использовано по пять образцов для каждого вида покрытий.

Результаты определения фазового состава нержавеющей проволоки AISI 316Lsi в состоянии поставки отображены на рисунке 1.

Рисунок 1– Диаграмма распределения количества легирующих элементов сварочной нержавеющей проволоки AISI 316Lsi .

Рентгеновский фазовый анализ покрытия из нержавеющей стали AISI 316Lsi без лазерного легирования и с легированием B₄C представлен на рисунке 2, 3.

Рисунок 2 – Результаты фазового анализа напыленного покрытия AISI 316Lsi без лазерного легирования

Рисунок 3- Легированного покрытия B₄C на основе из нержавеющей стали AISI 316Lsi

Полученные результаты показывают, что основной фазовый состав напыленного слоя (рисунок 2) составляет γ-Fe (аустенит), δ-FeCr и карбиды (CrFe₇)C₃. Можно предположить, что при гиперзвуковой металлизации происходит выгорание и окисление в виде черных прослоек (на рисунке 4 выделено стрелками).

Рисунок 4 - Напыленный слой AISI 316Lsi без легирования

После лазерной обработки состав легированного слоя меняется и состоит из α -Fe, карбидов хрома $Cr_{23}C_6$ и исходных карбидов бора B₄C. Это видно из расшифровки спектра 1 на рисунке 3. При легировании произошел переход γ -Fe в α - Fe. Мартенситная структура способствует повышению твердости легированного слоя. Остаточные карбиды B₄C напыленного покрытия при нагреве в процессе лазерного легирования распадаются, и C вступает с Cr во взаимодействие и переходят в Cr₂₃C₆. При такой технологии получения покрытия в процессе

легирования идет упрочнение покрытия за счет Сг и α - железа – происходит модифицирование поверхностного слоя. При этом кристаллическая решетка переходит из γ -Fe (аустенит) в α -Fe (мартенсит). Прослеживается четкая зависимость микротвердости покрытий от скорости ее обработки – с увеличением скорости микротвердость повышается. В процессе лазерного легирования карбидом бора наибольшая микротвердость 6810 МПа достигается при скорости детали относительно луча лазера V = 1500 мм/мин и диаметре лазерного пятна 1,0 мм, а наименьшая – 3474 МПа при скорости луча лазера V =100 мм/мин и диаметре луча лазера 1 мм. При легировании аморфным бором покрытия из нержавеющей стали AISI 316Lsi микротвердость варьируется от 5029 МПа при V = 1500 мм/мин и диаметре лазерного пятна 1,0 мм и до 4327 МПа при скорости луча лазера V =100 мм/мин и диаметре луча лазера 1 мм. В покрытиях без легирования получена та же зависимость — наибольшая микротвердость 4327 МПа при V = 1500, диаметре лазерного пятна 1,0 мм, наименьшая 2434 МПа при V =100 мм/мин. Интенсивность изнашивания измерялась для трех видов оплавленных лазером покрытий: без легирования, легированных В_{АМ} и В₄С.

Рисунок 5 – Интенсивность изнашивания покрытий

Как видно из представленного рисунка 5 наименее износостойкими являются покрытия без легирования, а наиболее износостойкими являются покрытия после лазерного легирования В₄С. В покрытиях после лазерного легирования В₄С происходит дополнительное образование упрочняющей фазы, состоящей из Cr₂₃C₆, которая получается вследствие того, что в процессе обработки часть карбида бора распадается и углерод вступает во взаимодействие с хромом. Кроме того, в покрытии имеется часть непрореагировавших частиц В₄С. Это повышает твердость, а, следовательно, и износостойкость получается образуются только бориды железа и хрома, т. е количество упрочняющей фазы меньше и покрытие изнашивается быстрее. В покрытиях без легирования содержится минимальное количество упрочняющей фазы и это отрицательно влияет на их износостойкость. Данная тенденция справедлива для всех скоростей лазерной обработки покрытий.

Заключение. При лазерном оплавлении имеются остаточные карбиды бора и углерод, который при распаде В₄С взаимодействует с имеющимся в напыленном слое хромом и образует $Cr_{23}C_6$. Данное соединение является упрочняющей фазой, которая благотворно влияет на повышение износостойкости покрытий из нержавеющей стали При лазерной химико-термической обработке нержавеющей стали получено, что дополнительное легирование B_4C и B_{AM} приводит к повышению микротвердостии износостойкости. С увеличением скорости лазерной и обработки четко прослеживается уменьшение интенсивности изнашивания получаемых покрытий. По всей вероятности происходит образование пересыщенного твердого раствора на основе железа с вкраплениями карбидов и боридов в виде квазиэвтектики. На основании проведенных исследований можно сделать вывод о том, что модифицированные покрытия из нержавеющей стали AISI 316Lsi можно использовать в деталях нефтяного оборудования.

ЛИТЕРАТУРА

1. Девойно, О.Г. Исследование износостойких покрытий диффузионно-легированной аустенитной стали, полученных плазменным напылением и последующей лазерной обработкой / О.Г. Девойно, А.Ф. Пантелеенко – Наука и техника, Т. 16, № 3 – 2017, С. 249 – 255.

2. Кинетика уплотнения плазменно наплавленного порошка системы Fe–Cr–B–Si оплавленного лазерным лучом / Т.М. Абрамович Н.Н. Дорожкин, О.В. Дьяченко, М.А. Кардаполова, С.А. Донских, Ю.А. Симонов // Математические модели физических процессов и их свойства: сб. науч. тр. 9-й межд. науч.-техн. конф., Таганрог, 27-28 июня 2003. – С. 130–132.

3. Кардаполова, М.А. Оптимизация трибологических характеристик покрытий на железной основе после лазерного модифицирования / М.А. Кардаполова, О.В. Дьяченко, Е.Э Фельдштейн // Машиностроение и техносфера XXI века: XIII Междунар. науч.-техн. конф. – Донецк, 2006.– т. 2 – С. 104–107.

4. Катаев, В. А. Методы исследования фазового состава и свойств углеродистой стали / В. А. Катаев ; науч. ред. в. о. Васьковский ; М-во образования и науки рос. Федерации, урал. федер. ун-т. – Екатеринбург :Изд –во Урал. ун-та, 2016. – 84 с.

5. Ziętala M. et al. The microstructure, mechanical properties and corrosion resistance of 316 L stainless steel fabricated using laser engineered net shaping //Materials Science and Engineering: A. – 2016. – T. 677. – C. 1-10.

6. Власов, В.М. Работоспособность упрочненных трущихся поверхностей / В.М. Власов – М.: Машиностроение.–1987. – 304 с.

УДК 621.835-41:514.764

МЕТОДЫ ПОСТРОЕНИЯ ПРОФИЛЕЙ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ ШАГАЮЩИХ ХОДОВЫХ СИСТЕМ ПО ЗАДАННОМУ ЗАКОНУ КРИВИЗНЫ

В.Н. Жуковец, ФММП БНТУ, г. Минск

Резюме - представлено теоретическое обоснование различных математических методов расчета плоских кривых по заданному закону кривизны. Разрабатываемые методы могут быть применены в системах автоматизированного проектирования, когда необходимо построить криволинейную цилиндрическую поверхность детали. Полученная форма рабочей поверхности детали позволит повысить её долговечность и улучшить эффективность работы колесно-шагающей ходовой системы в целом.

Ключевые слова: профиль поверхности, дифференциальная геометрия, кривизна плоских линий, дифференциальные уравнения, колесно-шагающий движитель, автоматизированное проектирование

Введение. При проектировании деталей и узлов машин различного назначения часто возникает проблема обеспечения контактной прочности соприкасающихся поверхностей. Кроме выбора материалов, внимание следует также уделять геометрическим параметрам деталей, в частности, кривизне профилей контактирующих криволинейных цилиндрических поверхностей. Также, от кривизны поверхности конкретной детали зависят кинематические и динамические характеристики машинного агрегата в целом.

Основная часть. В процессе проектирования деталей машин, совершающих вращательное движение, требуется описание различных конструктивных параметров в полярных координатах. Общеизвестно [1], что кривизна плоской линии в полярных координатах определяется согласно формуле:

$$K(\varphi) = \frac{\left| \rho^2 + 2 \cdot \left(\frac{d\rho}{d\varphi} \right)^2 - \rho \cdot \frac{d^2 \rho}{d\varphi^2} \right|}{\left(\rho^2 + \left(\frac{d\rho}{d\varphi} \right)^2 \right)^{\frac{3}{2}}}.$$
(1)

Если требуется найти выражение для построения линии $\rho(\varphi)$, используя заданную функцию кривизны $K(\varphi)$, то поиск решения уравнения (1) в этом виде затруднителен. Задача может быть решена, если применить метод представления кривых, изложенный в публикации [2]. В этой работе были получены выражения:

$$\begin{cases} \frac{dH}{d\varphi} = H \cdot \operatorname{tg} \gamma; \\ R = \frac{H}{\left(1 - \frac{d\gamma}{d\varphi}\right) \cdot \cos \gamma} - r. \end{cases}$$
(2)

В системе (2): $H(\phi)$ – расстояние между осями вращения кулачка и ролика, мм; $\gamma(\phi)$ – угол давления кулачка на ролик, радианы; $R(\phi)$ – радиус кривизны профиля кулачка, мм; r – радиус ролика, мм; ϕ – угол поворота кулачкового вала, радианы.

Принимаем обозначение: $K = \frac{1}{R+r}$ – кривизна линии, описываемой осью ролика при его относительном движении вокруг профиля кулачка, 1/мм. При этом $K = f(\phi)$, $H(\phi) = \rho(\phi)$.

После выполнения преобразований выражений (2), получим систему дифференциальных уравнений:

$$\begin{cases} \frac{d\rho}{d\phi} = \rho \cdot tg \gamma; \\ \frac{d\gamma}{d\phi} = 1 - \frac{\rho \cdot K}{\cos \gamma}. \end{cases}$$
(3)

Следует отметить, что данные уравнения (3) имеют большое прикладное значение при решении широкого круга вопросов проектирования. Помимо построения кулачкового профиля для механизмов различного