Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Электротехника и электроника»

Применение MathCAD в решении задач электротехники

Часть 2

ПЕРЕХОДНЫЕ ПРОЦЕССЫ. НЕЛИНЕЙНЫЕ ЦЕПИ. ТЕОРИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ

Учебно-методическое пособие для студентов электротехнических специальностей

Электронный учебный материал

Минск 2013

УДК 621.38 (075.8) ББК 32.85я7

Авторы: Ю.В. Бладыко, А.А. Мазуренко, И.В. Новаш

Рецензенты:

О.И. Александров, доцент кафедры автоматизации производственных процессов и электротехники учреждения образования «Белорусский государственный технологический университет», кандидат технических наук; *М.И. Полуянов*, доцент Авиационного колледжа, кандидат технических наук

В учебном пособии приводится методика расчета переходных процессов, нелинейных электрических цепей и электромагнитного поля с помощью MathCAD. Рассмотрена 41 задача с решениями.

Большое внимание уделено компьютерному расчету в MathCAD, облегчающему изучение электротехники.

Предложенный материал является базовой основой для дальнейшего изучения электротехники, а навыки работы в математическом пакете – в других дисциплинах.

Соответствует программам изучения дисциплин «Теоретические основы электротехники», «Теория электрических цепей», «Электротехника и электроника», «Электротехника и промышленная электроника».

Белорусский национальный технический университет пр-т Независимости, 65, г. Минск, Республика Беларусь Тел.(017)292-71-93 E-mail: eie@bntu.by http://www.electro.bntu.by/ Регистрационный № ЭИ БНТУ/ЭФ39-58.2013

© Ю.В. Бладыко, А.А. Мазуренко, И.В. Новаш, 2013
 © Т.А. Мархель, компьютерный дизайн, 2013
 © БНТУ, 2013

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ	3
ЛИТЕРАТУРА	5
ЗАДАЧА 31. ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ <i>RL</i>	6
ЗАДАЧА 32. ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ <i>RC</i>	9
ЗАДАЧА 33. ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ <i>RLC</i>	12
ЗАДАЧА 34. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ ВТОРОГО ПОРЯДКА КЛАССИЧЕСКИМ МЕТОДОМ	14
ЗАДАЧА 35. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ ВТОРОГО ПОРЯДКА ОПЕРАТОРНЫМ МЕТОДОМ	19
ЗАДАЧА 36. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ ТРЕТЬЕГО ПОРЯДКА	23
ЗАДАЧА 37. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ <i>RLC</i> ПРИ ВОЗДЕЙСТВИИ НАПРЯЖЕНИЯ ИМПУЛЬСНОЙ ФОРМЫ	26
ЗАДАЧА 38. ДИФФЕРЕНЦИАЛЬНЫЙ МЕТОД РАСЧЕТА СЛОЖНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ	28
ЗАДАЧА 39. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА	39
ЗАДАЧА 40. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА	41
ЗАДАЧА 41. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ 1 ПОСТОЯННОГО ТОКА	43
ЗАДАЧА 42. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ 2 ПОСТОЯННОГО ТОКА	46
ЗАДАЧА 43. РАСЧЕТ НЕРАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ	49
ЗАДАЧА 44. РАСЧЕТ РАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ 1 В МАТНСАД	54
ЗАДАЧА 45. РАСЧЕТ РАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ 2 В МАТНСАД	60
ЗАДАЧА 46. РАСЧЕТ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКИ НЕЛИНЕЙНОЙ КАТУШКИ	64
ЗАДАЧА 47. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА КОМПЛЕКСНЫМ МЕТОДОМ	69
ЗАДАЧА 48. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА КОМПЛЕКСНЫМ МЕТОДОМ	71
ЗАДАЧА 49. РАСЧЕТ НЕЛИНЕЙНОЙ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ФАЗ НАГРУЗКИ ЗВЕЗДОЙ БЕЗ НУЛЕВОГО ПРОВОДА	73
ЗАДАЧА 50. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА ЧИСЛЕННЫМ МЕТОДОМ	78
ЗАДАЧА 51. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА ЧИСЛЕННЫМ МЕТОДОМ	83
ЗАДАЧА 52. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО НЕСИНУСОИДАЛЬНОГО ТОКА ЧИСЛЕННЫМ МЕТОДОМ	88
ЗАДАЧА 53. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ С ДВУМЯ РАЗНОРОДНЫМИ НЕЛИНЕЙНЫМИ ЭЛЕМЕНТАМИ	95
ЗАДАЧА 54. РАСЧЕТ УТРОИТЕЛЯ ЧАСТОТЫ	100
ЗАДАЧА 55. РАСЧЕТ ОДНОПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ	105

ЗАДАЧА 56. РАСЧЕТ ОДНОПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ С РЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ	108
ЗАДАЧА 57. РАСЧЕТ ДВУХПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ	111
ЗАДАЧА 58. РАСЧЕТ ДВУХПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ	114
ЗАДАЧА 59.1 РАСЧЕТ МОСТОВОГО ВЫПРЯМИТЕЛЯ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ	117
ЗАДАЧА 59.2 РАСЧЕТ МОСТОВОГО ВЫПРЯМИТЕЛЯ С РЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ	121
ЗАДАЧА 60. РАСЧЕТ ТРЕХФАЗНОГО ВЫПРЯМИТЕЛЯ	124
ЗАДАЧА 61. СРАВНИТЕЛЬНАЯ ОЦЕНКА ПЕРЕХОДНОГО ПРОЦЕССА В ЛИНЕЙНОЙ И НЕЛИНЕЙНОЙ ЦЕПИ <i>RL</i>	128
ЗАДАЧА 62. СРАВНИТЕЛЬНАЯ ОЦЕНКА ПЕРЕХОДНОГО ПРОЦЕССА В ЛИНЕЙНОЙ И НЕЛИНЕЙНОЙ ЦЕПИ <i>RLC</i>	130
ЗАДАЧА 63. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ТРАНСФОРМАТОРЕ	132
ЗАДАЧА 64. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ БЕЗ УЧЕТА ЗЕМЛИ	134
ЗАДАЧА 65. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ С УЧЕТОМ ЗЕМЛИ	136
ЗАДАЧА 66. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ТРЕХФАЗНОЙ ЛИНИИ С УЧЕТОМ ЗЕМЛИ	139
ЗАДАЧА 67. МАГНИТНОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ	143
ЗАДАЧА 68. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ БЕЗ УЧЕТА ЗЕМЛИ	145
ЗАДАЧА 69. МАГНИТНОЕ ПОЛЕ ТРЕХФАЗНОЙ ЛИНИИ	148
ЗАДАЧА 70. КРУГОВОЕ ВРАЩАЮЩЕЕСЯ МАГНИТНОЕ ПОЛЕ	150

ЛИТЕРАТУРА

- 1. Бессонов, Л.А. Теоретические основы электротехники. Электрические цепи : учебник для технических вузов/ Л.А. Бессонов . 11-е изд. М: Гардарики, 2006. 701 с.: ил.
- 2. Бессонов, Л.А. Теоретические основы электротехники. Электромагнитное поле: учебник для вузов / Л.А. Бессонов. 10-е изд. М: Гардарики, 2003. 316 с.: ил.
- 3. Теоретические основы электротехники: учебник для вузов в 3 т. / К.С. Демирчан [и др.]. – СПб.: Питер, 2006.
- 4. Сборник задач и упражнений по теоретическим основам электротехники / под ред. П.А. Ионкина. М.: Энергоиздат. 1982. 768 с.
- 5. Сборник задач по теоретическим основам электротехники / под ред. Л. А. Бессонова. М.: Высшая школа, 1980. 472 с.
- Прянишников, В.А. Электротехника и ТОЭ в примерах и задачах : практическое пособие / В.А. Прянишников, Е.А. Петров и Ю.М. Осипов; под общ. ред. В.А. Прянишникова. – СПб: Корона-Век, 2007. – 334 с.: ил.; дискета. – (Для высших и средних учебных заведений)
- Потапов, Л.А. Теоретические основы электротехники: сборник задач: учебное пособие для вузов/ Л.А. Потапов; кол. авт. Брянский государственный технический университет. Изд. 2-е изд., доп. Брянск: Из-во БГТУ, 2007. 192 с.: ил.
- 8. Гольдин, О.Е. Задачник по теории электрических цепей / О.Е. Гольдин. М.: Высшая школа, 1969. 312с.
- 9. Шебес, М.Р. Задачник по теории линейных электрических цепей / М.Р. Шебес. М.: Высшая школа, 1984. 488 с.

ЗАДАЧА 31. ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ *RL*

1. Схема цепи и параметры элементов

$$E := 100$$
 $f := 50$ $\alpha := 30 deg$ $R1 := 10$ $R2 := 20$ $R3 := 40$ $L1 := 0.2$ $L2 := 0.2$ $L3 := 0.2$

2. Система дифференциальных уравнений и ее решение

$$iI \cdot R + L\frac{d}{dt}iI = e(t) \qquad \frac{d}{dt}iI = \frac{-R}{L} \cdot iI + \frac{e(t)}{L}$$

$$NU := 0 \qquad F_{m}(t,X) := \frac{-RI}{LI} \cdot X_{0} + \frac{E}{LI}$$

$$Z := rkfixed(NU, 0, 0.2, 10000, F)$$

$$t := Z^{\langle 0 \rangle} \qquad i := Z^{\langle 1 \rangle} \qquad UrI := i \cdot RI \qquad ULI := E - UrI$$

$$\underbrace{NU}_{m} := 0 \qquad F_{m}(t,X) := \frac{-R2}{L2} \cdot X_{0} + \frac{E}{L2}$$

$$Z_{m} := rkfixed(NU, 0, 0.2, 10000, F)$$

$$t := Z^{\langle 0 \rangle} \qquad i := Z^{\langle 1 \rangle} \qquad Ur2 := i \cdot R2 \qquad UL2 := E - Ur2$$

$$\underbrace{NU}_{m} := 0 \qquad F_{m}(t,X) := \frac{-R3}{L3} \cdot X_{0} + \frac{E}{L3}$$

$$Z_{m} := rkfixed(NU, 0, 0.2, 10000, F)$$

$$t := Z^{\langle 0 \rangle} \qquad i := Z^{\langle 1 \rangle} \qquad Ur3 := i \cdot R3 \qquad UL3 := E - Ur3$$

3. Графические диаграммы функций Ur(t), UL(t)

 $\begin{array}{ll} R \coloneqq 20 & L \coloneqq .2 & q_{\mathrm{m}} \coloneqq 72 deg \\ el(t) \coloneqq E \cdot sin(2\pi \cdot f \cdot t + \alpha) & e2(t) \coloneqq E \cdot sin(2\pi \cdot f \cdot t + \alpha + 90 deg) \\ e3(t) \coloneqq E \cdot sin(2\pi \cdot f \cdot t + \alpha - 90 deg) \end{array}$

$$\underbrace{NU}_{K} := 0 \qquad \qquad \underbrace{F(t, X)}_{K} := \frac{-R}{L} \cdot X_0 + \frac{el(t)}{L}$$

 $Z := rkfixed(NU, 0, 0.2, 10000, F) \qquad i := Z^{\langle 1 \rangle} \qquad UrI := i \cdot R$

$$\underbrace{NU}_{K} \coloneqq 0 \qquad \qquad \underbrace{F}_{K}(t, X) \coloneqq \frac{-R}{L} \cdot X_{0} + \frac{e^{2}(t)}{L}$$

$$Z_{\text{m}} := rkfixed(NU, 0, 0.2, 10000, F) \qquad i := Z^{\langle 1 \rangle} \qquad Ur2_{\text{m}} := i \cdot R$$
$$NU_{\text{m}} := 0 \qquad F_{\text{m}}(t, X) := \frac{-R}{L} \cdot X_0 + \frac{e^3(t)}{L}$$
$$Z_{\text{m}} := rkfixed(NU, 0, 0.2, 10000, F) \qquad i := Z^{\langle 1 \rangle} \qquad Ur3_{\text{m}} := i \cdot R$$

ЗАДАЧА 32. ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ *RC*

1. Схема цепи и параметры элементов

E := 100 f := 50 $\alpha := 30 deg$ R := 200R1 := 200 R2 := 400 R3 := 600

$$C1 := 40 \cdot 10^{-6}$$
 $C2 := 40 \cdot 10^{-6}$ $C3 := 40 \cdot 10^{-6}$

2. Система дифференциальных уравнений и ее решение

$$iI \cdot R + Uc = e(t)$$

$$iI = C\frac{d}{dt}Uc$$

$$\frac{d}{dt}Uc = -\frac{1}{R \cdot C} \cdot Uc + \frac{1}{R \cdot C} \cdot e(t)$$

$$NU := 0 \qquad D(t, X) := -\frac{1}{RI \cdot CI} \cdot X_0 + \frac{1}{RI \cdot CI} \cdot E$$

$$F_{\text{constrained}} := rkfixed(NU, 0, 0.2, 10000, D)$$

$$t := F^{\langle 0 \rangle} \qquad Uc1 := F^{\langle 1 \rangle} \qquad Ur1 := E - Uc1$$

$$MU_{\text{constrained}} := 0 \qquad D(t, X) := -\frac{1}{R2 \cdot C2} \cdot X_0 + \frac{1}{R2 \cdot C2} \cdot E$$

$$F_{\text{constrained}} := rkfixed(NU, 0, 0.2, 10000, D)$$

$$t := F^{\langle 0 \rangle} \qquad Uc2 := F^{\langle 1 \rangle} \qquad Ur2 := E - Uc2$$

$$MU_{m} := 0 \qquad D(t, X) := -\frac{1}{R3 \cdot C3} \cdot X_0 + \frac{1}{R3 \cdot C3} \cdot E$$
$$F_{m} := rkfixed (NU, 0, 0.2, 10000, D)$$
$$t := F^{\langle 0 \rangle} \qquad Uc3 := F^{\langle 1 \rangle} \qquad Ur3 := E - Uc3$$

3. Графические диаграммы функций Ur(t), Uc(t)

<u>R</u> := 200	$C := 30 \cdot 10^{-6}$
.a:= 62 <i>deg</i>	$e(t) := E \cdot sin(2\pi \cdot f \cdot t + \alpha)$
MU:= 0	$\underline{D}(t,X) := -\frac{1}{R \cdot C} \cdot X_0 + \frac{1}{R \cdot C} \cdot e(t)$
F.:= rkfixe	d(NU, 0, 0.2, 10000, D)
$t := F^{\langle 0 \rangle}$	$Ucl := F^{\langle 1 \rangle}$
$\underline{e}(t) := E \cdot sin(2$	$2\pi \cdot f \cdot t + \alpha + 90 deg)$

$$\underbrace{NU}_{m} := 0 \qquad \qquad \underbrace{D}_{m}(t, X) := -\frac{1}{R \cdot C} \cdot X_{0} + \frac{1}{R \cdot C} \cdot e(t)$$

10

$$F_{\text{min}} := rkfixed(NU, 0, 0.2, 10000, D)$$

$$t := F^{\langle 0 \rangle} \qquad Uc2 := F^{\langle 1 \rangle}$$

$$g(t) := E \cdot sin(2\pi \cdot f \cdot t + \alpha - 90deg)$$

$$NU_{\text{min}} := 0 \qquad D_{\text{min}}(t, X) := -\frac{1}{R \cdot C} \cdot X_0 + \frac{1}{R \cdot C} \cdot e(t)$$

$$F_{\text{min}} := rkfixed(NU, 0, 0.2, 10000, D)$$

$$t := F^{\langle 0 \rangle} \qquad Uc3 := F^{\langle 1 \rangle}$$

4. Графические диаграммы функций Uc(t)

ЗАДАЧА 33. ИССЛЕДОВАНИЕ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ *RLC*

1. Схема цепи и параметры элементов

Исходные данные : E := 100 L := 0.5 $C := 20 \cdot 10^{-6}$

R1 := 100 R2 := 280 R3 := 700

2. Система дифференциальных уравнений и ее решение

$$il \cdot R + L\frac{d}{dt}il + Uc = e(t)$$

$$il = C\left(\frac{d}{dt}Uc\right)$$

$$\frac{d}{dt}il = \frac{-R}{L} \cdot il - \frac{l}{L}Uc + \frac{e(t)}{L}$$

$$\frac{d}{dt}Uc = \frac{1}{C} \cdot il$$

$$M_{\rm M} := \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad D(t,X) := \begin{pmatrix} \frac{-Rl}{L}X_0 + \frac{-1}{L}X_1 + \frac{E}{L} \\ \frac{1}{C} \cdot X_0 \end{pmatrix}$$

 $t := F^{\langle 0 \rangle} \qquad iI := F^{\langle 1 \rangle} \qquad UcI := F^{\langle 2 \rangle} \qquad UrI := iI \cdot RI$ $N := \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \mathcal{D}(t, X) := \begin{pmatrix} \frac{-R2}{L}X_0 + \frac{-1}{L}X_1 + \frac{E}{L} \\ \frac{1}{C} \cdot X_0 \end{pmatrix}$

 $F_{m} := rkfixed(N, 0, 0.2, 10000, D)$

 $t := F^{\langle 0 \rangle} \qquad i2 := F^{\langle 1 \rangle} \qquad Uc2 := F^{\langle 2 \rangle} \qquad Ur2 := i2 \cdot R2$ $N := \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \qquad D_{\text{cons}}(t, X) := \begin{pmatrix} \frac{-R3}{L} X_0 + \frac{-1}{L} X_1 + \frac{E}{L} \\ \frac{1}{C} \cdot X_0 \end{pmatrix}$

 $F_{\text{max}} := rkfixed(N, 0, 0.2, 10000, D)$

 $F_{min} := rkfixed(N, 0, 0.2, 10000, D)$

$$t := F^{\langle 0 \rangle}$$
 $i3 := F^{\langle 1 \rangle}$ $Uc3 := F^{\langle 2 \rangle}$ $Ur3 := i3 \cdot R3$

3. Графические диаграммы функций Ur(t)

13

ЗАДАЧА 34. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ ВТОРОГО ПОРЯДКА КЛАССИЧЕСКИМ МЕТОДОМ

1. Схема цепи и параметры элементов

2. Расчет переходного процесса классическим методом

2.1. Общий вид решения:

 $Uc(t) = Uy(t) + Ucb(t) = Um \cdot sin(\omega t + \psi) + A \cdot e^{-bt} \cdot sin(\omega o t + \gamma)$

2.2. Характеристическое уравнение и его корни

$$Z(p) = \frac{R_1 \cdot (R_2 + p \cdot L)}{R_1 + (R_2 + p \cdot L)} + \frac{1}{pC} = 0$$

$$R_2 \cdot L \cdot C \cdot p^- + (R_1 \cdot R_2 \cdot C + L) \cdot p + (R_1 + R_2) = 0$$

Для нахождения корней уравнения используем функцию polyroots

$$p := polyroots \begin{pmatrix} R_1 + R_2 \\ R_1 \cdot R_2 \cdot C + L \\ R_1 \cdot L \cdot C \end{pmatrix} = \begin{pmatrix} -1222.701 - 2762.061j \\ -1222.701 + 2762.061j \end{pmatrix}$$
$$p_0 = -1222.701 - 2762.061j \qquad p_1 = -1222.701 + 2762.061j$$
$$b := -Re(p_0) = 1222.701 \qquad \text{oo} := -Im(p_0) = 2762.061$$

2.3. Определение установившейся составляющей по методу двух узлов:

$$Xc := \frac{1}{\omega \cdot C} \qquad XL := \omega \cdot L \qquad \qquad Z_2 := R_2 + j \cdot XL$$
$$Um := \frac{Em \cdot e^{j \cdot \alpha}}{R_1 \cdot \left(\frac{1}{R_1} + \frac{1}{Z_2} + \frac{1}{-j \cdot Xc}\right)}$$
$$|Um| = 48.931 \qquad \qquad \psi := \arg(Um) = 176.844 \cdot \deg$$
$$Uy(t) := |Um| \cdot \sin(\omega \cdot t + \psi)$$

- 2.4. Определение независимых начальных условий і3(0), Uc(0)
- $Uc(t) := u(t) \qquad Uc(0) = 169.045$ $Im_{3} := \frac{Em \cdot e^{j \cdot \alpha}}{Z_{2}} \qquad |Im_{3}| = 3.797 \qquad \beta := arg(Im_{3})$ $i3(t) := |Im_{3}| \cdot sin(\omega \cdot t + \beta) \qquad i3(0) = 3.72$

2.5. Система дифференциальных уравнений по законам Кирхгофа

$$i_1 - i_2 - i_3 = 0 \tag{1}$$

$$i_1 \cdot R_1 + Uc = u(t) \tag{2}$$

$$L \cdot \frac{d}{dt} i_3 + i_3 \cdot R_2 - Uc = 0 \tag{3}$$

$$i_2 = C \cdot \frac{d}{dt} Uc \tag{4}$$

2.6. Определение зависимых начальных условий

- из (2) выразим il $il := \frac{1}{R_1} \cdot (u(0) Uc(0))$
- из (1) выразим i2 i2 := i1 i3(0)

из (4)
$$\left(\frac{d}{dt}Uc\right)(0) = du = \frac{i2}{C}$$
 $du := \frac{i2}{C}$ $du = -1957664.033$

2.7. Определение постоянных интегрирования

Представим общий вид решения для искомой функции и ее производной в развернутой форме:

$$Uc(t) = Uy(t) + Ucb(t) = |Um| \cdot sin(\omega t + \psi) + e^{-bt} \cdot [(A_1) \cdot sin(\omega o \cdot t) + A_2 \cdot cos(\omega o \cdot t)]$$

$$\frac{d}{dt}Uc(t) = |Um| \cdot \omega \cdot cos(\omega \cdot t + \psi) - [b \cdot e^{-b \cdot t} \cdot (A_1 \cdot sin(\omega o \cdot t) + A_2 \cdot cos(\omega o \cdot t))] + (A_1 \cdot \omega o \cdot cos(\omega o \cdot t) - A_2 \cdot \omega o \cdot sin(\omega o \cdot t)) \cdot e^{-b \cdot t}$$

Подставляем начальные условия и находим постоянные интегрирования:

$$Uc(0) = |Um| \cdot sin(\psi) + A_2 \qquad A_2 := Uc(0) - |Um| \cdot sin(\psi) = 166.351$$

$$du = |Um| \cdot \omega \cdot cos(\psi) - (b \cdot A_2 + \omega o \cdot A_1)$$

$$A_1 := \frac{b \cdot A_2 - |Um| \cdot \omega \cdot cos(\psi) + du}{\omega o} = -621.237$$

$$A := A_1 + j \cdot A_2 \qquad |A| = 643.124 \qquad \gamma := arg(A) = 165.009 \cdot deg$$

2.8. Окончательное решение для искомой функции

$$Uc(t) := |Um| \cdot sin(\omega \cdot t + \psi) + e^{-b \cdot t} \cdot (|A| \cdot sin(\omega o \cdot t + \gamma)) \qquad b = 1222.701$$

$$|Um| = 48.931$$
 $\psi = 176.844 \cdot deg$ $\omega = 785.398$
 $|A| = 643.124$ $\omega o = 2762.061$ $\gamma = 165.009 \cdot deg$

2.9. Графическая диаграмма искомой функции

3. Расчет переходного процесса численным методом

3.1. Независимые начальные условия: i3(0), Uc(0)

$$Uc(t) := u(t)$$
 $Uc(0) = 169.045$

$$Im_{3} := \frac{Em \cdot e^{\alpha 1}}{Z_{2}} \qquad |Im_{3}| = 3.797 \qquad \alpha i := \arg(Im_{3})$$
$$i_{3}(t) := |Im_{3}| \cdot \sin(\omega \cdot t + \alpha i) \qquad i_{3}(0) = 3.72$$

3.2. Система дифференциальных уравнений по законам Кирхгофа

$$i_1 - i_2 - i_3 = 0 \tag{1}$$

$$i_1 \cdot R_1 + Uc = u(t) \tag{2}$$

$$L \cdot \frac{d}{dt} i_3 + i_3 \cdot R_2 - Uc = 0 \tag{3}$$

$$i_2 = C \cdot \frac{d}{dt} Uc \tag{4}$$

17

3.3. Приведение системы дифференциальных уравнений к форме Коши и ее решение

3.4. Графическая диаграмма искомой функции Uc(t)

t, t-T

4. Анализ решения по графической диаграмме

Из анализа графической диаграммы функции Uc(t) определяем:

- 4.1. Характер переходного процесса колебательный, затухающий.
- 4.2. Время переходного процесса $T_n = 0.0045$ с.
- 4.3. Коэффициент затухания свободной составляющей b = 5/T n = 1111.
- 4.4. Период свободных колебаний То = 0.0023.
- 4.5. Максимальное и минимальное значения $Uc_{max} = 170$ B, $Uc_{min} = -330$ B.

ЗАДАЧА 35. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ ВТОРОГО ПОРЯДКА ОПЕРАТОРНЫМ МЕТОДОМ

1. Схема цепи и параметры элементов

Требуется определить функцию Uc(t) в переходном режиме

- 2. Расчет переходного процесса операторным методом
 - 2.1. Операторная схема замещения

2.2. Независимые начальные условия

$$i3o := \frac{Em}{R_2} = 3.286$$
 $Uco := Em = 115$

2.3. Система операторных уравнений (по методу 2-х узлов)

$$Uc(p) := \frac{\frac{Em}{p \cdot R_1} + \frac{Uco}{p} \cdot p \cdot C - \frac{L \cdot i3o}{R_2 + p \cdot L}}{\frac{1}{R_2} + p \cdot C + \frac{1}{R_1 + p \cdot L}}$$

После преобразований получим решение для искомой функции в следующем виде

$$Uc(p) = \frac{Em \cdot R_2 + p \left(Em \cdot L + R_1 \cdot R_2 \cdot Uco \cdot C - R_1 \cdot L \cdot i3o \right) + p^2 \cdot R_1 \cdot L \cdot Uco \cdot C}{p^3 \cdot R_2 \cdot L \cdot C + p^2 \left(L + R_1 \cdot R_2 \cdot C \right) + p \left(R_1 + R_2 \right)} = \frac{N(p)}{M(p)}$$

$$N(p) \coloneqq Em \cdot R_2 + p \cdot \left(Em \cdot L + R_1 \cdot R_2 \cdot Uco \cdot C - R_1 \cdot L \cdot i3o \right) + p^2 \cdot R_1 \cdot L \cdot Uco \cdot C$$

$$M(p) \coloneqq p^3 \cdot R_1 \cdot L \cdot C + p^2 \cdot \left(L + R_1 \cdot R_2 \cdot C \right) + p \cdot \left(R_1 + R_2 \right)$$

$$dM(p) \coloneqq \left[3p^2 \cdot R_1 \cdot L \cdot C + 2p \cdot \left(L + R_1 \cdot R_2 \cdot C \right) + R_1 + R_2 \right]$$

2.4. Определение корней уравнения M(p) = 0 (используем функцию polyroots):

$$p := polyroots \begin{pmatrix} 0 \\ R_1 + R_2 \\ L + R_2 \cdot R_1 \cdot C \\ R_1 \cdot L \cdot C \end{pmatrix} = \begin{pmatrix} -1222.701 - 2762.061j \\ -1222.701 + 2762.061j \\ 0 \end{pmatrix}$$

2.6. Решение для искомой функции

$$Uc(t) := \sum_{k=0}^{2} \left(\frac{N(p_k)}{dM(p_k)} \cdot e^{p_k \cdot t} \right)$$

2.7. Графическая диаграмма искомой функции

3. Расчет переходного процесса численным методом

3.1. Независимые начальные условия: i3(0), Uc(0)

$$i3o := \frac{Em}{R_2} = 3.286$$
 $Uco := Em = 115$

3.2. Система дифференциальных уравнений по законам Кирхгофа

$$i_1 - i_2 - i_3 = 0 \tag{1}$$

$$i_1 \cdot R_1 + Uc = u(t) \tag{2}$$

$$L \cdot \frac{d}{dt} i_3 + i_3 \cdot R_2 - Uc = 0 \tag{3}$$

$$i_2 = C \cdot \frac{d}{dt} Uc \tag{4}$$

3.3. Приведение системы дифференциальных уравнений к форме Коши и ее решение

$$t := F^{\langle 0 \rangle} \qquad i3 := F^{\langle 1 \rangle} \qquad Uc := F^{\langle 2 \rangle}$$

3.4.Графическая диаграмма искомой функции Uc(t)

t, t-0.01

4. Анализ решения по графической диаграмме

Из анализа графической диаграммы функции Uc(t) определяем:

- 4.1. Характер переходного процесса колебательный, затухающий.
- 4.2. Время переходного процесса $T_n = 0.0045$ с.
- 4.3. Коэффициент затухания свободной составляющей b = 5/Tn = 1111.
- 4.4. Период свободных колебаний То = 0.0023.
- 4.5. Максимальное и минимальное значения $Uc_{max} = 137$ B, $Uc_{min} = -280$ B.

ЗАДАЧА 36. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ ТРЕТЬЕГО ПОРЯДКА

1. Схема цепи и параметры элементов

 $RI := 10 \qquad R2 := 15 \qquad R3 := 1 \qquad LI := 0.1 \qquad L2 := 0.3 \qquad C_{m} := 20 \times 10^{-6}$ $E := 30 \qquad Em := 100 \qquad f := 50 \qquad \omega := 2\pi \ f \qquad \alpha := 50 \ deg$ $g(t) := E + Em \cdot sin(\omega \cdot t + \alpha)$

2. Система дифференциальных уравнений по законам Кирхгофа

$$il - i2 - i3 = 0$$

$$il \cdot Rl + Ll \cdot \frac{dil}{dt} + i3 \cdot R3 + Uc = e(t)$$

$$-i2 \cdot R2 - L2 \cdot \frac{di2}{dt} + i3 \cdot R3 + Uc = 0$$

$$C \cdot \frac{dUc}{dt} = i3$$

$$\frac{d}{dt}il = \frac{-(Rl + R3)}{Ll} \cdot il + \frac{R3}{Ll} \cdot i2 - \frac{1}{Ll} \cdot Uc + \frac{1}{Ll} \cdot e(t)$$

$$\frac{d}{dt}i2 = \frac{R3}{L2} \cdot il - \frac{(R2 + R3)}{L2} \cdot i2 + \frac{1}{L2}Uc$$

$$\frac{d}{dt}Uc = \frac{1}{C} \cdot il - \frac{1}{C} \cdot i2$$

3. Решение системы дифференциальных уравнений численным методом

$$Y := \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad F_{m}(t,X) := \begin{bmatrix} \frac{-(RI+R3)}{LI} \cdot X_{0} + \frac{R3}{LI} \cdot X_{1} + \frac{-1}{LI} \cdot X_{2} + \frac{1}{LI} \cdot e(t) \\ \frac{R3}{L2} \cdot X_{0} + \frac{-(R2+R3)}{L2} \cdot X_{1} + \frac{1}{L2} \cdot X_{2} \\ \frac{1}{C} \cdot X_{0} + \frac{-1}{C} \cdot X_{1} \end{bmatrix}$$

Z := rkfixed(Y, 0, 0.2, 10000, F)

$$t := Z^{\langle 0 \rangle}$$
 $il := Z^{\langle 1 \rangle}$ $i2 := Z^{\langle 2 \rangle}$ $Uc := Z^{\langle 3 \rangle}$ $i3 := il - i2$ $Uab := i3 \cdot R3 + Uc$

4. Определение времени переходного процесса

t,*t*-.1

Вывод: время переходного процесса составляет примерно Tn = .1 с.

5. Графические диаграммы функций токов

ЗАДАЧА 37. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ЦЕПИ *RLC* ПРИ ВОЗДЕЙСТВИИ НАПРЯЖЕНИЯ ИМПУЛЬСНОЙ ФОРМЫ

1. Схема цепи и параметры элементов

Исходные данные:

$$R_{\text{c}} := 10 \qquad L_{\text{c}} := 0.1 \qquad C_{\text{c}} := 100 \cdot 10^{-6} \qquad f := 50$$
$$tk := (0 \ .005 \ .010 \ .020 \ .025 \ .030 \ .1)^{T}$$
$$uk := (0 \ 100 \ 0 \ 0 \ 100 \ 0 \ 0)^{T}$$
$$e(t) := linterp(tk, uk, t)$$

t

2. Система дифференциальных уравнений и ее решение

27

ЗАДАЧА 38. ДИФФЕРЕНЦИАЛЬНЫЙ МЕТОД РАСЧЕТА СЛОЖНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

1. Схема произвольной ветви и ее потенциальное уравнение

2. Граф-схема сложной электрической цепи

3. Параметры элементов схемы в матричной форме *ORIGIN* := 1

$$R_{\text{MW}} := \begin{pmatrix} 26\\ 31\\ 42\\ 18\\ 28\\ 42 \end{pmatrix} \qquad \qquad I_{\text{MW}} := \begin{pmatrix} 85\\ 126\\ 92\\ 79\\ 106\\ 121 \end{pmatrix} \cdot 10^{-3} \qquad \qquad C_{\text{MW}} := \begin{pmatrix} 92\\ 87\\ 47\\ 76\\ 53\\ 71 \end{pmatrix} \cdot 10^{-6}$$
$$R_{\text{MW}} := \begin{pmatrix} 10\\ 130\\ 120 \end{pmatrix} \quad a := \begin{pmatrix} 10\\ 150\\ -40 \end{pmatrix} \cdot deg \qquad f := 50 \qquad \qquad \omega := 2\pi \ f \qquad \qquad T_{\text{MW}} := \frac{1}{f}$$

 $e1(t) := Em_1 \cdot sin(\omega \cdot t + a_1) \qquad e2(t) := Em_2 \cdot sin(\omega \cdot t + a_2) \qquad e3(t) := Em_3 \cdot sin(\omega \cdot t + a_3)$

3. Система дифференциальных уравнений по законам Кирхгофа

$$iI \cdot R_I + L_I \cdot \frac{d}{dt} iI + uI + u5 + L_5 \cdot \frac{d}{dt} i5 + i5 \cdot R_5 - i4 \cdot R4 - L_4 \cdot \frac{d}{dt} i4 - u4 = eI(t)$$

 $i2 \cdot R_2 + L_2 \cdot \frac{d}{dt} i2 + u2 + i4 \cdot R_4 + L_4 \cdot \frac{d}{dt} i4 + u4 + i6 \cdot R_6 + L_6 \cdot \frac{d}{dt} i6 + u6 = e2(t)$
 $i3 \cdot R_3 + L_3 \cdot \frac{d}{dt} i3 + u3 + i5 \cdot R_5 + L_5 \cdot \frac{d}{dt} i5 + u5 + i6 \cdot R_6 + L_6 \cdot \frac{d}{dt} i6 + u6 = e3(t)$
 $\frac{d}{dt} iI - \frac{d}{dt} i2 + \frac{d}{dt} i4 = 0$
 $\frac{d}{dt} iI + \frac{d}{dt} i3 - \frac{d}{dt} i5 = 0$
 $\frac{d}{dt} i2 + \frac{d}{dt} i3 - \frac{d}{dt} i6 = 0$

4. Приведение системы дифференциальных уравнений к форме Коши

4.1. Вводим обозначения

$$SI = eI(t) - uI - iI \cdot R_{I} - u5 - i5 \cdot R_{5} + i4 \cdot R_{4} + u4$$

$$S2 = e2(t) - u2 - i2 \cdot R_{2} - u4 - i4 \cdot R_{4} - i6 \cdot R_{6} - u6$$

$$S3 = e3(t) - u3 - i3 \cdot R_{3} - u5 - i5 \cdot R_{5} - i6 \cdot R_{6} - u6$$

$$L_{1} \cdot \frac{d}{dt}iI - L_{4} \cdot \frac{d}{dt}i4 + L_{5} \cdot \frac{d}{dt}i5 = SI$$

$$L_{2} \cdot \frac{d}{dt}i2 + L_{4} \cdot \frac{d}{dt}i4 + L_{6} \cdot \frac{d}{dt}i6 = S2$$

$$L_{3} \cdot \frac{d}{dt}i3 + L_{5} \cdot \frac{d}{dt}i5 + L_{6} \cdot \frac{d}{dt}i6 = S3$$

$$\frac{d}{dt}iI - \frac{d}{dt}i2 + \frac{d}{dt}i4 = 0$$

$$\frac{d}{dt}iI + \frac{d}{dt}i3 - \frac{d}{dt}i5 = 0$$

$$\frac{d}{dt}i2 + \frac{d}{dt}i3 - \frac{d}{dt}i6 = 0$$

4.2. Решение методом Крамера

$$D := \begin{vmatrix} L_1 & 0 & 0 & -L_4 & L_5 & 0 \\ 0 & L_2 & 0 & L_4 & 0 & L_6 \\ 0 & 0 & L_3 & 0 & L_5 & L_6 \\ 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 & -1 \end{vmatrix} = 0.016$$

$$DI = \begin{pmatrix} SI & 0 & 0 & -L_4 & L_5 & 0 \\ S2 & L_2 & 0 & L_4 & 0 & L_6 \\ S3 & 0 & L_3 & 0 & L_5 & L_6 \\ 0 & -I & 0 & I & 0 & 0 \\ 0 & 0 & I & 0 & -I & 0 \\ 0 & 1 & I & 0 & 0 & -I \end{pmatrix} \rightarrow DI = \frac{89353 \cdot SI}{1000000} + \frac{38027 \cdot S2}{1000000} - \frac{8823 \cdot S3}{200000}$$

$$D2 = \begin{pmatrix} L_1 & SI & 0 & -L_4 & L_5 & 0 \\ 0 & S2 & 0 & L_4 & 0 & L_6 \\ 0 & S3 & L_3 & 0 & L_5 & L_6 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 \end{pmatrix} \rightarrow D2 = \frac{38027 \cdot S1}{1000000} + \frac{37447 \cdot S2}{500000} - \frac{10261 \cdot S3}{250000}$$

$$D3 = \begin{vmatrix} L_1 & 0 & SI & -L_4 & L_5 & 0 \\ 0 & L_2 & S2 & L_4 & 0 & L_6 \\ 0 & 0 & S3 & 0 & L_5 & L_6 \\ 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \end{vmatrix} \rightarrow D3 = \frac{81779 \cdot S3}{1000000} - \frac{10261 \cdot S2}{250000} - \frac{8823 \cdot S1}{200000}$$

$$D4 = \begin{vmatrix} L_1 & 0 & 0 & SI & L_5 & 0 \\ 0 & L_2 & 0 & S2 & 0 & L_6 \\ 0 & 0 & L_3 & S3 & L_5 & L_6 \\ 1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & -1 \end{vmatrix} \rightarrow D4 = \frac{9381 \cdot S2}{500000} - \frac{3339 \cdot S1}{250000} + \frac{3339 \cdot S3}{250000}$$

$$D5 = \begin{vmatrix} L_1 & 0 & 0 & -L_4 & SI & 0 \\ 0 & L_2 & 0 & L_4 & S2 & L_6 \\ 0 & 0 & L_3 & 0 & S3 & L_6 \\ 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & -1 \end{vmatrix} \rightarrow D5 = \frac{22619 \cdot SI}{500000} - \frac{3017 \cdot S2}{1000000} + \frac{1177 \cdot S3}{31250}$$
$$D6 = \begin{vmatrix} L_1 & 0 & 0 & -L_4 & L_5 & SI \\ 0 & L_2 & 0 & L_4 & 0 & S2 \\ 0 & 0 & L_3 & 0 & L_5 & S3 \\ 1 & -1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{vmatrix} \rightarrow D6 = \frac{677 \cdot S2}{20000} - \frac{761 \cdot S1}{125000} + \frac{8147 \cdot S3}{200000}$$

4.3. Система дифференциальных уравнений в форме Коши

$$\begin{aligned} \frac{d}{dt} i &= \frac{1}{D} \cdot DI = \frac{1}{D} \left[\frac{89353(e^{1}(t) - uI - iI \cdot R_1 - uS - iS \cdot R_5 + i4 \cdot R_4 + uA_4)}{1000000} + \frac{8022(e^{2}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{1000000} - \frac{8823(e^{2}(t) - u3 - i3 \cdot R_3 - u5 - iS \cdot R_5 - i6 \cdot R_6 - uA_6)}{250000} \right] \\ \frac{d}{dt} i^2 &= \frac{1}{D} \cdot D2 = \frac{1}{D} \left[\frac{8027(e^{1}(t) - uI - iI \cdot R_1 - u5 - iS \cdot R_5 + i4 \cdot R_4 + uA_4)}{1000000} + \frac{37447(e^{2}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{250000} - \frac{10264(e^{3}(t) - u3 - i3 \cdot R_3 - u5 - iS \cdot R_5 - i6 \cdot R_6 - uA_6)}{250000} \right] \\ \frac{d}{dt} i^3 &= \frac{1}{D} \cdot D3 = \frac{1}{D} \left[\frac{81779(e^{3}(t) - u3 - i3 \cdot R_3 - u5 - i5 \cdot R_5 - i6 \cdot R_6 - uA_6)}{1000000} - \frac{10264(e^{3}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{250000} - \frac{8823(e^{3}(t) - u3 - i3 \cdot R_3 - u5 - i5 \cdot R_5 - i6 \cdot R_6 - uA_6)}{200000} \right] \\ \frac{d}{dt} i^4 &= \frac{1}{D} \cdot D4 = \frac{1}{D} \left[\frac{9384(e^{2}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{500000} - \frac{3339(e^{1}(t) - u1 - iI \cdot R_1 - u5 - i5 \cdot R_5 - i6 \cdot R_6 - uA_6)}{250000} \right] \\ \frac{d}{dt} i^5 &= \frac{1}{D} \cdot D5 = \frac{1}{D} \left[\frac{22619(e^{1}(t) - u1 - iI \cdot R_1 - u5 - i5 \cdot R_5 + i4 \cdot R_4 + uA_4)}{500000} - \frac{3017(e^{2}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{1000000} + \frac{1177(e^{3}(t) - u3 - i3 \cdot R_3 - u5 - i5 \cdot R_5 - i6 \cdot R_6 - uA_6)}{312500} \right] \\ \frac{d}{dt} i^5 &= \frac{1}{D} \cdot D5 = \frac{1}{D} \left[\frac{22619(e^{1}(t) - u1 - iI \cdot R_1 - u5 - i5 \cdot R_5 + i4 \cdot R_4 + uA_4)}{200000} - \frac{3017(e^{2}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{1000000} + \frac{1177(e^{3}(t) - u3 - i3 \cdot R_3 - u5 - i5 \cdot R_5 - i6 \cdot R_6 - uA_6)}{31250} \right] \\ \frac{d}{dt} i^2 &= \frac{1}{D} \cdot D5 = \frac{1}{D} \left[\frac{677(e^{2}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{200000} - \frac{761(e^{1}(t) - u1 - i1 \cdot R_1 - u5 - i5 \cdot R_5 + i4 \cdot R_4 + uA_4)}{1250000} + \frac{1177(e^{3}(t) - u3 - i3 \cdot R_3 - u5 - i5 \cdot R_5 - i6 \cdot R_6 - uA_6)}{200000} \right] \\ \frac{d}{dt} u^2 &= \frac{1}{D} \cdot D6 = \frac{1}{D} \left[\frac{677(e^{2}(t) - u2 - i2 \cdot R_2 - u4 - i4 \cdot R_4 - i6 \cdot R_6 - uA_6)}{200000} - \frac{761(e^{1}(t) - u1 - i1 \cdot R_1 - u5 - i$$

$$B_{0} = B_{0} = B_{0$$

истемы лифференциальных уравнений по программе rkfired

$$Z := rkfixed(NU, 0, .1, 5000, B)$$
$$t := Z^{\langle 1 \rangle} \qquad i1 := Z^{\langle 2 \rangle} \qquad i2 := Z^{\langle 3 \rangle} \qquad i3 := Z^{\langle 4 \rangle} \qquad i4 := Z^{\langle 5 \rangle} \qquad i5 := Z^{\langle 6 \rangle} \qquad i6 := Z^{\langle 7 \rangle}$$

 $u1 := Z^{\langle 8 \rangle} \qquad u2 := Z^{\langle 9 \rangle} \qquad u3 := Z^{\langle 10 \rangle} \qquad u4 := Z^{\langle 11 \rangle} \qquad u5 := Z^{\langle 12 \rangle} \qquad u6 := Z^{\langle 13 \rangle}$

5. Графические диаграммы токов в переходном режиме

6. Графические диаграммы напряжений в переходном режиме

t,t-.04

Вывод: продолжительность переходного процесса составляет 2 периода.

7. Обработка результатов расчета для 3-г о периода

$$N := 3000$$

7.1. Действующие значения токов и напряжений

$$\begin{split} \mathcal{LL}_{w} &:= \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (il_{i})^{2}} = 0.876 \qquad UI := \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (ul_{i})^{2}} = 30.434 \\ I2 &:= \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (i2_{i})^{2}} = 2.033 \qquad U2 := \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (u2_{i})^{2}} = 74.352 \\ I3 &:= \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (i3_{i})^{2}} = 1.23 \qquad U3 := \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (u3_{i})^{2}} = 83.336 \\ I4 &:= \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (i4_{i})^{2}} = 0.662 \qquad U4 := \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (u4_{i})^{2}} = 27.677 \\ I5 &:= \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (i5_{i})^{2}} = 1.458 \qquad U5 := \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (u5_{i})^{2}} = 87.608 \\ I6 &:= \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (i6_{i})^{2}} = 0.886 \qquad U6 := \sqrt{\frac{1}{1000} \cdot \sum_{i=2001}^{N} (u6_{i})^{2}} = 39.686 \\ E1 &:= \sqrt{\frac{1}{T} \cdot \int_{0}^{T} el(t)^{2} dt} = 70.711 \qquad E2 := \sqrt{\frac{1}{T} \cdot \int_{0}^{T} e2(t)^{2} dt} = 91.924 \\ E3 &:= \sqrt{\frac{1}{T} \cdot \int_{0}^{T} e3(t)^{2} dt} = 84.853 \end{split}$$
7.2. Гармонический анализ функций токов и напряжений

$$\lim_{m \to \infty} := 2\pi f \qquad j := \sqrt{-1}$$

$$B1 := \frac{2}{1000} \cdot \sum_{i = 2001}^{N} (il_i \cdot sin(\omega \cdot t_i)) = 0.339$$

$$C1 := \frac{2}{1000} \cdot \sum_{i = 2001}^{N} (i1_i \cdot cos(\omega \cdot t_i)) = 1.191$$

 $Im_{I} := B1 + j \cdot C1 \quad |Im_{I}| = 1.238 \qquad \forall i_{I} := arg(Im_{I}) = 74.107 \cdot deg$

$$igl(t) := |Im_{l}| \cdot sin(\omega \cdot t + \psi i_{l})$$

$$D1 := \frac{2}{1000} \cdot \sum_{i = 2001}^{N} (u1_i \cdot sin(\omega \cdot t_i)) = 41.41$$
$$F1 := \frac{2}{1000} \cdot \sum_{i = 2001}^{N} (u1_i \cdot cos(\omega \cdot t_i)) = -11.733$$

 $Um_1 := D1 + j \cdot F1 |Um_1| = 43.04$ $\forall u_1 := arg(Um_1) = -15.819 \cdot deg$

$$ugl(t) := (|Um_{I}| \cdot sin(\omega \cdot t + \psi u_{I}))$$

7.3. Мощность источников и приемников

$$Pel := \frac{1}{1000} \cdot \sum_{i=2001}^{N} (el(t)_{i} \cdot il_{i}) = 27.039$$

$$Pe2 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} (e2(t)_{i} \cdot i2_{i}) = 186.475$$

$$Pe3 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} (e3(t)_{i} \cdot i3_{i}) = 98.139$$

$$P1 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} \left[R_{1} \cdot (i1_{i})^{2} \right] = 19.936$$

$$P2 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} \left[R_{2} \cdot (i2_{i})^{2} \right] = 128.109$$

$$P3 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} \left[R_{3} \cdot (i3_{i})^{2} \right] = 63.585$$

$$P4 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} \left[R_{4} \cdot (i4_{i})^{2} \right] = 7.877$$

$$P5 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} \left[R_{5} \cdot (i5_{i})^{2} \right] = 59.488$$

$$P6 := \frac{1}{1000} \cdot \sum_{i=2001}^{N} \left[R_{6} \cdot (i6_{i})^{2} \right] = 32.998$$

$$Pa := Pal + Pa2 + Pa3 = 311.652$$

$$Pe := PeI + Pe2 + Pe3 = 311.653$$
$$Pn := PI + P2 + P3 + P4 + P5 + P6 = 311.993$$

ЗАДАЧА 39. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

1. Схема цепи и параметры элементов

Вольтамперная характеристика нелинейного элемента задана в виде таблицы координат точек. Представляем ВАХ в матричной форме

 $Uk := (0 \ 10 \ 24 \ 36 \ 49 \ 64 \ 81 \ 100 \ 121 \ 144)^T$ $Ik := (0 \ .3 \ .5 \ .6 \ .7 \ .8 \ .9 \ 1.0 \ 1.1 \ 1.2)^T$

2. 1-ый вариант решения

Нелинейная ВАХ *I*(*U*) аппроксимируется кубическими сплайнами

$$s1 := cspline(Uk, Ik)$$
 $II(U2) := interp(s1, Uk, Ik, U2)$

Нелинейное уравнение Кирхгофа решается по программе Given..Find..

$$U2 := 1 \qquad Given \qquad II(U2) \cdot RI + U2 = E$$

U2 := Find(U2) = 92.032

$$II(U2) = 0.959$$
 $U1 := II(U2) \cdot R1 = 47.968$

3. 2-ой вариант решения

Нелинейная ВАХ U(I) аппроксимируется кубическими сплайнами

$$s2 := cspline(Ik, Uk)$$
 $U2(I2) := interp(s2, Ik, Uk, I2)$

Нелинейное уравнение Кирхгофа решается по программе Given..Find..

$$I2 := 1$$
 Given $I2 \cdot R1 + U2(I2) = E$
 $I2 := Find(I2) = 0.959$ $U2(I2) = 92.033$ $U1 := R1 \cdot I2 = 47.967$
4. 3-ий вариант – графическое решение

Нелинейная ВАХ U(I) аппроксимируется кубическими сплайнами

$$s3 := cspline(Ik, Uk) \qquad U2(I3) := interp(s3, Ik, Uk, I3)$$
$$U2(I3) = E - I3 \cdot R1$$

В соответствии с уравнением Кирхгофа в одном масштабе строятся две графические диаграммы, представляющие выражения слева и справа от знака равенства. Решению задачи соответствует точка пересечения двух диаграмм.

ЗАДАЧА 40. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

1. Схема цепи и параметры элементов

Вольтамперная характеристика нелинейного элемента задана в виде таблицы координат точек. Представляем ВАХ в матричной форме

 $Uk := (0 \ 2 \ 20 \ 40 \ 50 \ 60 \ 80 \ 100 \ 120 \ 150)^T$ $Ik := (0 \ .01 \ 1.0 \ 1.2 \ .8 \ .4 \ .3 \ .7 \ 1.1 \ 1.6)^T$

2. Графический метод решения

Нелинейная ВАХ *I*(*U*) аппроксимируется кубическими сплайнами

s1 := cspline(Uk, Ik) I2(U2) := interp(s1, Uk, Ik, U2)

$$II(U2) := \frac{E - U2}{RI} \qquad I2(U2) = \frac{E - U2}{RI}$$

3. Аналитический метод решения

Нелинейное уравнение Кирхгофа решается по программе Given...Find.

 $U2 := 10 \quad Given \qquad II (U2) \cdot RI + U2 = E$ $U2 := Find(U2) = 0 \qquad II (U2) = 1.071 \qquad UI := II (U2) \cdot RI = 150$ $U2 := 50 \quad Given \qquad II (U2) \cdot RI + U2 = E$ $U2 := Find(U2) = 0 \qquad II (U2) = 1.071 \qquad UI := II (U2) \cdot RI = 150$ $U2 := 100 \quad Given \qquad II (U2) - RI + U2 = E$ $U2 := Find(U2) = 0 \qquad II (U2) = 1.071 \qquad UI := II (U2) \cdot RI = 150$

ЗАДАЧА 41. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ 1 ПОСТОЯННОГО ТОКА

1. Схема цепи и параметры элементов

Вольтамперные характеристики (ВАХ) нелинейных элементов заданы в виде таблиц координат точек (таблично), которые представляем в матричной форме.

Для НЭ1:

$$U1k := (0 \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90 \ 95)^T$$

 $I1k := (0 \ .03 \ .06 \ .12 \ .23 \ .39 \ .61 \ 0.95 \ 1.56 \ 2.58)^T$
Для НЭ2:
 $U2k := (0 \ 11 \ 27 \ 39 \ 55 \ 74 \ 95 \ 125 \ 165 \ 210)^T$
 $I2k := (0 \ .3 \ .5 \ .6 \ .7 \ .8 \ .9 \ 1.0 \ 1.1 \ 1.2)^T$

2. Аппроксимация ВАХ нелинейных элементов

Выполняем аппроксимацию ВАХ нелинейных элементов по форме I(U) или U(I) в зависимости от их применения в уравнениях Кирхгофа

Для НЭ1: s1 := cspline(I1k,U1k) U1(I1t) := interp(s1,I1k,U1k,I1t)

Для НЭ2: s2 := cspline(U2k,I2k) I2(U2) := interp(s2,U2k,I2k,U2)

3. Решение системы нелинейных уравнений

Система нелинейных уравнений Кирхгофа решается по программе *Given...Find*:

$$IIt := 1 \qquad I3 := 1 \qquad U2 := 6$$

$$Given \qquad IIt - I2(U2) - I3 = 0$$

$$U1(IIt) + I3 \cdot R3 = E$$

$$U1(IIt) + U2 = E$$

$$\left(\begin{array}{c}IIt\\I3\\U2\end{array}\right) := Find(IIt, I3, U2) = \begin{pmatrix}1.277\\0.531\\63.689\end{pmatrix}$$

$$IIt = 1.277 \qquad I2(U2) = 0.747 \qquad I3 = 0.531$$

$$U1(IIt) = 86.311 \qquad U3 := U2 = 63.689$$

ЗАДАЧА 42. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ 2 ПОСТОЯННОГО ТОКА

1. Схема цепи и параметры элементов

E1 := 180 E2 := 150 R3 := 40

2. Аппроксимация ВАХ нелинейного элемента НЭ1 производится уравнением степенного полинома вида $U = a \cdot I + b \cdot I^n$. Коэффициенты аппроксимации определяются по методу выбранных точек.

$$Ulk := (0 \ 10 \ 20 \ 30 \ 40 \ 50 \ 70 \ 90 \ 100 \ 140)^{T}$$

$$Ilk := (0 \ .38 \ .58 \ .70 \ .78 \ .84 \ .92 \ .98 \ 1.01 \ 1.10)^{T}$$

$$a := 1 \qquad b := 1 \qquad n := 2$$

$$Given \qquad Ulk_3 = a \cdot Ilk_3 + b \cdot (Ilk_3)^{n}$$

$$Ulk_6 = a \cdot Ilk_6 + b \cdot (Ilk_6)^{n}$$

$$Ulk_9 = a \cdot Ilk_9 + b \cdot (Ilk_9)^{n}$$

$$\begin{pmatrix} a \\ b \\ m \\ k \end{pmatrix} := Find(a, b, n) = \begin{pmatrix} 25.475 \\ 70.123 \\ 4.911 \end{pmatrix} \qquad Ul(Ill) := a \cdot Ill + b \cdot Ill^{n}$$

3. Аппроксимация ВАХ нелинейного элемента НЭ2 выполняется кубическими сплайнами

$$U2k := (0 \ 10 \ 20 \ 30 \ 40 \ 50 \ 70 \ 90 \ 100 \ 120)^{T}$$
$$I2k := (0 \ .2 \ .35 \ .45 \ .52 \ .57 \ .63 \ .80 \ 1.00 \ 1.90)^{T}$$
$$cs := cspline(U2k, I2k) \qquad I2(U2) := interp(cs, U2k, I2k, U2)$$

47

4. Решение системы нелинейных уравнений Кирхгофа по программе *Given...Find*:

$$II_{...} := 1 \qquad I3 := 1 \qquad UI_{...} := 1 \qquad U2 := 1 \qquad U3 := 1$$

Given
$$I1 + I2(U2) - I3 = 0 \qquad U1 + U3 = E1$$

$$U2 + U3 = E2 \qquad U1 = a \cdot I1 + b \cdot I1^{n} \qquad U3 = I3 \cdot R3$$

$$A_{...} := Find(I1, I3, U1, U2, U3)$$

5. Результаты вычислений:

$II := A_0 = 1.038$	$I3 := A_1 = 1.732$	$UI := A_2 = 110.725$
$U_2 := A_3 = 80.725$	$U_3 := A_4 = 69.275$	I2(U2) = 0.694

ЗАДАЧА 43. РАСЧЕТ НЕРАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ

1. Эскизный рисунок магнитной цепи (*a*) и ее схема (δ)

2. Исходные данные

2.1. Кривая намагничивания материала сердечника B = f(H) задана таблично: $Bk := (0 .5 .8 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7)^T$ $Hk := (0 32 68 123 174 263 404 625 959 1450 2170)^T$ $\mu o := 1.25 \cdot 10^{-6}$

Графическая диаграмма функции B = f(H):

2.2. Геометрические размеры магнитной цепи заданы в единицах измерения системы *SI*:

 $ll := 0.3 \quad sl := 0.004 \qquad Iw := 300$

$$l2 := 0.1$$
 $s2 := 0.003$ $\delta_{m} := .0001$

<u>3. Расчет вебер-амперных характеристик отдельных участков</u> <u>магнитной цепи</u>

Для удобства чтения выразим магнитные потоки в мВб

3.1. Для 1-го участка: $\Phi lk := 1000Bk \cdot s1$ мВб $Ulk := Hk \cdot ll$ В $\Phi lk^T = \boxed{\begin{array}{c|c} 0 & 1 \\ 0 & 0 & 2 \end{array}}$ 2 3.2 4 5 6 7 8 a 10 4.4 4.8 5.2 5.6 6 6.4 6.8 $Ulk^T = \boxed{\begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix}}$ 1 9.6 2 20.4 5 6 3 4 7 8 9 10 36.9 52.2 78.9 121.2 187.5 287.7 435 651

3.2. Для 2-го участка:

 $\Phi 2k := 1000Bk \cdot s2$ мвб $U2k := Hk \cdot l2$ в

3.3. Для 3-го участка:

$$Uo(\Phi) := \frac{\delta}{\mu o \cdot sl} \cdot \Phi \cdot .001$$

4. Аппроксимация вебер-амперных характеристик степенным полиномом вида $U = a\Phi + b\Phi^n$

4.1. Определение коэффициентов *a1* и *b1*и *n1* по методу выбранных точек (3, 6, 9):

$$al := .01 \quad bl := .0001 \qquad nl := 5$$

Given

$$Ulk_{3} = al \cdot \Phi lk_{3} + bl \cdot (\Phi lk_{3})^{nl}$$

$$Ulk_{6} = al \cdot \Phi lk_{6} + bl \cdot (\Phi lk_{6})^{nl}$$

$$Ulk_{9} = al \cdot \Phi lk_{9} + bl \cdot (\Phi lk_{9})^{nl}$$

$$\begin{pmatrix} al \\ bl \\ nl \end{pmatrix} := Find (al, bl, nl) = \begin{pmatrix} 5.628 \\ 7.978 \times 10^{-4} \\ 7.069 \end{pmatrix}$$

$$Ul(\Phi) := al \cdot \Phi + bl \cdot \Phi^{nl}$$

4.2. Определение коэффициентов *а2* и *b2* и *n2* по методу выбранных точек (3, 6, 9):

$$a2 := .01$$
 $b2 := .0001$ $n2 := 5$

Given

$$U2k_{3} = a2 \cdot \Phi 2k_{3} + b2 \cdot (\Phi 2k_{3})^{n2}$$

$$U2k_{6} = a2 \cdot \Phi 2k_{6} + b2 \cdot (\Phi 2k_{6})^{n2}$$

$$U2k_{9} = a2 \cdot \Phi 2k_{9} + b2 \cdot (\Phi 2k_{9})^{n2}$$

$$\begin{pmatrix}a2\\b2\\b2\\n2\end{pmatrix} := Find(a2, b2, n2) = \begin{pmatrix}2.501\\2.032 \times 10^{-3}\\7.069\end{pmatrix}$$

$$U2(\Phi) := a2 \cdot \Phi + b2 \cdot \Phi^{n2}$$

4.4. Уравнение аппроксимации ВбАХ воздушного зазора:

$$U_{o}(\Phi) := \frac{\delta}{\mu o \cdot sl} \cdot \Phi \cdot .001$$

5. Система уравнений Кирхгофа и ее решение

$$\Phi_{\text{m}} := 1$$
Given
$$UI(\Phi) + U2(\Phi) + Uo(\Phi) = Iw$$

$$\Phi_{\text{m}} := Find(\Phi) = 4.73$$

6. Результаты расчета:

$$U1(\Phi) = 73.683$$
 $U2(\Phi) = 131.716$ $Uo(\Phi) = 94.601$
 $Bo := \frac{\Phi}{sl} \cdot 10^{-3} = 1.183$

<u>6. Аппроксимация вебер-амперных характеристик гиперболическим сину-</u> сом вида $U = csinh(d\Phi)$

6.1. Определение коэффициентов *c1* и *d1* по методу выбранных точек (3, 7):

$$cl := 1 \qquad dl := 1$$

Given
$$Ulk_3 = cl \cdot sinh(dl \cdot \Phi lk_3)$$
$$Ulk_7 = cl \cdot sinh(dl \cdot \Phi lk_7)$$

$$\begin{pmatrix} cl \\ dl \end{pmatrix} := Find(cl, dl) = \begin{pmatrix} 1.269 \\ 1.016 \end{pmatrix} \qquad Ul(\Phi) := cl \cdot sinh(dl \cdot \Phi)$$

6.2. Определение коэффициентов *c2* и *d2* по методу выбранных точек (3, 7):

c2 := 1 d2 := 1

Given

$$U2k_{3} = c2 \cdot sinh(d2 \cdot \Phi 2k_{3})$$

$$U2k_{7} = c2 \cdot sinh(d2 \cdot \Phi 2k_{7})$$

$$\begin{pmatrix} c2\\ d2 \end{pmatrix} := Find(c2, d2) = \begin{pmatrix} 0.423\\ 1.354 \end{pmatrix}$$

$$U2k_{7} = c2 \cdot sinh(d2 \cdot \Phi)$$

6.3. Уравнение аппроксимации воздушного зазора:

$$Uo(\Phi) := \frac{\delta}{\mu o \cdot sI} \cdot \Phi \cdot .001$$

7. Система уравнений Кирхгофа и ее решение

$$\Phi_{\text{min}} := 1 \qquad Given \qquad UI(\Phi) + U2(\Phi) + Uo(\Phi) = Iw$$
$$\Phi_{\text{min}} := Find(\Phi) = 4.729$$

6. Результаты расчета:

 $U1(\Phi) = 77.418$ $U2(\Phi) = 127.997$ $Uo(\Phi) = 94.585$

$$Bo_{l} := \frac{\Phi}{sl} \cdot 10^{-3} = 1.182$$

ЗАДАЧА 44. РАСЧЕТ РАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ 1 В MathCAD

1. Схема цепи и параметры элементов

<u>Заданы</u>: эскизный рисунок магнитной цепи (рис. 1, *a*) и геометрические размеры отдельных участков, числа витков обмоток и токи, протекающие в обмотках, графическая диаграмма кривой намагничивания материала сердечника B = f(H) (рис. 2).

Рис. 1

Геометрические размеры магнитной цепи заданы в единицах измерения системы *SI*:

11 := 0.4	s1 := 0.002	w1 := 300	i1 := 2
12 := 0.2	s2 := 0.004	w2 := 200	i2 := 2
13 := 0.5	s3 := 0.003	w3 := 250	i3 := 3

<u>Требуется</u>: выполнить расчет магнитной цепи и определить индукцию магнитного поля в зазоре *Во*.

1. На графической диаграмме кривой намагничивания B = f(H) выбирают 10...15 точек. Координаты выбранных точек оформляют в виде матриц.

$$B := (0 \ .5 \ .8 \ 1 \ 1.1 \ 1.2 \ 1.3 \ 1.4 \ 1.5 \ 1.6 \ 1.7)^{T}$$
$$H := (0 \ 35 \ 66 \ 120 \ 170 \ 260 \ 410 \ 630 \ 980 \ 1560 \ 2470)^{T}$$

Рис. 2. Графическая диаграмма функции B = f(H)

1-ый вариант решения задачи

2. Расчет вебер-амперных характеристик отдельных участков магнитной цепи производится по известным формулам $\Phi = B s$, U = Hl, для удобства магнитные потоки выразим в [*мBб*].

$$\begin{split} k &:= 1 \dots 10 \\ & \Phi 1_k := 1000 \, B_k \cdot s1 \qquad U 1_k := H_k \cdot l1 \qquad -$$
для 1-го участка $\Phi 2_k := 1000 \, B_k \cdot s2 \qquad U 2_k := H_k \cdot l2 \qquad -$ для 2-го участка $\Phi 3_k := 1000 \, B_k \cdot s3 \qquad U 3_k := H_k \cdot l3 \qquad -$ для 3-го участка

3. Аппроксимация вебер-амперных характеристик отдельных участков магнитной цепи выполняется степенным полиномом вида $U = a\Phi + b\Phi n$, ко-эффициенты аппроксимации *a*, *b* и *n* определяются по методу выбранных точек (3, 6, 9).

Для 1-го участка:

a1 := 1 b1 := 1 n1 := 1

Giver

$$U1_{3} = a1 \cdot o1_{3} + b1 \cdot (o1_{3})^{n1}$$

$$U1_{6} = a1 \cdot o1_{6} + b1 \cdot (o1_{6})^{n1}$$

$$U1_{9} = a1 \cdot o1_{9} + b1 \cdot (o1_{9})^{n1}$$

$$\begin{pmatrix}a1\\b1\\b1\\n1\end{pmatrix} := Find(a1, b1, n1) = \begin{pmatrix}14.894\\0.112\\7.35\end{pmatrix}$$

Для 2-го участка:

a2 := 1 b2 := 1 n2 := 1
Giver U2₃ = a2 ·
$$\phi$$
2₃ + b2 · $(\phi$ 2₃)ⁿ²
U2₆ = a2 · ϕ 2₆ + b2 · $(\phi$ 2₆)ⁿ²
U2₉ = a2 · ϕ 1₉ + b2 · $(\phi$ 2₉)ⁿ²
 $\begin{pmatrix} a2\\ b2\\ n2 \end{pmatrix}$:= Find(a2, b2, n2) = $\begin{pmatrix} -48.024\\ 22.447\\ 1.634 \end{pmatrix}$

Для 3-го участка:

$$a3 := 1 \quad b3 := 1 \quad n3 := 1$$

Giver
$$U3_{3} = a3 \cdot o3_{3} + b3 \cdot (o3_{3})^{n3}$$

$$U3_{6} = a3 \cdot o3_{6} + b3 \cdot (o3_{6})^{n3}$$

$$U3_{9} = a3 \cdot o3_{9} + b3 \cdot (o3_{9})^{n3}$$

$$\begin{bmatrix}a3\\b3\\n3\end{bmatrix}$$

$$:= \text{Find}(a3, b3, n3) = \begin{pmatrix}12.411\\7.086 \times 10^{-3}\\7.35\end{pmatrix}$$

56

Уравнения аппроксимации вебер-амперных характеристик отдельных участков:

$$U1(\Phi 1) := a1 \cdot \Phi 1 + b1 \cdot \Phi 1^{n1}$$
$$U2(\Phi 2) := a2 \cdot \Phi 2 + b2 \cdot \Phi 2^{n2}$$
$$U3(\Phi 3) := a3 \cdot \Phi 3 + b3 \cdot \Phi 3^{n3}$$

4. Составляется расчетная схема магнитной цепи (рис. 1, б). Для схемы составляется система уравнений по законам Кирхгофа. Решение системы уравнений производится по программе "Given...find"

 $\Phi 1 := 0 \quad \Phi 2 := 0 \quad \Phi 3 := 0 \quad \text{Uab} := 0$ Giver $Uab + U1(\Phi 1) = i1 \cdot W1$ $Uab + U2(\Phi 2) = i2 \cdot W2$ $Uab - U3(\Phi 3) = -i3 \cdot W3$ $\Phi 1 + \Phi 2 - \Phi 3 = 0$ $\begin{pmatrix} \Phi 1 \\ \Phi 2 \\ \Phi 3 \\ Wab \end{pmatrix} := \text{Find}(\Phi 1, \Phi 2, \Phi 3, \text{Uab}) = \begin{pmatrix} 2.64 \\ 2.449 \\ 5.089 \\ 420.644 \end{pmatrix}$

Результаты вычислений:

 $\Phi 1 = 2.64$ $\Phi 2 = 2.449$ $\Phi 3 = 5.089$ Uab = 420.644

2-ой вариант решения задачи

2.Расчет вебер-амперных характеристик отдельных участков магнитной цепи производится по известным формулам $\Phi = Bs$, U = Hl, для удобства магнитные потоки выразим в [*мBб*].

3.Аппроксимация вебер-амперных характеристик отдельных участков магнитной цепи выполняется гиперболическим синусом вида $U = csinh(d\Phi)$, коэффициенты аппроксимации с и *d* определяются по методу выбранных точек(3,7)

6.1.Определение коэффициентов c1и d1по методу выбранных точек (3,7):

Для 1-го участка:

c1 := 1 d1 := 1 Giver $U1_3 = c1 \cdot \sinh(d1 \cdot \phi 1_3)$ $U1_7 = c1 \cdot \sinh(d1 \cdot \phi 1_7)$ $\begin{pmatrix} c1 \\ d1 \end{pmatrix} := Find(c1, d1) = \begin{pmatrix} 1.521 \\ 2.072 \end{pmatrix}$

Для 2-го участка:

c2 := 1 d2 := 1 Giver U2₃ = c2·sinh(d2· ϕ 2₃) U2₇ = c2·sinh(d2· ϕ 2₇) $\begin{pmatrix} c2\\ d2 \end{pmatrix}$:= Find(c2, d2) = $\begin{pmatrix} 0.761\\ 1.036 \end{pmatrix}$ Для 3-го участка:

c3 := 1 d3 := 1

Giv

Ver
$$U3_{3} = c3 \cdot \sinh(d3 \cdot \phi 3_{3})$$
$$U3_{7} = c3 \cdot \sinh(d3 \cdot \phi 3_{7})$$
$$\begin{pmatrix} c3\\ d3 \end{pmatrix} := Find(c3, d3) = \begin{pmatrix} 1.902\\ 1.382 \end{pmatrix}$$

Уравнения аппроксимации вебер-амперных характеристик отдельных участков:

$$U1(\Phi 1) := c1 \cdot \sinh(d1 \cdot \Phi 1)$$
$$U2(\Phi 2) := c2 \cdot \sinh(d2 \cdot \Phi 2)$$
$$U3(\Phi 3) := c3 \cdot \sinh(d3 \cdot \Phi 3)$$

7.Система уравнений Кирхгофа и ее решение

$$\Phi 1 := 1 \qquad \Phi 2 := 1 \qquad \Phi 3 := 1 \qquad \text{Uab} := 1$$
Giver $Uab + U1(\Phi 1) = i1 \cdot w1$
 $Uab + U2(\Phi 2) = i2 \cdot w2$
 $Uab - U3(\Phi 3) = -i3 \cdot w3$
 $\Phi 1 + \Phi 2 - \Phi 3 = 0$

$$\begin{pmatrix} \Phi 1 \\ \Phi 2 \\ \Phi 3 \\ \Psi 3 \\ \Psi 4 \end{pmatrix} := \text{Find}(\Phi 1, \Phi 2, \Phi 3, \text{Uab}) = \begin{pmatrix} 2.7 \\ 2.435 \\ 5.134 \\ 395.29 \end{pmatrix}$$

Результаты вычислений:

 $\Phi 1 = 2.7$ $\Phi 2 = 2.435$ $\Phi 3 = 5.134$ Uab = 395.29

ЗАДАЧА 45. РАСЧЕТ РАЗВЕТВЛЕННОЙ МАГНИТНОЙ ЦЕПИ 2 В MathCAD

1. Схема цепи и параметры элементов

<u>Заданы</u>: эскизный рисунок магнитной цепи (рис. 1, *a*) и геометрические размеры отдельных участков, числа витков обмоток и токи, протекающие в обмотках, графическая диаграмма кривой намагничивания материала сердечника B = f(H) (рис. 2).

Рис. 1. Эскизный рисунок и расчетная схема магнитной цепи

Геометрические размеры магнитной цепи заданы в единицах измерения системы *SI*:

<i>l1</i> := 0.4	s1 := 0.0015	w1 := 200	<i>III</i> := 2.5
<i>l2</i> := 0.4	<i>s2</i> := 0.0025	<i>w2</i> := 300	I2 := 2
<i>l3</i> := 0.2	s3 := 0.004	$\mu o := 4\pi \cdot 10^{-7}$	$s_{m} := 5 \cdot 10^{-4}$

<u>Требуется</u>: выполнить расчет магнитной цепи и определить индукцию магнитного поля в зазоре *Во*.

1. На графической диаграмме кривой намагничивания B = f(H) выбирают 10...15 точек. Координаты выбранных точек оформляют в виде матриц.

T

$$B := (0 \ .5 \ .8 \ 1 \ 1.1 \ 1.2 \ 1.3 \ 1.4 \ 1.5 \ 1.6 \ 1.7)^T$$
$$H_{\rm M} := (0 \ 35 \ 66 \ 120 \ 170 \ 260 \ 410 \ 630 \ 980 \ 1560 \ 2470)^T$$

Рис. 2. Графическая диаграмма функции B = f(H)

2. Расчет вебер-амперных характеристик отдельных участков магнитной цепи производится по известным формулам $\Phi = B s$, U = Hl, для удобства магнитные потоки выразим в [*мBб*].

$$k := 1..10$$

$$\Phi I_k := 1000 B_k \cdot s1 \qquad UI_k := H_k \cdot l1 \qquad -$$
для 1-го участка
$$\Phi 2_k := 1000 B_k \cdot s2 \qquad U2_k := H_k \cdot l2 \qquad -$$
для 2-го участка
$$\Phi 3_k := 1000 B_k \cdot s3 \qquad U3_k := H_k \cdot l3 \qquad -$$
для 3-го участка
$$Ro := \frac{\delta}{\mu o \cdot s3} \qquad Uo (\Phi 3) := Ro \cdot \Phi 3 \cdot .001 \qquad -$$
для зазора

3. Аппроксимация вебер-амперных характеристик отдельных участков магнитной цепи выполняется степенным полиномом вида $U = a\Phi + b\Phi n$, ко-эффициенты аппроксимации *a*, *b* и *n* определяются по методу выбранных точек (3, 6, 9).

Для 1-го участка:

al := 1 bl := 1 nl := 1

Given

$$UI_{3} = aI \cdot \Phi I_{3} + bI \cdot (\Phi I_{3})^{nI}$$

$$UI_{6} = aI \cdot \Phi I_{6} + bI \cdot (\Phi I_{6})^{nI}$$

$$UI_{9} = aI \cdot \Phi I_{9} + bI \cdot (\Phi I_{9})^{nI}$$

$$\begin{pmatrix}aI\\bI\\nI\end{pmatrix} := Find(aI, bI, nI) = \begin{pmatrix}19.858\\0.925\\7.35\end{pmatrix}$$

Для 2-го участка:

$$a2 := 1 \qquad b2 := 1 \qquad n2 := 1$$

Given
$$U2_3 = a2 \cdot \phi 2_3 + b2 \cdot (\phi 2_3)^{n2}$$

$$U2_6 = a2 \cdot \phi 2_6 + b2 \cdot (\phi 2_6)^{n2}$$

$$U2_9 = a2 \cdot \phi 1_9 + b2 \cdot (\phi 2_9)^{n2}$$

$$\begin{pmatrix} a^2 \\ b^2 \\ n^2 \end{pmatrix} := Find(a^2, b^2, n^2) = \begin{pmatrix} 12.383 \\ 0.017 \\ 7.557 \end{pmatrix}$$

Для 3-го участка:

$$a3 := 1 \qquad b3 := 1 \qquad n3 := 1$$

Given
$$U3_{3} = a3 \cdot \phi 3_{3} + b3 \cdot (\phi 3_{3})^{n3}$$

$$U3_{6} = a3 \cdot \phi 3_{6} + b3 \cdot (\phi 3_{6})^{n3}$$

$$U3_{9} = a3 \cdot \phi 3_{9} + b3 \cdot (\phi 3_{9})^{n3}$$

$$\begin{pmatrix} a3\\ b3\\ n3 \end{pmatrix} := Find(a3, b3, n3) = \begin{pmatrix} 3.723\\ 3.421 \times 10^{-4}\\ 7.35 \end{pmatrix}$$

Уравнения аппроксимации вебер-амперных характеристик отдельных участков:

$$Ul(\Phi l) := al \cdot \Phi l + bl \cdot \Phi l^{nl}$$
$$U2(\Phi 2) := a2 \cdot \Phi 2 + b2 \cdot \Phi 2^{n2}$$
$$U3(\Phi 3) := a3 \cdot \Phi 3 + b3 \cdot \Phi 3^{n3}$$

4. Составляется расчетная схема магнитной цепи (рис. 1, б). Для схемы составляется система уравнений по законам Кирхгофа. Решение системы уравнений производится по программе "Given...find"

$$\Phi I := 1 \qquad \Phi 2 := 1 \qquad \Phi 3 := 1 \qquad Uab := 10$$

$$Given \qquad \Phi I + \Phi 2 - \Phi 3 = 0$$

$$Uab + U1(\Phi I) = II \cdot WI$$

$$Uab + U2(\Phi 2) = I2 \cdot W2$$

$$Uab = U3(\Phi 3) + Uo(\Phi 3)$$

$$\begin{pmatrix} \Phi I \\ \Phi 2 \\ \Phi 3 \\ Uab \end{pmatrix} := Find(\Phi I, \Phi 2, \Phi 3, Uab) = \begin{pmatrix} 1.259 \\ 3.122 \\ 4.382 \\ 469.951 \end{pmatrix}$$

Результаты вычислений:

 $\Phi I = 1.259 \quad \Phi 2 = 3.122 \quad \Phi 3 = 4.382 \quad Uab = 469.951$ $U1(\Phi I) = 30.049 \quad U2(\Phi 2) = 130.049 \quad U3(\Phi 3) = 34.106$ $Uo(\Phi 3) = 435.845 \quad Bo := \frac{\Phi 3}{s3} \cdot .001 = 1.095$

<u>Примечание</u>: алгоритм решения задачи позволяет выполнять анализ влияния отдельных параметров исходных данных на конечные результаты, для этого достаточно внести изменение нужного параметра в исходных данных задачи и повторить вычисления до конца алгоритма.

ЗАДАЧА 46. РАСЧЕТ ВОЛЬТ-АМПЕРНОЙ ХАРАКТЕРИСТИКИ НЕЛИНЕЙНОЙ КАТУШКИ

1. Исходные данные

Диаграмма функции B = f(H)

2. Расчет вебер-амперной характеристики:

$$\psi k := B \cdot s \cdot w \quad ik := \frac{H \cdot l}{w}$$

Диаграмма функции $\psi = f(il)$

Аппроксимация вебер-амперной характеристики:

$$i(\psi) := a \cdot \psi + b \cdot (\psi)^n$$

Проверка качества аппроксимации вебер-амперной характеристики:

3. Расчет вольт-амперной характеристики: U := (0 20 40 60 80 100 110 120 130 140 150)^T

$$k := 6 \quad Um_k := U_k \cdot \sqrt{2} \quad \Psi m_k := \frac{Um_k}{\omega} \quad c1 := 0 \quad c2 := 0.1 \quad c3 := -0.1$$

$$\Psi (t) := \Psi m_k \cdot sin(\omega \cdot t) + c1 \cdot \Psi m_k \cdot sin(3\omega \cdot t)$$

$$\underline{i}(t) := a \cdot \Psi (t) + b \cdot \Psi (t)^7$$

$$Id := \sqrt{\frac{1}{T} \cdot \int_0^T i(t)^2 dt} = 0.722$$

 $II := (0 \ .04 \ .08 \ .13 \ .21 \ .46 \ .73 \ 1.19 \ 1.93 \ 3.11 \ 4.91)^T$ $I2 := (0 \ .04 \ .08 \ .13 \ .20 \ .36 \ .54 \ .84 \ 1.31 \ 2.05 \ 3.18)^T$ $I3 := (0 \ .04 \ .08 \ .13 \ .25 \ .64 \ 1.10 \ 1.87 \ 3.11 \ 5.15 \ 8.21)^T$

66

Диаграмма функции U = f(I)

Аппроксимация вольт-амперной характеристики:

Given $c_{m} := .1$ d := .1 $II_{4} = c \cdot sinh(d \cdot U_{4})$ $II_{8} = c \cdot sinh(d \cdot U_{8})$ $\begin{pmatrix} c_{m} \\ d_{m} \end{pmatrix} := Find(c, d) = \begin{pmatrix} 0.012 \\ 0.044 \end{pmatrix}$ $II(U) := c \cdot sinh(d \cdot U)$

Проверка качества аппроксимации вольт-амперной характеристики:

$$Ua(Ia) := \frac{1}{d} \cdot asinh\left(\frac{Ia}{c}\right)$$

ЗАДАЧА 47. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА КОМПЛЕКСНЫМ МЕТОДОМ

1. Схема цепи и параметры элементов

Параметры отдельных элементов схемы заданы в единицах измерения системы SI. Вольтамперные характеристики нелинейных элементов заданы аналитически.

E := 50 R := 20 Ro := 4 Xc := 30 $a := 2 \cdot 10^{-5}$ $I = a \cdot UL^3$

2. Решение задачи методом законов Кирхгофа

Система уравнений Кирхгофа дополняется уравнением аппроксимации в комплексной форме и решается по программе "Given...find".

$$j := \sqrt{-1} \qquad II := 1 + j \qquad UL := 10 + j \cdot 10$$

$$Given \qquad II \cdot (R + Ro) - j \cdot II \cdot Xc + UL = E$$

$$II = a \cdot (|UL|)^3 \cdot e^{j \cdot (arg(UL) - 90deg)}$$

$$\begin{pmatrix}II \\ UL \end{pmatrix} := Find(II, UL) \qquad Ur := II \cdot R \qquad Uk := II \cdot Ro + UL \qquad Uc := II \cdot (-j \cdot Xc)$$

Результаты расчета:

$$|II| = 2.004 \qquad arg(II) = 15.869 \cdot deg$$

$$|UL| = 46.446 \qquad arg(UL) = 105.869 \cdot deg$$

$$|Ur| = 40.079 \qquad arg(Ur) = 15.869 \cdot deg$$

$$|Uc| = 60.118 \qquad arg(Uc) = -74.131 \cdot deg$$

$$|Uk| = 47.133 \qquad arg(Uk) = 96.077 \cdot deg$$

$$Va := E \qquad Vc := Uc \qquad Vb := Vc + Uk$$

3. Топографическая диаграмма потенциалов и векторная диаграмма токов

ЗАДАЧА 48. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА КОМПЛЕКСНЫМ МЕТОДОМ

1. Схема цепи и параметры элементов

Параметры отдельных элементов схемы заданы в единицах измерения системы SI. Вольтамперные характеристики нелинейных элементов заданы аналитически.

$$E := 70 \quad R := 25 \quad Xc := 30 \quad b := 26 \quad d := 1.8 \cdot 10^{-3}$$
$$UI = b \cdot (|II|)^2 \cdot e^{j \cdot arg(II)} \qquad I3 = d \cdot (|U4|)^4 \cdot e^{j \cdot (arg(U4) - 90deg)}$$

2. Решение задачи методом законов Кирхгофа

Система уравнений Кирхгофа дополнена уравнениями аппроксимации в комплексной форме

$$j := \sqrt{-1} \qquad III := 1 + j \qquad I2 := 1 \qquad I3 := 1 \qquad UI := 10 \qquad U4 := 10$$

Given $II - I2 - I3 = 0 \qquad UI - j \cdot I2 \cdot Xc = E \qquad UI + I3 \cdot R + U4 = E$
 $I3 = d \cdot (|U4|)^4 \cdot e^{j \cdot (arg(U4) - 90deg)} \qquad UI = b \cdot (|II|)^2 \cdot e^{j \cdot arg(II)}$
 $\begin{pmatrix}III \\ III \\ I2 \\ I3 \\ UI \\ U4 \end{pmatrix}$
 $:= Find(II, I2, I3, UI, U4) \qquad U2 := I2 \cdot (-j \cdot Xc) \qquad U3 := I3 \cdot R$

Результаты расчета:

II = 1.315	$arg(II) = 13.036 \cdot deg$
<i>I2</i> = 0.936	$arg(I2) = 68.812 \cdot deg$
<i>I3</i> = 1.105	$arg(I3) = -31.402 \cdot deg$
UI = 44.984	$arg(U1) = 13.036 \cdot deg$
U2 = 28.073	$arg(U2) = -21.188 \cdot deg$
<i>U3</i> = 27.628	$arg(U3) = -31.402 \cdot deg$
U4 = 4.978	$arg(U4) = 58.598 \cdot deg$

3. Топографическая диаграмма потенциалов и векторная диаграмма токов

72
ЗАДАЧА 49. РАСЧЕТ НЕЛИНЕЙНОЙ ТРЕХФАЗНОЙ ЦЕПИ ПРИ СОЕДИНЕНИИ ФАЗ НАГРУЗКИ ЗВЕЗДОЙ БЕЗ НУЛЕВОГО ПРОВОДА

1. Условие задачи

Для экспериментального определения порядка следования фаз в трехфазной системе собирается трехфазная электрическая цепь по схеме звезды без нулевого провода, в которой в одну из фаз включается конденсатор емкостью *C*, а в две другие фазы включаются электрические лампочки с номинальным напряжением *Un* и номинальной мощностью *Pn*. Требуется по накалу лампочек установить порядок следования фаз трехфазного источника.

2. Схема цепи и параметры элементов

3. Решение задачи методом линейной электротехники

3.1. Комплексные сопротивления фаз нагрузки (сопротивления ламп принимаем постоянными и равными их номинальным значениям)

$$Rn := \frac{Un^2}{Pn} = 1.21 \times 10^3 \qquad Xc := \frac{1}{2 \cdot \pi \cdot f \cdot C} = 6.366 \times 10^3$$
$$Za := -j \cdot Xc \qquad Zb := Rn \qquad Zc := Rn$$

3.2. Расчет напряжений и токов по методу двух узлов

$$Vn := \frac{\frac{Ua}{Za} + \frac{Ub}{Zb} + \frac{Uc}{Zc}}{\frac{1}{Za} + \frac{1}{Zb} + \frac{1}{Zc}} \qquad |Vn| = 111.467 \qquad \arg(Un) = 0 \cdot \deg$$

$$Uan := Ua - Vn \qquad |Uan| = 328.52 \qquad \arg(Uan) = -5.429 \cdot \deg$$

$$Ubn := Ub - Vn \qquad |Ubn| = 221.626 \qquad \arg(Ubn) = -90.764 \cdot \deg$$

$$Ucn := Uc - Vn \qquad |Ucn| = 159.473 \qquad \arg(Ucn) = 91.061 \cdot \deg$$

$$Ib := \frac{Ubn}{Zb} \qquad |Ib| = 0.183 \qquad \arg(Ib) = -90.764 \cdot \deg$$

$$Ic := \frac{Ucn}{Zc} \qquad |Ic| = 0.132 \qquad \arg(Ic) = 91.061 \cdot \deg$$

<u>3.3.Топографическая диаграмма потенциалов и векторная диаграмма токов</u>

$Im(V), Im(J) \cdot 1000$

4. Решение задачи методом нелинейной электротехники

4.1. Сопротивление лампочек накаливания зависит от температуры нити, и эта зависимость может быть представлена нелинейной функцией вида $U = a \cdot I^2$, где коэффициент аппроксимации а может быть определен по номинальным параметрам.

$$a \coloneqq \frac{Un^3}{Pn^2} = 6.655 \times 10^3$$

4.2. Система нелинейных уравнений, составленная для схемы по законам Кирхгофа и ее решение

$$Ia := 1 \quad Ib := 1 \quad Ic := 1 \quad Ucn := 10 + j \cdot 10 \qquad Ubn := 10 + j \cdot 10$$

$$Given \quad Ia \cdot (-j \cdot Xc) - Ubn = Ua - Ub \qquad Ucn - Ia \cdot (-j \cdot Xc) = Uc - Ua$$

$$Ucn = a \cdot (|Ic|)^2 \cdot e^{j \cdot arg(Ic)} \qquad Ubn = a \cdot (|Ib|)^2 \cdot e^{j \cdot arg(Ib)}$$

$$Ia + Ib + Ic = 0$$

$$\begin{pmatrix}
Ia \\
Ib \\
Ic \\
Ubn \\
Ucn
\end{pmatrix}
:= Find (Ia, Ib, Ic, Ubn, Ucn)$$

$$Uan := Ia \cdot (-j \cdot Xc)$$
 $Vn := Ua - Uan$ $|Ia| = 0.052$ $arg(Ia) = 80.087 \cdot deg$ $|Ib| = 0.193$ $arg(Ib) = -91.124 \cdot deg$ $|Ic| = 0.142$ $arg(Ic) = 92.079 \cdot deg$ $|Vn| = 119.518$ $arg(Vn) = 151.613 \cdot deg$ $|Uan| = 330.074$ $arg(Uan) = -9.913 \cdot deg$ $|Ubn| = 247.395$ $arg(Ubn) = -91.124 \cdot deg$ $|Ucn| = 133.792$ $arg(Ucn) = 92.079 \cdot deg$

4.3. Топографическая диаграмма потенциалов и векторная диаграмма токов

 $Im(V), Im(J) \cdot 1000$

5. Выводы

5.1. По отношению к фазе с конденсатором C на отстающей фазе нагрузки напряжение больше (лампочка горит ярко), а на опережающей фазе напряжение меньше (лампочка горит тускло). Исходя из этого визуального наблюдения устанавливается порядок следования фаз источника A-B-C.

5.2. Расхождение в результатах расчета двумя методами составило около 10%, что указывает на тот факт, что для точного решения этой задачи следует применять методы нелинейной электротехники.

ЗАДАЧА 50. РАСЧЕТ ПРОСТОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА ЧИСЛЕННЫМ МЕТОДОМ

1. Схема цепи и параметры элементов

 $j := \sqrt{-1} \quad R_{\text{m}} := 45 \quad Ro := 4 \quad C_{\text{m}} := 45 \cdot 10^{-6} \quad a := .02 \quad b := 20$ $i = a \cdot sinh(b \cdot \psi) \quad Em := 170 \quad f := 50 \quad \omega := 2\pi \ f \quad \alpha := 0 \ deg$ $T_{\text{m}} := \frac{1}{f} \qquad e_{\text{m}}(t) := Em \cdot sin(\omega \ t + \alpha)$

2. Система дифференциальных уравнений и ее решение

$$i \cdot R + i \cdot Ro + \frac{d}{dt} \psi + uc = e(t)$$

$$i = \frac{d}{dt} uc \qquad i = a \cdot \sinh(b \cdot \psi)$$

$$\frac{d}{dt} \psi = -(R + Ro) \cdot (a \cdot \sinh(b \cdot \psi)) - uc + e(t)$$

$$\frac{d}{dt} uc = \frac{1}{C} \cdot (a \cdot \sinh(b \cdot \psi))$$

$$\begin{split} & \underset{M}{\mathcal{N}} \coloneqq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad D(t,X) \coloneqq \begin{bmatrix} -(R+Ro) \cdot \left(a \cdot \sinh\left(b \cdot X_{0}\right)\right) - X_{1} + e(t) \\ & \frac{1}{C} \cdot \left(a \cdot \sinh\left(b \cdot X_{0}\right)\right) \\ & \\ & \underset{M}{\mathcal{F}} \coloneqq rkfixed(N,0,0.1,5000,D) \\ & tn \coloneqq F^{\langle 0 \rangle} \qquad \forall n \coloneqq F^{\langle 1 \rangle} \qquad ucn \coloneqq F^{\langle 2 \rangle} \quad in \coloneqq a \cdot \sinh(b \cdot \forall n) \\ & \\ & \forall (t) \coloneqq linterp(tn,\forall n,t) \qquad uc(t) \coloneqq linterp(tn,ucn,t) \\ & i(t) \coloneqq a \cdot \sinh(b \cdot \forall (t)) \qquad ur(t) \coloneqq i(t) \cdot R \qquad uk(t) \coloneqq e(t) - ur(t) - uc(t) \end{split}$$

3. Определение времени переходного процесса

Вывод: время переходного процесса составляет примерно Тп = .025 с

t

5. Обработка результатов расчета для 3-го периода

5.1. Максимальное и минимальное значения

Imax := max(in) = 3.838

5.2. Среднее значение по модулю

$$Is := \frac{1}{T} \cdot \int_{2T}^{3T} |i(t)| dt = 1.466$$

5.3. Среднеквадратичные (действующие) значения величин

$$Id := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} i(t)^2 dt} = 1.957$$

5.4. Комплексное действующее значение основной гармоники:

$$II = \frac{\sqrt{2}}{T} \cdot \left(\int_{2T}^{3T} i(t) \cdot \sin(\omega \cdot t) \, dt + j \cdot \int_{2T}^{3T} i(t) \cdot \cos(\omega \cdot t) \, dt \right)$$
$$II = 1.561 + 0.898j \qquad |II| = 1.801 \qquad \arg(II) = 29.91 \cdot \deg$$

80

5.5. Действующие значения высших гармоник:

$$Ig := \sqrt{Id^2 - (|II|)^2} = 0.766$$

5.6. Коэффициенты функции *i*(*t*):

$$Ka := \frac{Imax}{Id} = 1.962$$
 $K_{\phi} := \frac{Id}{Is} = 1.334$ $Ku := \frac{Ig}{|II|} = 0.425$

5.7. Гармонический состав функции i(t):

$$M := 9 \qquad k := 1 \dots M$$
$$Im_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} i(t) \cdot \sin(k \cdot \omega \cdot t) \, dt + j \cdot \int_{2T}^{3T} i(t) \cdot \cos(k \cdot \omega \cdot t) \, dt \right)$$

$ Im_k =$	$arg(Im_k) =$		
2.547	29.91	·deg	
1.684·10 ⁻⁵	-110.271		
0.904	-57.89		
1.714·10 ⁻⁵	-163.509		
0.483	-99.424		
1.487·10 ⁻⁵	149.677		
0.276	-145.181		
1.192·10 ⁻⁵	105.197		
0.167	169.731		

$$ir(t) := \sum_{k=1}^{M} \left(\left| Im_k \right| \cdot sin(k \cdot \omega \cdot t + arg(Im_k)) \right)$$

5.8. Совмещенная диаграмма исходной i(t) и расчетной ir(t) функций

Вывод: незначительные отклонения в некоторых точках расчетной функции от заданной объясняются тем, что в расчетной функции не учтены гармоники выше 9-ой.

ЗАДАЧА 51. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО ТОКА ЧИСЛЕННЫМ МЕТОДОМ

1. Схема цепи и параметры элементов

83

$$\underbrace{M}_{m} := (0 \ 0 \ 0)^{T} \\
\underbrace{F}_{m}(t, X) := \begin{bmatrix} a11 \cdot X_{0} + a12 \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] + a13 \cdot X_{2} + b1 \cdot (e(t)) \\
a21 \cdot X_{0} + a22 \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] + a23 \cdot X_{2} \\
a31 \cdot X_{0} + a32 \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right]
\end{bmatrix}$$

Z := rkfixed(N, 0, 0.1, 5000, F)

 $tn := Z^{\langle 0 \rangle} \qquad iln := Z^{\langle 1 \rangle} \qquad \psi n := Z^{\langle 2 \rangle} \qquad ucn := Z^{\langle 3 \rangle}$ $il(t) := linterp(tn, iln, t) \qquad \psi(t) := linterp(tn, \psi n, t) \qquad uc(t) := linterp(tn, ucn, t)$ $i3(t) := a \cdot \psi(t) + b \cdot \psi(t)^{m} \qquad i2(t) := il(t) - i3(t) \qquad Uab(t) := uc(t) + i2(t) \cdot R2$

Вывод: время переходного процесса составляет примерно Tn = .03 с

t

6. Обработка результатов расчета для 3-го периода

6.1. Среднеарифметические значения (постоянные составляющие)

$$IIsa := \frac{1}{T} \cdot \int_{2T}^{3T} il(t) dt = 7.649 \times 10^{-7}$$
$$I2sa := \frac{1}{T} \cdot \int_{2T}^{3T} i2(t) dt = 9.08 \times 10^{-8}$$
$$I3sa := \frac{1}{T} \cdot \int_{2T}^{3T} i3(t) dt = 2.859 \times 10^{-8}$$

6.2. Средние значения по модулю (средневыпрямленные значения)

$$IIsm := \frac{1}{T} \cdot \int_{2T}^{3T} |iI(t)| dt = 4.291$$
$$I2sm := \frac{1}{T} \cdot \int_{2T}^{3T} |i2(t)| dt = 4.53$$
$$I3sm := \frac{1}{T} \cdot \int_{2T}^{3T} |i3(t)| dt = 3.19$$

6.3. Среднеквадратичные значения (действующие значения)

$$IId := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} il(t)^2 dt} = 4.649$$
$$I2d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} i2(t)^2 dt} = 4.753$$
$$I3d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} i3(t)^2 dt} = 4.425$$

6.4. Гармонические составы функций токов

$$M := 9$$
 $k := 1 ... M$ $j := \sqrt{-1}$

$$IIm_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} iI(t) \cdot sin(k \cdot \omega \cdot t) dt + j \int_{2T}^{3T} iI(t) \cdot cos(k \cdot \omega \cdot t) dt \right)$$

$$ilg(t) := \sum_{k=1}^{M} \left(\left| Ilm_k \right| \cdot sin(k \cdot \omega \cdot t + arg(Ilm_k)) \right)$$

 \rightarrow

$$I2m_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} i2(t) \cdot \sin(k \cdot \omega \cdot t) \, dt + j \int_{2T}^{3T} i2(t) \cdot \cos(k \cdot \omega \cdot t) \, dt \right)$$
$$i2g(t) := \sum_{k=1}^{M} \left(|I2m_k| \cdot \sin(k \cdot \omega \cdot t + \arg(I2m_k)) \right)$$

$$I3m_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} i3(t) \cdot \sin(k \cdot \omega \cdot t) dt + j \int_{2T}^{3T} i3(t) \cdot \cos(k \cdot \omega \cdot t) dt \right)$$
$$i3g(t) := \sum_{k=1}^{M} \left(|I3m_k| \cdot \sin(k \cdot \omega \cdot t + \arg(I3m_k)) \right)$$

6.5. Совмещенная диаграмма исходной il(t) и расчетной ilg(t) функций

Вывод: незначительные отклонения в некоторых точках расчетной функции от заданной объясняются тем, что в расчетной функции не учтены гармоники выше 9-ой

ЗАДАЧА 52. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ ПЕРЕМЕННОГО НЕСИНУСОИДАЛЬНОГО ТОКА ЧИСЛЕННЫМ МЕТОДОМ

1. Схема цепи и параметры элементов

 $RI := 30 \quad R2 := 25 \quad R3 := 20 \quad C_{m} := 80 \times 10^{-6} \quad L1 := 0.05$ $a := 0.639 \quad b := 100 \quad m_{m} := 9 \quad f := 50 \quad \omega := 2\pi \ f \quad T_{m} := \frac{1}{f}$ $Eo := 100 \quad E1m := 400 \quad \alpha 1 := -30 \ deg \quad E2m := 100 \quad \alpha 2 := 20 \ deg$ $g(t) := Eo + E1m \cdot \sin(\omega \cdot t + \alpha 1) + E2m \cdot \sin(2\omega \cdot t + \alpha 2)$

2. Система дифференциальных уравнений

$$il \cdot Rl + Ll \cdot \frac{d}{dt}il + i2 \cdot R2 + uc = e(t) \qquad -i2 \cdot R2 - uc + i3 \cdot R3 + \frac{d}{dt}\psi = 0$$
$$i2 = C \cdot \frac{duc}{dt} \qquad i_1 - i_2 - i_3 = 0 \qquad i3 = a \cdot \psi + b \cdot \psi^m$$

<u>3. Решение системы дифференциальных уравнений</u> $\frac{d}{dt}iI = \frac{-(RI+R2)\cdot iI}{LI} + \frac{R2}{LI}\cdot\left(a\cdot\psi + b\cdot\psi^{m}\right) - \frac{1}{LI}Uc + \frac{1}{LI}u(t)$ $\frac{d}{dt}\psi = R2\cdot iI - (R2+R3)\cdot\left(a\cdot\psi + b\cdot\psi^{m}\right) + uc + 0$ $\frac{d}{dt}Uc = \frac{1}{C}iI - \frac{1}{C}\left(a\cdot\psi + b\cdot\psi^{m}\right) + 0$

$$a11 := \frac{-(RI + R2)}{LI} \qquad a12 := \frac{R2}{LI} \qquad a13 := \frac{-1}{LI} \qquad b1 := \frac{1}{LI}$$
$$a21 := R2 \qquad a22 := -(R2 + R3) \qquad a23 := 1 \qquad a31 := \frac{1}{C} \qquad a32 := \frac{-1}{C}$$
$$M_{\text{max}} := (0 \ 0 \ 0)^{T}$$

$$F_{m}(t,X) := \begin{bmatrix} a11 \cdot X_{0} + a12 \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] + a13 \cdot X_{2} + b1 \cdot e(t) \\ a21 \cdot X_{0} + a22 \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] + a23 \cdot X_{2} \\ a31 \cdot X_{0} + a32 \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] \end{bmatrix}$$

Z := rkfixed(N, 0, 0.1, 5000, F)

 $tn := Z^{\langle 0 \rangle} \quad iln := Z^{\langle 1 \rangle} \quad \forall n := Z^{\langle 2 \rangle} \quad ucn := Z^{\langle 3 \rangle}$ $il(t) := linterp(tn, iln, t) \quad \forall (t) := linterp(tn, \psi n, t) \quad uc(t) := linterp(tn, ucn, t)$ $i3(t) := a \cdot \psi(t) + b \cdot \psi(t)^{m} \quad i2(t) := il(t) - i3(t) \quad u23(t) := i2(t) \cdot R2 + uc(t)$ ul(t) := e(t) - u23(t)

4. Определение времени переходного процесса

Вывод: время переходного процесса составляет примерно Tn = .03 с

6. Обработка результатов расчета для 3-го периода

6.1. Среднеарифметические значения (постоянные сосавляющие)

$$IIo := \frac{1}{T} \cdot \int_{2T}^{3T} iI(t) dt = 2$$

$$I2o := \frac{1}{T} \cdot \int_{2T}^{3T} i2(t) dt = 2.168 \times 10^{-5}$$

$$I3o := \frac{1}{T} \cdot \int_{2T}^{3T} i3(t) dt = 2$$

$$U1o := \frac{1}{T} \cdot \int_{2T}^{3T} uI(t) dt = 60$$

$$U23o := \frac{1}{T} \cdot \int_{2T}^{3T} u23(t) dt = 40$$

6.2. Средние значения по модулю (средневыпрямленные значения)

$$IIs := \frac{1}{T} \cdot \int_{2T}^{3T} |iI(t)| dt = 4.184$$
$$I2s := \frac{1}{T} \cdot \int_{2T}^{3T} |i2(t)| dt = 3.815$$
$$I3s := \frac{1}{T} \cdot \int_{2T}^{3T} |i3(t)| dt = 2.501$$
$$UIs := \frac{1}{T} \cdot \int_{2T}^{3T} |uI(t)| dt = 145.629$$
$$U23s := \frac{1}{T} \cdot \int_{2T}^{3T} |u23(t)| dt = 168.321$$

6.3. Среднеквадратичные значения (действующие значения)

$$IId := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} iI(t)^2 dt} = 4.516$$

$$I2d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} i2(t)^2 dt} = 4.228$$
$$I3d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} i3(t)^2 dt} = 3.772$$
$$U1d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} u1(t)^2 dt} = 158.819$$
$$U23d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} u23(t)^2 dt} = 191.758$$

6.4. Мощности источника и приемников:

$$Pe := \frac{1}{T} \cdot \int_{2T}^{3T} e(t) iI(t) dt = 1.343 \times 10^{3}$$

$$P_{1} := \frac{1}{T} \cdot \int_{2T}^{3T} uI(t) iI(t) dt = 611.723$$

$$P_{2} := \frac{1}{T} \cdot \int_{2T}^{3T} u23(t) i2(t) dt = 446.852$$

$$P_{3} := \frac{1}{T} \cdot \int_{2T}^{3T} u23(t) i3(t) dt = 284.581$$

$$\sum P = 1.343 \times 10^{3}$$

6.4. Гармонические составы функций токов

$$M := 9 \qquad k := 1 \dots M$$

$$I1m_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} iI(t) \cdot sin(k \cdot \omega \cdot t) dt + j \int_{2T}^{3T} iI(t) \cdot cos(k \cdot \omega \cdot t) dt \right)$$

$$iIg(t) := I1o + \sum_{k=1}^{M} \left(|I1m_k| \cdot sin(k \cdot \omega \cdot t + arg(I1m_k)) \right)$$

\longrightarrow	•		
I1m _k	=	arg(111	n_k
5.075		-0.594	
2.619		0.275	
0.277		-2.749	
0.251		1.827	
0.104		-0.539	
0.058		2.593	
0.067		0.49	
0.031		-1.708	
0.022		1.705	

$$I2m_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} i2(t) \cdot \sin(k \cdot \omega \cdot t) \, dt + j \int_{2T}^{3T} i2(t) \cdot \cos(k \cdot \omega \cdot t) \, dt \right)$$

$$i2g(t) := I2o + \sum_{k=1}^{M} \left(\left| I2m_k \right| \cdot sin(k \cdot \omega \cdot t + arg(I2m_k)) \right)$$

$$I3m_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} i3(t) \cdot \sin(k \cdot \omega \cdot t) \, dt + j \int_{2T}^{3T} i3(t) \cdot \cos(k \cdot \omega \cdot t) \, dt \right)$$

$$i3g(t) := I3o + \sum_{k=1}^{M} \left(\left| I3m_k \right| \cdot sin(k \cdot \omega \cdot t + arg(I3m_k)) \right)$$

$$U1m_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} u l(t) \cdot sin(k \cdot \omega \cdot t) dt + j \int_{2T}^{3T} u l(t) \cdot cos(k \cdot \omega \cdot t) dt \right)$$

$$ulg(t) := Ulo + \sum_{k=1}^{M} \left(\left| Ulm_k \right| \cdot sin(k \cdot \omega \cdot t + arg(Ulm_k)) \right)$$

$$U23m_k := \frac{2}{T} \cdot \left(\int_{2T}^{3T} u23(t) \cdot \sin(k \cdot \omega \cdot t) \, dt + j \int_{2T}^{3T} u23(t) \cdot \cos(k \cdot \omega \cdot t) \, dt \right)$$

$$u23g(t) := U23o + \sum_{k=1}^{M} \left(\left| U23m_k \right| \cdot sin(k \cdot \omega \cdot t + arg(U23m_k)) \right)$$

<u>6.5. Совмещенная диаграмма исходной i2(t) и расчетной i2g(t) функций</u>

Вывод: незначительные отклонения в некоторых точках расчетной функции от заданной объясняются тем, что в расчетной функции не учтены гармоники выше 9-ой

ЗАДАЧА 53. РАСЧЕТ СЛОЖНОЙ НЕЛИНЕЙНОЙ ЦЕПИ С ДВУМЯ РАЗНОРОДНЫМИ НЕЛИНЕЙНЫМИ ЭЛЕМЕНТАМИ

1. Схема цепи и параметры элементов

 $R1 := 30 \quad R2 := 10 \quad R3 := 40 \quad L1 := 0.1 \quad C_{\text{c}} := 80 \times 10^{-6} \quad Rp := .1$ $Ro := 100000 \quad a := 0.7 \quad b := 100 \quad m_{\text{c}} := 9 \quad i2(\psi) := a \cdot \psi + b \cdot \psi^{-m}$ $Em := 250 \quad f := 50 \quad \alpha := -60 deg \quad \omega := 2\pi f \quad e(t) := Em \cdot sin(\omega \cdot t + \alpha)$

2. Система дифференциальных уравнений и ее решение

$$il \cdot Rl + Ll \cdot \frac{dil}{dt} + i3 \cdot R3 + Uc = e(t) \qquad i3 = C \cdot \frac{dUc}{dt} \qquad il - i2 - i3 = 0$$
$$-i2 \cdot Rd - i2 \cdot R2 - \frac{d_{\Psi}}{dt} + i3 \cdot R3 + Uc = 0 \qquad i2(\Psi) := a \cdot \Psi + b \cdot \Psi^{m}$$

$$\frac{d}{dt}iI = \frac{-(RI+R3)}{LI} \cdot iI + \frac{R3}{LI} \cdot \left(a \cdot_{\Psi} + b \cdot_{\Psi}\right) - \frac{1}{LI} \cdot Uc + \frac{1}{LI} \cdot e(t)$$

$$\frac{d}{dt}_{\Psi} = R3 \cdot iI - (R2+R3+if(\Psi \ge 0, Rp, Ro)) \cdot \left(a \cdot_{\Psi} + b \cdot_{\Psi}\right) + Uc$$

$$\frac{d}{dt}Uc = \frac{1}{C} \cdot iI - \frac{1}{C} \cdot \left(a \cdot_{\Psi} + b \cdot_{\Psi}\right)$$

$$\underbrace{M}_{m} := (0 \ 0 \ 0)^{T} \\
\underbrace{F}_{m}(t,X) := \begin{bmatrix} \frac{-(RI + R3)}{LI} \cdot X_{0} + \frac{R3}{LI} \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] + \frac{-1}{LI} \cdot X_{2} + \frac{1}{LI} \cdot e(t) \\
R3 \cdot X_{0} - (R2 + R3 + if(X_{1} > 0, Rp, Ro)) \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] + X_{2} \\
\frac{1}{C} \cdot X_{0} + \frac{-1}{C} \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right]$$

Z := rkfixed(N, 0, 0.1, 5000, F)

 $tn := Z^{\langle 0 \rangle} \qquad iln := Z^{\langle 1 \rangle} \qquad \psi n := Z^{\langle 2 \rangle} \qquad Ucn := Z^{\langle 3 \rangle}$ $i2n := a \cdot \psi n + b \cdot \psi n^{m} \qquad i3n := iln - i2n \qquad Uabn := i3n \cdot R3 + Ucn$ $il(t) := linterp(tn, iln, t) \qquad i2(t) := linterp(tn, i2n, t)$

i3(t) := linterp(tn, i3n, t)

3. Определение времени переходного процесса

Вывод: переходной процесс продолжается .2 с или 1 период. Начиная со 2-го периода режим в схеме можно считать установившимся.

4. Обработка результатов расчета для 3-го периода

$$j := \sqrt{-1} \qquad \qquad T_{\text{min}} := \frac{1}{f}$$

4.1. Среднеарифметические значения (постоянные составляющие)

$$IIo := \frac{1}{T} \cdot \int_{2T}^{3T} il(t) dt = 0.864$$
$$I2o := \frac{1}{T} \cdot \int_{2T}^{3T} i2(t) dt = 0.864$$
$$I3o := \frac{1}{T} \cdot \int_{2T}^{3T} i3(t) dt = -8.005 \times 10^{-6}$$

4.2.Среднеквадратичные значения (действующие значения)

$$IId := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} il(t)^2 dt} = 2.288$$

$$I2d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} i2(t)^2 dt} = 1.496$$

$$I3d := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} i3(t)^2 dt} = 2.142$$

4.3. Гармонические составы функций токов

$$M := 9 \qquad k := 1 \dots M$$

$$IIm_{k} := \frac{2}{T} \cdot \left(\int_{2T}^{3T} iI(t) \cdot \sin(k \cdot \omega \cdot t) \, dt + j \int_{2T}^{3T} iI(t) \cdot \cos(k \cdot \omega \cdot t) \, dt \right)$$

$$iIg(t) := IIo + \sum_{k=1}^{M} \left(|IIm_{k}| \cdot \sin(k \cdot \omega \cdot t + \arg(IIm_{k}))) \right)$$

$$\overrightarrow{IIm_{k}|} = \arg(IIm_{k}) = \frac{2.957}{0.455} \cdot deg$$

$$\overrightarrow{IIm_{k}|} = \operatorname{arg}(IIm_{k}) = \frac{-70.522}{0.455} \cdot deg$$

$$\overrightarrow{IIm_{k}|} = \operatorname{arg}(IIm_{k}) = \frac{-70.522}{0.455} \cdot deg$$

$$\overrightarrow{IIm_{k}|} = \operatorname{IIIm_{k}|} = \operatorname{IIIIm_{k}|} = \operatorname{IIIm_{k}|} = \operatorname{IIIm$$

$$I2m_{k} := \frac{2}{T} \cdot \left(\int_{2T}^{3T} i2(t) \cdot \sin(k \cdot \omega \cdot t) dt + j \int_{2T}^{3T} i2(t) \cdot \cos(k \cdot \omega \cdot t) dt \right)$$

$$i2g(t) := I2o + \sum_{k=1}^{M} \left(|I2m_{k}| \cdot \sin(k \cdot \omega \cdot t + \arg(I2m_{k})) \right)$$

$$\overrightarrow{I2m_{k}} : \qquad \arg(I2m_{k}) = \frac{1.425}{0.836} \cdot deg$$

$$\overrightarrow{I2m_{k}} : \qquad \arg(I2m_{k}) = \frac{1.425}{0.836} \cdot deg$$

$$\overrightarrow{I29.849} = \frac{1.425}{0.13} \cdot deg$$

$$\overrightarrow{I29.849} = \frac{1.425}{0.13} \cdot deg$$

$$\overrightarrow{I29.849} = \frac{1.425}{0.13} \cdot deg$$

$$I3m_{k} := \frac{2}{T} \cdot \left(\int_{2T}^{3T} i3(t) \cdot \sin(k \cdot \omega \cdot t) \, dt + j \int_{2T}^{3T} i3(t) \cdot \cos(k \cdot \omega \cdot t) \, dt \right)$$

$$i3g(t) := I3o + \sum_{k=1}^{M} \left(|I3m_{k}| \cdot \sin(k \cdot \omega \cdot t + \arg(I3m_{k})) \right)$$

$$\overrightarrow{I3m_{k}} : \qquad \arg(I3m_{k}) = \frac{-42.408}{-160.448} \cdot deg$$

$$\overrightarrow{I3m_{k}} : \qquad \arg(I3m_{k}) = \frac{-42.408}{-160.448} \cdot deg$$

$$\overrightarrow{I3m_{k}} : \qquad \arg(I3m_{k}) = \frac{-42.408}{-160.448} \cdot deg$$

$$\overrightarrow{I3m_{k}} : \qquad 360$$

4.4. Совмещенная диаграмма исходной (i2) и расчетной (i2g) функций

Вывод: незначительные отклонения в некоторых точках расчетной функции от заданной объясняются тем, что в расчетной функции не учтены гармоники выше 9-ой

ЗАДАЧА 54. РАСЧЕТ УТРОИТЕЛЯ ЧАСТОТЫ

1. Схема цепи и параметры элементов

<i>Ro</i> := 5	Rn := 1000	<i>a</i> := 0.8	<i>b</i> := 20	<u>m</u> := 5	$I = a \cdot \Psi + b \cdot \Psi^m$
<i>Um</i> := 250	f := 50	$\omega := 2 \cdot \pi \cdot f$		Ua(t) := Um	$\cdot sin(\omega \cdot t + 0)$
Ub(t)	$:= Um \cdot sin(\omega \cdot$	t – 120 <i>deg</i>)	Uc($t) := Um \cdot sin($	$(\omega \cdot t + 120 deg)$

2. Система дифференциальных уравнений

$$Ia \cdot Ro + \frac{d}{dt} \Psi a + In \cdot Ro = Ua(t) \qquad Ib \cdot Ro + \frac{d}{dt} \Psi b + In \cdot Ro = Ub(t)$$
$$Ic \cdot Ro + \frac{d}{dt} \Psi c + In \cdot Ro = Ucb(t)$$

 $Ia = a \cdot \Psi a + b \cdot \Psi a^{m}$ $Ib = a \cdot \Psi b + b \cdot \Psi b^{m}$ $Ic = a \cdot \Psi c + b \cdot \Psi c^{m}$ Ia + Ib + Ic = In

3. Решение системы дифференциальных уравнений

$$\begin{aligned} \frac{d}{dt}\Psi a &= -\left(a\cdot\Psi a + b\cdot\Psi a^{m}\right)\cdot\left(Ro + Rn\right) - \left(a\cdot\Psi b + b\cdot\Psi b^{m}\right)\cdot Rn - \left(a\cdot\Psi c + b\cdot\Psi c^{m}\right)\cdot Rn + Ua(t) \\ \frac{d}{dt}\Psi b &= -\left(a\cdot\Psi b + b\cdot\Psi b^{m}\right)\cdot\left(Ro + Rn\right) - \left(a\cdot\Psi a + b\cdot\Psi a^{m}\right)\cdot Rn - \left(a\cdot\Psi c + b\cdot\Psi c^{m}\right)\cdot Rn + Ub(t) \\ \frac{d}{dt}\Psi c &= -\left(a\cdot\Psi c + b\cdot\Psi c^{m}\right)\cdot\left(Ro + Rn\right) - \left(a\cdot\Psi b + b\cdot\Psi b^{m}\right)\cdot Rn - \left(a\cdot\Psi a + b\cdot\Psi a^{m}\right)\cdot Rn + Uc(t) \\ N_{\text{eve}} := \left(0 \quad 0 \quad 0\right)^{T} \\ \int_{\text{eve}} \left[-\left[a\cdotX_{0} + b\cdot\left(X_{0}\right)^{m}\right]\cdot\left(Ro + Rn\right) - \left[a\cdotX_{1} + b\cdot\left(X_{1}\right)^{m}\right]\cdot Rn - \left[a\cdotX_{2} + b\cdot\left(X_{2}\right)^{m}\right]\cdot Rn + Ua(t) \right] \\ \int_{\text{eve}} \left[-\left[a\cdotX_{1} + b\cdot\left(X_{1}\right)^{m}\right]\cdot\left(Ro + Rn\right) - \left[a\cdotX_{0} + b\cdot\left(X_{0}\right)^{m}\right]\cdot Rn - \left[a\cdotX_{2} + b\cdot\left(X_{2}\right)^{m}\right]\cdot Rn + Ua(t) \right] \end{aligned}$$

$$(t,X) := \begin{bmatrix} -\left[a \cdot X_1 + b \cdot (X_1)^m\right] \cdot (Ro + Rn) - \left[a \cdot X_0 + b \cdot (X_0)^m\right] \cdot Rn - \left[a \cdot X_2 + b \cdot (X_2)^m\right] \cdot Rn + Ub(t) \\ -\left[a \cdot X_2 + b \cdot (X_2)^m\right] \cdot (Ro + Rn) - \left[a \cdot X_1 + b \cdot (X_1)^m\right] \cdot Rn - \left[a \cdot X_0 + b \cdot (X_0)^m\right] \cdot Rn + Uc(t) \end{bmatrix}$$

$$Z := Rkadapt(N, 0, 0.2, 10000, F)$$

$$tn := Z^{\langle 0 \rangle} \qquad \forall an := Z^{\langle 1 \rangle} \qquad \forall bn := Z^{\langle 2 \rangle} \qquad \forall cn := Z^{\langle 3 \rangle}$$
$$\forall a(t) := linterp(tn, \forall an, t) \qquad Ia(t) := a \cdot \forall a(t) + b \cdot \forall a(t)^{m}$$
$$\forall b(t) := linterp(tn, \forall bn, t) \qquad Ib(t) := a \cdot \forall b(t) + b \cdot \forall b(t)^{m}$$
$$\forall c(t) := linterp(tn, \forall cn, t) \qquad Ic(t) := a \cdot \forall c(t) + b \cdot \forall c(t)^{m}$$

$$Un(t) := (Rn) \cdot (Ia(t) + Ib(t) + Ic(t)) \qquad Uan(t) := Ua(t) - Un(t)$$
$$Ubn(t) := Ub(t) - Un(t) \qquad Ucn(t) := Uc(t) - Un(t)$$

 $U\hat{a}\hat{u}\tilde{o}(t) := -(Uan(t) + Ubn(t) + Ucn(t)) \qquad In(t) := Ia(t) + Ib(t) + Ic(t)$

4. Определение времени переходного процесса

<u>Заключение</u>: переходной процесс продолжается .1 с или 5 периодов. Начиная с 6-го периода в схеме действует установившийся режим.

t

5. Графические диаграммы функций $\psi(t)$

102

6. Графические диаграммы функций u(t)

7. Графические диаграммы функций *i*(*t*)

103

8. Графическая диаграмма функции *Uвых(t)*

4. Обработка результатов расчета для 6-го периода

4.1. Среднеквадратичное (действующее) значение

$$T_{\text{min}} := \frac{1}{f}$$
 Uвых $t := \sqrt{\frac{1}{T} \cdot \int_{5T}^{6T} U_{\text{вых}}(t)^2 dt} = 283.453$

4.2. Гармонический состав функции *Uвых(t)*

$$j := \sqrt{-1} \qquad M := 15 \qquad k := 3,9..M$$

$$Um_k := \frac{2}{T} \cdot \left(\int_{5T}^{6T} U_{Bblx}(t) \cdot sin(k \cdot \omega \cdot t) dt + j \int_{5T}^{6T} U_{Bblx}(t) \cdot cos(k \cdot \omega \cdot t) dt \right)$$

$$\overrightarrow{|Um_k|} = \qquad \arg(Um_k) = \qquad \boxed{10.506}_{33.395} \cdot deg$$

$$U_{Bblxg}(t) := \sum_{k=1}^{M} \left(|Um_k| \cdot sin(k \cdot \omega \cdot t + arg(Um_k)) \right)$$

k = 1

<u>Вывод</u>: в выходном напряжении содержатся нечетные гармонические составляющие, кратные трем (3-я, 9-я и т. д. гармоники)

ЗАДАЧА 55. РАСЧЕТ ОДНОПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ

1. Схема цепи и параметры элементов

$$R2 := 200$$
 $C := 500 \times 10^{-6}$ $R1 := 0$ $L := 0$

 $Rdp := .2 \qquad Rdo := 100000 \qquad Rd = if(il > 0, Rdp, Rdo)$ $Um := 100 \qquad f := 50 \quad \alpha := 0 deg \quad \omega := 2\pi f \qquad T_{max} := \frac{1}{f}$ $u(t) := Um \cdot sin(\omega \cdot t + \alpha)$

$$\frac{2. Cистема дифференциальных уравнений и ее решение}{il - i2 - i3 = 0} \qquad il \cdot Rl + il \cdot Rd + uc = u(t) \qquad -i2 \cdot R2 + uc = 0$$
$$C \cdot \frac{duc}{dt} = i3 \qquad il = \frac{u(t) - uc}{Rl + Rd} \qquad i2 = \frac{Uc}{R2}$$
$$\frac{d}{dt}uc = \left[\frac{1}{Rl + Rd} \cdot (u(t) - uc) - \frac{uc}{R2}\right]\frac{1}{C}$$

$$M_{m} := (0) \qquad F_{m}(t,X) := \left(\frac{u(t) - X_{0}}{RI + if(u(t) > X_{0}, Rdp, Rdo)} - \frac{X_{0}}{R2}\right) \cdot \frac{1}{C}$$

$$Z := rkfixed(N, 0, 0.1, 5000, F)$$

$$tn := Z^{\langle 0 \rangle} \quad ucn := Z^{\langle 1 \rangle} \quad uc(t) := linterp(tn, ucn, t)$$
$$i2(t) := \frac{uc(t)}{R2} \quad i3(t) := C \cdot \left(\frac{d}{dt}uc(t)\right) \quad i1(t) := i2(t) + i3(t)$$

Заключение: переходной процесс в цепи продолжается .02 с или 1 период. Начиная со 2-го периода режим в схеме можно считать установившимся.

4. Графические диаграммы функций uc(t), i3(t)

5. Обработка результатов расчета для 3-го периода

5.1. Среднеарифметическое значение (постоянная составляющая)

$$Uco := \frac{1}{T} \cdot \int_{2T}^{3T} uc(t) \, dt = 91.624$$

5.2. Среднеквадратичное (действующее) значение

$$Ucd := \sqrt{\frac{1}{T} \cdot \int_{2T}^{3T} uc(t)^2 dt} = 91.754$$

5.3. Среднеквадратичное (действующее) значение гармоник

$$Ucg := \sqrt{Ucd^2 - Uco^2} = 4.878$$

5.4. Коэффициент пульсаций

$$Kp := \frac{Ucg}{Uco} = 0.053$$

ЗАДАЧА 56. РАСЧЕТ ОДНОПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ С РЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ

1. Схема цепи и параметры элементов

2. Система дифференциальных уравнений и ее решение

$$il \cdot Rl + il \cdot Rd + L \cdot \frac{dil}{dt} + uc = u(t) \qquad C \cdot \frac{duc}{dt} = i3$$
$$-i2 \cdot R2 + uc = 0 \qquad il - i2 - i3 = 0$$
$$\frac{d}{dt}il = \frac{-Rl}{L} \cdot il - \frac{1}{L} \cdot (il \cdot Rd) - \frac{1}{L} \cdot Uc + \frac{1}{L} \cdot u(t)$$
$$\frac{d}{dt}uc = \frac{1}{C} \cdot il - \frac{1}{R2 \cdot C} \cdot uc$$

$$\underbrace{N_{m} := (0 \ 0)^{T}}_{F_{m}}(t,X) := \begin{bmatrix} \frac{-RI \cdot X_{0} - if(X_{0} > 0, Rdp, Rdo) \cdot (X_{0})}{L} + \frac{-1}{L} \cdot X_{1} + \frac{1}{L} \cdot u(t) \\ \frac{1}{C} \cdot X_{0} + \frac{-1}{C \cdot R2} \cdot X_{1} \end{bmatrix}$$

108

<u>Заключение</u>: переходной процесс в цепи продолжается .04 с или 2 перида. Начиная с 3-го периода режим в схеме можно считать установившимся.

0.03

t

0.04

0.05

0.06

4. Графические диаграммы функций uc(t), i3(t)

0.02

0.01

0

5. Обработка результатов расчета для 4-го периода

5.1. Среднеарифметическое значение (постоянная составляющая)

$$Uco := \frac{1}{T} \cdot \int_{3T}^{4T} uc(t) \, dt = 89.418$$

5.2. Среднеквадратичное (действующее) значение

$$Ucd := \sqrt{\frac{1}{T} \cdot \int_{3T}^{4T} uc(t)^2 dt} = 89.542$$

5.3. Среднеквадратичное (действующее) значение гармоник

$$Ucg := \sqrt{Ucd^2 - Uco^2} = 4.71$$

5.4. Коэффициент пульсаций

$$Kp := \frac{Ucg}{Uco} = 0.053$$

ЗАДАЧА 57. РАСЧЕТ ДВУХПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ

1. Схема цепи и параметры элементов

 $R1 := 0 \ R2 := 0 \ L1 := 0 \ L2 := 0 \ R3 := 200 \ C_{m} := 500 \times 10^{-6}$ $Um := 100 \ f := 50 \ \alpha := 0 deg \ \omega := 2\pi \ f \ T_{m} := \frac{1}{f}$ $u1 (t) := Um \cdot sin(\omega \cdot t + \alpha) \qquad u2 (t) := Um \cdot sin(\omega \cdot t + \alpha)$ $Rp1 := .1 \ Ro1 := 10000 \ Rp2 := .1 \ Ro2 := 10000$ $R1 = if (u1 (t) > 0, Rp1, Ro1) \qquad R2 = if (u2 (t) < 0, Rp2, Ro2)$ $2. \ Cucrema \ Audphepehuuaльных \ ypabhehuŭ \ u \ ee peiiiehue$ $i1 \cdot R1 + i1 \cdot Rd1 + Uc = u1 (t) \qquad i2 \cdot R2 + i2 \cdot Rd2 + Uc = -u2 (t)$ $i1 + i2 - i3 - i4 = 0 \qquad i3 = \frac{Uc}{R3} \qquad C \cdot \frac{dUc}{dt} = i4$ $M_{m} := (0)$

$$F_{m}(t,X) := \left[\frac{1}{C} \cdot \left(\frac{ul(t) - X_{0}}{if(ul(t) > X_{0}, Rpl, Rol)} + \frac{-u2(t) - X_{0}}{if(-u2(t) > X_{0}, Rp2, Ro2)} - \frac{X_{0}}{R3}\right)\right]$$

3. Определение времени переходного процесса

Заключение: переходной процесс в цепи продолжается .04 с или 2 периода. Начиная с 3-го периода режим в схеме можно считать установившимся.

t

5. Обработка результатов расчета для 4-го периода

5.1. Среднеарифметическое значение (постоянная составляющая)

$$Uco := \frac{1}{T} \cdot \int_{3T}^{4T} uc(t) dt = 95.808$$

5.2. Среднеквадратичное (действующее) значение

$$Ucd := \sqrt{\frac{1}{T} \cdot \int_{3T}^{4T} uc(t)^2 dt} = 95.842$$

5.3. Среднеквадратичное (действующее) значение гармоник

$$Ucg := \sqrt{Ucd^2 - Uco^2} = 2.542$$

5.4. Коэффициент пульсаций

$$Kp := \frac{Ucg}{Uco} = 0.027$$

ЗАДАЧА 58. РАСЧЕТ ДВУХПОЛУПЕРИОДНОГО ВЫПРЯМИТЕЛЯ

1. Схема цепи и параметры элементов

 $\begin{aligned} RI &:= 1 \quad R2 := 1 \quad R3 := 200 \quad LI := .01 \quad L2 := .01 \quad C_{\text{cons}} := 300 \times 10^{-6} \\ Um &:= 100 \quad f := 50 \quad \alpha := 0 deg \quad \omega := 2\pi \ f \quad T_{\text{cons}} := \frac{1}{f} \\ ul(t) &:= Um \cdot sin(\omega \cdot t + \alpha) \quad u2(t) := -Um \cdot sin(\omega \cdot t + \alpha) \\ Rdp1 &:= .1 \quad Rdo1 := 10000 \quad Rdp2 := .1 \quad Rdo2 := 10000 \\ R1 &= if(il(t) > 0, Rdp1, Rdo1) \quad R2 &= if(i2(t) < 0, Rdp2, Rdo2) \end{aligned}$

2. Система дифференциальных уравнений и ее решение

$$il \cdot Rl + il \cdot Rdl + L \cdot \frac{dil}{dt} + Uc = ul(t) \qquad i2 \cdot R2 + i2 \cdot Rd2 + L \cdot \frac{di2}{dt} + Uc = u2(t)$$

$$il + i2 - i3 - i4 = 0 \qquad -i3 \cdot R3 + Uc = 0 \qquad C \cdot \frac{dUc}{dt} = i4$$
$$\frac{d}{dt}il = \frac{-Rl}{Ll} \cdot il - \frac{Rdl}{Ll} \cdot il - \frac{1}{Ll} \cdot Uc + \frac{1}{Ll} \cdot ul(t)$$
$$\frac{d}{dt}i2 = \frac{-R2}{L2} \cdot i2 - \frac{Rd2}{L2} \cdot i2 - \frac{1}{L2} \cdot Uc + \frac{1}{L2} \cdot u2(t)$$

$$\begin{split} X &\coloneqq \left(\begin{array}{ccc} 0 & 0 & 0 \end{array} \right)^{T} \\ F_{\text{max}}(t,X) &\coloneqq \left[\begin{array}{ccc} \frac{-1}{LI} \cdot RI \cdot X_{0} + \frac{-1}{LI} \cdot if\left(X_{0} > 0, Rdp1, Rdo1\right) \cdot \left(X_{0}\right) + \frac{-1}{LI} \cdot X_{2} + \frac{1}{LI} \cdot uI(t) \\ \frac{-1}{L2} \cdot R2 \cdot X_{1} + \frac{-1}{L2} \cdot \left(if\left(X_{1} > 0, Rdp2, Rdo2\right)\right) \cdot \left(X_{1}\right) + \frac{-1}{L2} \cdot X_{2} + \frac{1}{L2} \cdot u2(t) \\ \frac{1}{C} \cdot X_{0} + \frac{1}{C} \cdot X_{1} + \frac{-1}{C \cdot R3} \cdot X_{2} \end{array} \right] \end{split}$$

Z := Rkadapt(X, 0, 0.2, 10000, F)

 $tn := Z^{\langle 0 \rangle} \qquad iln := Z^{\langle 1 \rangle} \qquad i2n := Z^{\langle 2 \rangle} \qquad ucn := Z^{\langle 3 \rangle}$ $i3n := \frac{ucn}{R3} \qquad i4n := iln + i2n - i3n$ $uc(t) := linterp(tn, ucn, t) \qquad i4(t) := linterp(tn, i4n, t)$

3. Определение времени переходного процесса

<u>Заключение</u>: переходной процесс продолжается .08 с или 4 периода. Начиная с 5-го периода режим в схеме можно считать установившимся.

4. Графические диаграммы функций uc(t), i4(t)

5. Обработка результатов расчета для 5-го периода

5.1. Среднеарифметическое значение (постоянная составляющая)

$$Uco := \frac{1}{T} \cdot \int_{4T}^{5T} uc(t) \, dt = 91.4$$

5.2. Среднеквадратичное (действующее) значение

$$Ucd := \sqrt{\frac{1}{T} \cdot \int_{4T}^{5T} uc(t)^2 dt} = 91.46$$

5.3. Среднеквадратичное (действующее) значение гармоник

$$Ucg := \sqrt{Ucd^2 - Uco^2} = 3.289$$

5.4. Коэффициент пульсаций

$$Kp := \frac{Ucg}{Uco} = 0.036$$

ЗАДАЧА 59.1 РАСЧЕТ МОСТОВОГО ВЫПРЯМИТЕЛЯ С ИДЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ

1. Схема цепи и параметры элементов

$$R5 := 200 \qquad C_{m} := 1000 \cdot 10^{-6} \qquad R0 := .2 \qquad L_{m} := 0$$

$$Rp1 := .1 \qquad Rp2 := .1 \qquad Rp3 := .1 \qquad Rp4 := .1$$

$$Ro1 := 10000 \qquad Ro2 := 100000 \qquad Ro3 := 100000 \qquad Ro4 := 100000$$

$$Um := 100 \qquad f := 50 \qquad \omega := 2\pi \qquad f \qquad T_{m} := \frac{1}{f}$$

$$u(t) := Um \cdot sin(\omega \cdot t)$$

$$R1 = if (u(t) > uc, Rp1, Ro1)$$

$$R2 = if (-u(t) > uc, Rp2, Ro2)$$

$$R3 = if (-u(t) > uc, Rp3, Ro3)$$

2. Система дифференциальных уравнений

$$i1 \cdot R1 + i3 \cdot R3 = u(t) - i0 \cdot R0$$
$$i1 \cdot R1 - i2 \cdot R2 = -uc$$
$$i1 + i2 = i0$$

R4 = if(u(t) > uc, Rp4, Ro4)

$$i3 \cdot R3 - i4 \cdot R4 = uc$$

$$i3 + i4 = i0$$

$$i1 - i3 = \frac{1}{R5} \cdot uc + C \cdot \left(\frac{d}{dt}uc\right)$$

3. Решение системы дифференциальных уравнений

$$i2 = i0 - i1$$

$$i1 \cdot R1 - (i0 - i1) \cdot R2 = -uc$$

$$i1 = \frac{-uc + i0 \cdot R2}{R1 + R2}$$

$$i4 = i0 - i3$$

$$i3 \cdot R3 - (i0 - i3) \cdot R4 = uc$$

$$i3 = \frac{uc + i0 \cdot R4}{R3 + R4}$$

$$0 = u(t) - i0 \cdot R0 - R1 \cdot \frac{-uc + i0 \cdot R2}{RI + R2} - R3 \cdot \frac{uc + i0 \cdot R4}{R3 + R4}$$

$$\frac{d}{dt}uc = \frac{1}{C} \cdot \left(-\frac{1}{R5} \cdot uc + \frac{-uc + i0 \cdot R2}{R1 + R2} - \frac{uc + i0 \cdot R4}{R3 + R4} \right)$$

$$i0 \cdot \left(R0 + \frac{R1 \cdot R2}{R1 + R2} + \frac{R3 \cdot R4}{R3 + R4} \right) = u(t) + uc \cdot \frac{R1}{R1 + R2} + uc \cdot \frac{R3}{R3 + R4}$$
$$\frac{d}{dt}uc = \frac{1}{C} \cdot \left[uc \cdot \left(-\frac{1}{R5} - \frac{1}{R1 + R2} - \frac{1}{R3 + R4} \right) + i0 \cdot \left(\frac{R2}{R1 + R2} - \frac{R4}{R3 + R4} \right) \right]$$

 $i0 \cdot [R0 \cdot (R1 + R2) \cdot (R3 + R4) + R1 \cdot R2 \cdot (R3 + R4) + R3 \cdot R4 \cdot (R1 + R2)] = u(t) \cdot (R1 + R2) \cdot (R3 + R4) + uc \cdot [R1 \cdot (R3 + R4) + R3 \cdot (R1 + R2)]$

$$i0 = \frac{u(t) \cdot (R1 + R2) \cdot (R3 + R4) + uc \cdot [R1 \cdot (R3 + R4) - R3 \cdot (R1 + R2)]}{[R0 \cdot (R1 + R2) \cdot (R3 + R4) + R1 \cdot R2 \cdot (R3 + R4) + R3 \cdot R4 \cdot (R1 + R2)]}$$

$$\frac{d}{dt}uc = \frac{1}{C} \cdot \left[uc \cdot \left(-\frac{1}{R5} - \frac{1}{R1 + R2} - \frac{1}{R3 + R4} \right) + \frac{u(t) \cdot (R1 + R2) \cdot (R3 + R4) + UC \cdot [R1 \cdot (R3 + R4) - R3 \cdot (R1 + R2)]}{[R0 \cdot (R1 + R2) \cdot (R3 + R4) + R1 \cdot R2 \cdot (R3 + R4) + R3 \cdot R4 \cdot (R1 + R2)]} \cdot \left(\frac{R2}{R1 + R2} - \frac{R4}{R3 + R4} \right) \right]$$

NU := 0

$$\begin{split} D(t,X) &\coloneqq \frac{1}{C} \cdot \left[X_0 \cdot \left(-\frac{1}{R5} - \frac{1}{if(u(t) > X_0, Rp1, Ro1) + if(-u(t) > X_0, Rp2, Ro2)} - \frac{1}{if(-u(t) > X_0, Rp3, Ro3) + if(u(t) > X_0, Rp4, Ro4)} \right) + \frac{u(t) \cdot (if(u(t) > X_0, Rp1, Ro1) + if(-u(t) > X_0, Rp2, Ro2)) \cdot (if(-u(t) > X_0, Rp3, Ro3) + if(u(t) > X_0, Rp4, Ro4)) + \frac{1}{\left[R0 \cdot (if(u(t) > X_0, Rp1, Ro1) + if(-u(t) > X_0, Rp2, Ro2)) \cdot (if(-u(t) > X_0, Rp3, Ro3) + if(u(t) > X_0, Rp4, Ro4)) + 1 \right]}{\left[R0 \cdot (if(u(t) > X_0, Rp1, Ro1) + if(-u(t) > X_0, Rp2, Ro2)) \cdot (if(-u(t) > X_0, Rp3, Ro3) + if(u(t) > X_0, Rp4, Ro4)) + 1 \right]} \end{split}$$

$$\frac{+X_0 \cdot \left[if\left(u(t) > X_0, Rp1, Ro1\right) \cdot \left(if\left(-u(t) > X_0, Rp3, Ro3\right) + if\left(u(t) > X_0, Rp4, Ro4\right)\right) - if\left(u(t) > X_0, Rp1, Ro1\right) \cdot if\left(-u(t) > X_0, Rp2, Ro2\right) \cdot \left(if\left(-u(t) > X_0, Rp3, Ro3\right) + if\left(u(t) > X_0, Rp4, Ro4\right)\right) + if\left(u(t) > X_0, Rp4, Ro4\right) + if\left(u(t) > X_0, Ra4\right)$$

$$\frac{-if(-u(t) > X_0, Rp3, Ro3) \cdot (if(u(t) > X_0, Rp1, Ro1) + if(-u(t) > X_0, Rp2, Ro2))]}{+(if(-u(t) > X_0, Rp3, Ro3)) \cdot if(u(t) > X_0, Rp4, Ro4) \cdot (if(u(t) > X_0, Rp1, Ro1) + if(-u(t) > X_0, Rp2, Ro2))]}$$

 $\cdot \left(\frac{if(-u(t) > X_0, Rp2, Ro2)}{if(u(t) > X_0, Rp1, Ro1) + if(-u(t) > X_0, Rp2, Ro2)} - \frac{if(u(t) > X_0, Rp4, Ro4)}{if(-u(t) > X_0, Rp3, Ro3) + if(u(t) > X_0, Rp4, Ro4)}\right)\right]$

$$tn := Z^{\langle 0 \rangle} \qquad ucn := Z^{\langle 1 \rangle} \qquad uc(t) := linterp(tn, ucn, t)$$
$$i5(t) := \frac{uc(t)}{R5} \qquad i6(t) := C \cdot \left(\frac{d}{dt}uc(t)\right)$$

Z := rkfixed(NU, 0, .1, 5000, D)

4. Графические диаграммы функций uc(t), ib(t)

ЗАДАЧА 59.2 РАСЧЕТ МОСТОВОГО ВЫПРЯМИТЕЛЯ С РЕАЛЬНЫМ ИСТОЧНИКОМ НАПРЯЖЕНИЯ

1. Схема цепи и параметры элементов

 $C_{\text{cm}} := 500 \cdot 10^{-6}$ R0 := .1 $L_{\text{cm}} := 0.001$ R5 := 200 $f := 50 \qquad \omega := 2\pi f$ Um := 100 $u(t) := Um \cdot sin(\omega \cdot t)$ Rp1 := 1Rp2 := 1Rp3 := 1Rp4 := 1Ro3 := 10000Rol := 10000Ro2 := 10000Ro4 := 10000Rl = if(u(t) > uc, Rpl, Rol)R2 = if(-u(t) > uc, Rp2, Ro2)R3 = if(-u(t) > uc, Rp3, Ro3)

R4 = if(u(t) > uc, Rp4, Ro4)

2. Система дифференциальных уравнений

$$i \cdot R1 + i3 \cdot R3 = u(t) - i0 \cdot R0 - L \cdot \left(\frac{d}{dt}i0\right)$$
$$i1 \cdot R1 - i2 \cdot R2 = -uc$$
$$i1 + i2 = i0$$
$$i3 \cdot R3 - i4 \cdot R4 = uc$$

$$i3 + i4 = i0$$
$$i1 - i3 = \frac{1}{R5} \cdot uc + C \cdot \left(\frac{d}{dt}uc\right)$$

3. Решение системы дифференциальных уравнений

$$i2 = i0 - i1$$

$$i1 \cdot RI - (i0 - i1) \cdot R2 = -uc$$

$$iI = \frac{-uc + i0 \cdot R2}{RI + R2}$$

$$i4 = i0 - i3$$

$$i3 \cdot R3 - (i0 - i3) \cdot R4 = uc$$

$$i3 = \frac{uc + i0 \cdot R4}{R3 + R4}$$

$$\frac{d}{dt}i0 = \frac{1}{L} \cdot \left(u(t) - i0 \cdot R0 - RI \cdot \frac{-uc + I0 \cdot R2}{RI + R2} - R3 \cdot \frac{uc + i0 \cdot R4}{R3 + R4} \right)$$

$$\frac{d}{dt}uc = \frac{1}{C} \cdot \left(-\frac{1}{R5} \cdot uc + \frac{-uc + i0 \cdot R2}{RI + R2} - \frac{uc + i0 \cdot R4}{R3 + R4} \right)$$

$$NU := (0 \quad 0)^{T}$$

$$D(t, X) := \begin{bmatrix} \frac{1}{L} \cdot \left(u(t) - X_{0} \cdot R0 - if(u(t) > X_{1}, Rp1, Ro1) \cdot \frac{-X_{1} + X_{0} \cdot if(-u(t) > X_{1}, Rp2, Ro2)}{if(u(t) > X_{1}, Rp1, Ro1) \cdot \frac{-X_{1} + X_{0} \cdot if(-u(t) > X_{1}, Rp2, Ro2)}{-X_{1} + X_{0} \cdot if(-u(t) > X_{1}, Rp2, Ro2)} - if(-\frac{1}{R} + \frac{1}{R} +$$

$$\frac{1}{C} \cdot \left(\frac{-1}{R5} \cdot X_1 + \frac{-X_1 + X_0 \cdot y \left(-u(t) > X_1, Rp2, Ro2\right)}{if \left(u(t) > X_1, Rp1, Ro1\right) + if \left(-u(t) > X_1, Rp2, Ro2\right)} - \frac{X_1 + X_0 \cdot y \left(u(t) > X_1, Rp4, Ro4\right)}{if \left(-u(t) > X_1, Rp3, Ro3\right) + if \left(u(t) > X_1, Rp4, Ro4\right)}$$

Z := Rkadapt(NU, 0, .1, 5000, D)

 $tn := Z^{\langle 0 \rangle} \qquad i0n := Z^{\langle 1 \rangle} \qquad i0(t) := linterp(tn, i0n, t)$ $ucn := Z^{\langle 2 \rangle} \qquad uc(t) := linterp(tn, ucn, t)$ $i6(t) := C \cdot \left(\frac{d}{dt}uc(t)\right)$

 $\frac{X_{1} + X_{0} \cdot if(u(t) > X_{1}, Rp3, Ro3)}{if(-u(t) > X_{1}, Rp3, Ro3) + if(u(t) > X_{1}, Rp4, Ro4)}$ $\frac{X_{1} + X_{0} \cdot if(u(t) > X_{1}, Rp4, Ro4)}{-u(t) > X_{1}, Rp3, Ro3) + if(u(t) > X_{1}, Rp4, Ro4)}$

4. Графические диаграммы функций uc(t), $i\theta(t)$, $i\delta(t)$

ЗАДАЧА 60. РАСЧЕТ ТРЕХФАЗНОГО ВЫПРЯМИТЕЛЯ

1. Схема цепи и параметры элементов

 $RI := 2 \quad R2 := 2 \quad R3 := 2 \quad R4 := 200 \quad LI := .1 \quad L2 := .1 \quad L3 := .1$ $C_{\text{max}} := 200 \times 10^{-6} \quad Um := 100 \quad f := 50 \quad \omega := 2\pi \ f \quad T_{\text{max}} := \frac{1}{f} \quad \alpha := 30 \ deg$ $uI(t) := Um \cdot sin(\omega \cdot t + \alpha)$ $u2(t) := Um \cdot sin(\omega \cdot t + \alpha - 120 \cdot deg)$ $u3(t) := Um \cdot sin(\omega \cdot t + \alpha + 120 \cdot deg)$

 $ik := (-.05 -.02 -.005 \ 0 \ .1 \ 5 \ 10)^T \qquad uk := (-200 \ -50 \ -1 \ 0 \ 1 \ 5 \ 20)^T$ ud1(i1) := linterp(ik, uk, i1)ud2(i2) := linterp(ik, uk, i2)ud3(i3) := linterp(ik, uk, i3)

Графическая диаграмма ВАХ диода

2. Система дифференциальных уравнений и ее решение

$$iI \cdot RI + udI + LI \cdot \frac{diI}{dt} + Uc = uI(t)$$

$$i2 \cdot R2 + ud2 + L2 \cdot \frac{di2}{dt} + Uc = u2(t)$$

$$i3 \cdot R3 + ud3 + L3 \cdot \frac{di3}{dt} + Uc = u3(t)$$

$$-i4 \cdot R4 + Uc = 0$$

$$C \cdot \frac{dUc}{dt} = i5$$

$$iI + i2 + i3 - i4 - i5 = 0$$

$$\frac{d}{dt}iI = \frac{-RI}{LI} \cdot iI - \frac{1}{LI} \cdot udI - \frac{1}{LI} \cdot Uc + \frac{1}{LI} \cdot uI(t)$$

$$\frac{d}{dt}i2 = \frac{-R2}{L2} \cdot i2 - \frac{1}{L2} \cdot ud2 - \frac{1}{L2} \cdot Uc + \frac{1}{L2} \cdot u2(t)$$

$$\frac{d}{dt}i3 = \frac{-R3}{L3} \cdot i3 - \frac{1}{L3} \cdot ud3 - \frac{1}{L3} \cdot Uc + \frac{1}{L3} \cdot u3(t)$$

$$\frac{d}{dt}Uc = \frac{1}{C} \cdot iI + \frac{1}{C} \cdot i2 + \frac{1}{C} \cdot i3 - \frac{1}{R4 \cdot C} \cdot Uc$$

$$X := \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad F_{m}(t,X) := \begin{pmatrix} \frac{-1}{LI} \cdot RI \cdot X_{0} + \frac{-1}{LI} \cdot udI(X_{0}) + \frac{-1}{LI} \cdot X_{3} + \frac{1}{LI} \cdot uI(t) \\ \frac{-1}{L2} \cdot R2 \cdot X_{1} + \frac{-1}{L2} \cdot ud2(X_{1}) + \frac{-1}{L2} \cdot X_{3} + \frac{1}{L2} \cdot u2(t) \\ \frac{-1}{L3} \cdot R2 \cdot X_{2} + \frac{-1}{L3} \cdot ud3(X_{2}) + \frac{-1}{L3} \cdot X_{3} + \frac{1}{L3} \cdot u3(t) \\ \frac{1}{C} \cdot X_{0} + \frac{1}{C} \cdot X_{1} + \frac{1}{C} \cdot X_{2} + \frac{-1}{C \cdot R4} \cdot X_{3} \end{pmatrix}$$

Z := rkfixed(X, 0, 0.2, 10000, F)

 $tn := Z^{\langle 0 \rangle}$ $iln := Z^{\langle 1 \rangle}$ $i2n := Z^{\langle 2 \rangle}$ $i3n := Z^{\langle 3 \rangle}$ $ucn := Z^{\langle 4 \rangle}$

$$i4n := \frac{ucn}{R4} \qquad \qquad i5n := i1n + i2n + i3n - i4n$$

$$uc(t) := linterp(tn, ucn, t)$$
 $i5(t) := C \cdot \left(\frac{d}{dt}uc(t)\right)$

3. Определение времени переходного процесса

<u>Заключение</u>: переходной процесс продолжается .04 с или 2 периода. Начиная с 3-го периода режим в схеме можно считать установившимся.

4. Графические диаграммы функций токов uc(t), i5(t)

5. Обработка результатов расчета для 5-го периода

5.1. Среднеарифметическое значение (постоянная составляющая)

$$Uco := \frac{1}{T} \cdot \int_{4T}^{5T} uc(t) \, dt = 74.036$$

5.2. Среднеквадратичное (действующее) значение

$$Ucd := \sqrt{\frac{1}{T} \cdot \int_{4T}^{5T} uc(t)^2 dt} = 74.047$$

5.3. Среднеквадратичное (действующее) значение гармоник

$$Ucg := \sqrt{Ucd^2 - Uco^2} = 1.299$$

5.4. Коэффициент пульсаций

$$Kp := \frac{Ucg}{Uco} = 0.018$$

ЗАДАЧА 61. СРАВНИТЕЛЬНАЯ ОЦЕНКА ПЕРЕХОДНОГО ПРОЦЕССА В ЛИНЕЙНОЙ И НЕЛИНЕЙНОЙ ЦЕПИ *RL*

1. Схема цепи и параметры элементов

 $E := 100 \quad RI := 100 \quad LI := 0.2 \qquad a := .02 \qquad b := 20 \quad i2 = a \cdot sinh(b \cdot \psi)$

2. Дифференциальное уравнение и его решение для линейной цепи

$$il \cdot R + L\frac{d}{dt}il = e(t) \qquad \qquad \frac{d}{dt}il = \frac{-R}{L} \cdot il + \frac{e(t)}{L}$$

$$NU := 0 \qquad D(t,X) := \frac{-Rl}{Ll} \cdot X_0 + \frac{E}{Ll}$$

$$F_{\text{max}} := rkfixed(NU, 0, 0.1, 5000, D)$$

$$t := F^{\langle 0 \rangle}i := F^{\langle 1 \rangle} \qquad Url := i \cdot Rl$$

3. Дифференциальное уравнение и его решение для нелинейной цепи

$$i2 \cdot R + \left(\frac{d}{dt}\psi\right) = E \qquad i2 = a \cdot \sinh(b \cdot \psi)$$
$$\frac{d}{dt}\psi = -R \cdot (a \cdot \sinh(b \cdot \psi)) + E$$
$$N_{\text{m}} := 0 \qquad D_{\text{m}}(t, X) := -R1 \cdot (a \cdot \sinh(b \cdot X_0)) + E$$
$$F_{\text{m}} := rkfixed(N, 0, 0.1, 5000, D)$$
$$t := F^{\langle 0 \rangle} \qquad \psi := F^{\langle 1 \rangle} \qquad i2 := a \cdot \sinh(b \cdot \psi) \qquad Ur2 := i2 \cdot R1$$

4. Графические диаграммы функций Ur(t)

ЗАДАЧА 62. СРАВНИТЕЛЬНАЯ ОЦЕНКА ПЕРЕХОДНОГО ПРОЦЕССА В ЛИНЕЙНОЙ И НЕЛИНЕЙНОЙ ЦЕПИ *RLC*

1. Схема цепи и параметры элементов

Исходные данные:

- E := 200 $\underline{L} := 0.3$ $\underline{C} := 50 \cdot 10^{-6}$ $\underline{R} := 50$ a := .2 b := 10 $i2 = a \cdot sinh(b \cdot \psi)$
- <u>2. Система дифференциальных уравнений и ее решение</u> для линейной цепи

$$il \cdot R + L\frac{d}{dt}il + Uc = E \qquad il = C\left(\frac{d}{dt}Uc\right)$$
$$\frac{d}{dt}il = \frac{-R}{L} \cdot il - \frac{l}{L}Ucl + \frac{E}{L} \qquad \frac{d}{dt}Ucl = \frac{1}{C} \cdot il$$
$$N_{\rm m} := \begin{pmatrix} 0\\ 0 \end{pmatrix} \qquad D(t,X) := \begin{pmatrix} \frac{-R}{L}X_0 + \frac{-1}{L}X_1 + \frac{E}{L} \\ \frac{1}{C} \cdot X_0 \end{pmatrix}$$

$$F_{m} := rkfixed(N, 0, 0.2, 10000, D)$$

$$t := F^{\langle 0 \rangle}$$
 $il := F^{\langle 1 \rangle}$ $Ucl := F^{\langle 2 \rangle}$ $Url := il \cdot R$

<u>3. Система дифференциальных уравнений и ее решение</u> <u>для нелинейной цепи</u>

$$i2 \cdot R + \frac{d}{dt} \psi + Uc2 = E \qquad i2 = \frac{d}{dt}Uc2 \qquad i2 = a \cdot \sinh(b \cdot \psi)$$

$$\frac{d}{dt} \psi = -R \cdot (a \cdot \sinh(b \cdot \psi)) - Uc2 + E \qquad \frac{d}{dt}Uc2 = \frac{1}{C} \cdot (a \cdot \sinh(b \cdot \psi))$$

$$N := \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \underbrace{D_{w}(t, X)}_{w} := \begin{bmatrix} -R \cdot (a \cdot \sinh(b \cdot X_{0})) - X_{1} + E \\ \frac{1}{C} \cdot (a \cdot \sinh(b \cdot X_{0})) \end{bmatrix}$$

$$F_{m} := rkfixed(N, 0, 0.2, 10000, D)$$

 $t := F^{\langle 0 \rangle}$ $\psi := F^{\langle 1 \rangle}$ $Uc2 := F^{\langle 2 \rangle}$ $i2 := a \cdot sinh(b \cdot \psi)$ $Ur2 := i2 \cdot R$

4. Графические диаграммы функций напряжений Ur(t)

t

131

ЗАДАЧА 63. РАСЧЕТ ПЕРЕХОДНОГО ПРОЦЕССА В ТРАНСФОРМАТОРЕ

1. Схема цепи и параметры элементов

 $Em := 250 f := 50 \quad \alpha := 10 deg \quad \omega := 2 \cdot \pi \cdot f \quad \underline{e}(t) := Em \cdot sin(\omega \cdot t + \alpha)$

2. Система дифференциальных уравнений и ее решение

$$il - ia - ip = 0$$
 $Rl \cdot il + Ll \cdot \frac{d}{dt}il + ia \cdot Ro = e(t)$

$$ia \cdot Ro = \frac{d}{dt} \psi \qquad ip = a \cdot \psi + b \cdot \psi^{-m}$$

$$\frac{d}{dt}iI = \frac{-(RI + Ro)}{LI} \cdot iI + \frac{Ro}{LI} (a\psi + b\psi^{-m}) + \frac{1}{LI}e(t)$$

$$\frac{d}{dt} \psi = Ro \cdot iI - Ro \cdot (a\psi + b\psi^{-m})$$

$$M_{\mu} := \begin{pmatrix} 0 \\ -2 \end{pmatrix} F_{\mu}(t, X) := \begin{bmatrix} \frac{-(RI + Ro)}{LI} \cdot X_{0} + \frac{Ro}{LI} \cdot \left[a \cdot X_{1} + b \cdot (X_{1})^{m}\right] + \frac{1}{LI} \cdot e(t)$$

$$Ro \cdot X_0 - Ro \cdot \left[a \cdot X_1 + b \cdot (X_1)^m\right]$$

Z := Rkadapt(N, 0, 2, 100000, F)

$$t := Z^{\langle 0 \rangle} \qquad il := Z^{\langle 1 \rangle} \qquad \psi := Z^{\langle 2 \rangle}$$

t

5. Кратность импульса пускового тока

Imax := max(i1) = 59.217Imin := min(i1) = -1.869 $Kp := \frac{Imax}{-Imin} = 31.687$

ЗАДАЧА 64. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ БЕЗ УЧЕТА ЗЕМЛИ

1. Исходные данные

U := 200 XI := 4.5 YI := 4.5 X2 := 14.5 Y2 := 4.5

R := 0.01 Xn := 7.5 Yn := 6 $j := \sqrt{-1}$

2. Расчет зарядов проводов

$$d := \sqrt{(XI - X2)^2 + (YI - Y2)^2} = 10 \qquad TI := \frac{U}{\ln\left(\frac{d}{R}\right)} = 28.953$$

$$T2 := -T1 = -28.953$$

<u>3. Расчет вектора Е_n в заданной точке n</u>

$$RI := \sqrt{(XI - Xn)^{2} + (YI - Yn)^{2}} = 3.354$$

$$R2 := \sqrt{(X2 - Xn)^{2} + (Y2 - Yn)^{2}} = 7.159$$

$$Ex := TI \cdot (Xn - XI) \cdot \frac{1}{RI^{2}} + T2 \cdot (Xn - X2) \cdot \frac{1}{R2^{2}} = 11.675$$

$$Ey := TI \cdot (Yn - YI) \cdot \frac{1}{RI^{2}} + T2 \cdot (Yn - Y2) \cdot \frac{1}{R2^{2}} = 3.013$$

$$En := Ex + j \cdot Ey \qquad |En| = 12.058 \qquad \arg(En) = 14.47 \cdot \deg$$

<u>4. Расчет потенциала</u> V_n <u>в заданной точке n</u>

$$Vn := TI \cdot ln\left(\frac{1}{RI}\right) + T2 \cdot ln\left(\frac{1}{R2}\right) = 21.951$$

5. Графическая диаграмма поля

$$Rl(x,y) := \sqrt{(Xl - x)^{2} + (Yl - y)^{2}} \qquad R2(x,y) := \sqrt{(X2 - x)^{2} + (Y2 - y)^{2}}$$

$$Ex(x,y) := Tl \cdot (x - Xl) \cdot \frac{1}{Rl(x,y)^{2}} + T2 \cdot (x - X2) \cdot \frac{1}{R2(x,y)^{2}}$$

$$Ey(x,y) := Tl \cdot (y - Yl) \cdot \frac{1}{Rl(x,y)^{2}} + T2 \cdot (y - Y2) \cdot \frac{1}{R2(x,y)^{2}}$$

 $n := 20 \quad \underline{m}_{i} := 10 \quad i := 0 \dots n \quad \underline{j}_{i} := 0 \dots m \qquad x_{i} := i \qquad y_{j} := j$ $EI_{i,j} := Ex(x_{i}, y_{j}) \qquad E2_{i,j} := Ey(x_{i}, y_{j})$

ЗАДАЧА 65. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ С УЧЕТОМ ЗЕМЛИ

1. Исходные данные

$$VI := 100$$
 $V2 := -100$ $XI := 4.5$ $YI := 4.5$ $X2 := 14.5$ $Y2 := 4.5$
 $R := 0.01$ $Xn := 5$ $Yn := 6$ $j := \sqrt{-1}$

2. Расчет зарядов проводов

$$d := \sqrt{(XI - X2)^{2} + (YI - Y2)^{2}} = 10$$

$$D := \sqrt{(XI - X2)^{2} + (YI + Y2)^{2}} = 13.454$$

$$A1 := \ln\left(2\frac{YI}{R}\right) \qquad A2 := \ln\left(2\frac{Y2}{R}\right) \qquad A12 := \ln\left(\frac{d}{D}\right)$$

$$T1 := \frac{(A2 \cdot VI - A12 \cdot V2)}{A1 \cdot A2 - A12 \cdot A12} = 14.086 \qquad T2 := \frac{(A1 \cdot V2 - A12 \cdot V1)}{A1 \cdot A2 - A12 \cdot A12} = -14.086$$

3. Расчет вектора
$$E_n$$
 в заданной точке n
 $R1 := \sqrt{(X1 - Xn)^2 + (Y1 - Yn)^2} = 1.581$
 $R2 := \sqrt{(X2 - Xn)^2 + (Y2 - Yn)^2} = 9.618$
 $R3 := \sqrt{(X1 - Xn)^2 + (Y1 + Yn)^2} = 10.512$
 $R4 := \sqrt{(X2 - Xn)^2 + (Y2 + Yn)^2} = 14.16$

$$Ex := TI \cdot (Xn - XI) \cdot \frac{1}{RI^2} - TI \cdot (Xn - XI) \cdot \frac{1}{R3^2} + T2 \cdot (Xn - X2) \cdot \frac{1}{R2^2} - T2 \cdot (Xn - X2) \cdot \frac{1}{R4^2}$$

$$Ey := TI \cdot (Yn - YI) \cdot \frac{1}{RI^2} - TI \cdot (Yn + YI) \cdot \frac{1}{R3^2} + T2 \cdot (Yn - Y2) \cdot \frac{1}{R2^2} - T2 \cdot (Yn + Y2) \cdot \frac{1}{R4^2}$$

 $En := Ex + j \cdot Ey \qquad |En| = 8.401 \qquad arg(En) = 65.134 \cdot deg$

<u>4. Расчет потенциала *V*_n в заданной точке *n*</u>

$$Vn := TI \cdot ln\left(\frac{R3}{RI}\right) + T2 \cdot ln\left(\frac{R4}{R2}\right) = 21.236$$

$$\frac{5. \Gamma pa\phiuческая диаграмма поля}{RI(x,y)} := \sqrt{(XI - x)^2 + (YI - y)^2} \qquad R2(x,y) := \sqrt{(X2 - x)^2 + (Y2 - y)^2}$$

$$R3(x,y) := \sqrt{(XI - x)^2 + (YI + y)^2} \qquad R4(x,y) := \sqrt{(X2 - x)^2 + (Y2 + y)^2}$$

$$\underbrace{Ex}(x,y) \coloneqq TI \cdot (x - XI) \cdot \frac{1}{RI(x,y)^2} - TI \cdot (x - XI) \cdot \frac{1}{R3(x,y)^2} + T2 \cdot (x - X2) \cdot \frac{1}{R2(x,y)^2} - T2 \cdot (x - X2) \cdot \frac{1}{R4(x,y)^2}$$

$$E_{X}(x,y) := TI \cdot (y - YI) \cdot \frac{1}{RI(x,y)^2} - TI \cdot (y + YI) \cdot \frac{1}{R3(x,y)^2} + T2 \cdot (y - Y2) \cdot \frac{1}{R2(x,y)^2} - T2 \cdot (y + Y2) \cdot \frac{1}{R4(x,y)^2}$$
$$n := 20 \quad \underline{m} := 10 \quad i := 0 \dots n \qquad \underline{j}_{m} := 0 \dots m \qquad x_i := i \qquad y_j := j$$

$$El_{i,j} \coloneqq Ex(x_i, y_j)$$
 $E2_{i,j} \coloneqq Ey(x_i, y_j)$

(*E1*,*E2*)

ЗАДАЧА 66. ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ТРЕХФАЗНОЙ ЛИНИИ С УЧЕТОМ ЗЕМЛИ

1. Исходные данные $Va := Um \cdot sin(\omega t)$ $Um := 100 \quad \omega t := 30 deg$ $Vb := Um \cdot sin(\omega t - 120 deg)$ $Vc := Um \cdot sin(\omega t + 120 deg)$ Xa := 4.5 Ya := 6.5 Xb := 10.5 Yb := 6.5 Xc := 16.5 Yc := 6.5R := 0.02 Xn := 17 Yn := 6 $Va = 50 \qquad Vb = -100 \qquad Vc = 50$ 2. Расчет зарядов проводов $dab := \sqrt{(Xa - Xb)^2 + (Ya - Yb)^2} = 6$ $dbc := \sqrt{(Xb - Xc)^{2} + (Yb - Yc)^{2}} = 6$ $dca := \sqrt{(Xc - Xa)^2 + (Yc - Ya)^2} = 12$ $Dab := \sqrt{(Xa - Xb)^2 + (Ya + Yb)^2} = 14.318$ $Dbc := \sqrt{(Xb - Xc)^2 + (Yb + Yc)^2} = 14.318$ $Dca := \sqrt{(Xc - Xa)^2 + (Yc + Ya)^2} = 17.692$ $Aaa := ln\left(2\frac{Ya}{R}\right)$ $Abb := ln\left(2\frac{Yb}{R}\right)$ $Acc := ln\left(2\frac{Yc}{R}\right)$ $Aab := ln\left(\frac{dab}{Dab}\right)$ $Abc := ln\left(\frac{dbc}{Dbc}\right)$ $Aca := ln\left(\frac{dca}{Dca}\right)$ $A := \begin{pmatrix} Aaa & Aab & Aca \\ Aab & Abb & Abc \\ Aca & Abc & Acc \end{pmatrix} \qquad V := \begin{pmatrix} Va \\ Vb \\ Vc \end{pmatrix} \qquad T := A^{-1} \cdot V \quad T = \begin{pmatrix} 6.246 \\ -13.762 \\ 6.246 \end{pmatrix}$ $Ta := T_0 = 6.246$ $Tb := T_1 = -13.762$ $Tc := T_2 = 6.246$

3. <u>Расчет вектора</u> <u>Е</u>_п <u>в заданной точке</u> <u>п</u>

$$Ra := \sqrt{(Xa - Xn)^{2} + (Yb - Yn)^{2}} = 12.51$$
$$Rb := \sqrt{(Xb - Xn)^{2} + (Yb - Yn)^{2}} = 6.519$$
$$Rc := \sqrt{(Xc - Xn)^{2} + (Yc - Yn)^{2}} = 0.707$$

$$Raz := \sqrt{(Xa - Xn)^{2} + (Ya + Yn)^{2}} = 17.678$$
$$Rbz := \sqrt{(Xb - Xn)^{2} + (Yb + Yn)^{2}} = 14.089$$
$$Rcz := \sqrt{(Xc - Xn)^{2} + (Yc + Yn)^{2}} = 12.51$$

$$Exa := Ta \cdot (Xn - Xa) \cdot \frac{1}{Ra^2} - Ta \cdot (Xn - Xa) \cdot \frac{1}{Raz^2}$$
$$Exb := Tb \cdot (Xn - Xb) \cdot \frac{1}{Rb^2} - Tb \cdot (Xn - Xb) \cdot \frac{1}{Rbz^2}$$
$$Exc := Tc \cdot (Xn - Xc) \cdot \frac{1}{Rc^2} - Tc \cdot (Xn - Xc) \cdot \frac{1}{Rcz^2}$$
$$\frac{1}{Rc^2} - Tc \cdot (Xn - Xc) \cdot \frac{1}{Rcz^2}$$

$$Eya := Ta \cdot (Yn - Ya) \cdot \frac{1}{Ra^2} - Ta \cdot (Yn + Ya) \cdot \frac{1}{Raz^2}$$
$$Eyb := Tb \cdot (Yn - Yb) \cdot \frac{1}{Rb^2} - Tb \cdot (Yn + Yb) \cdot \frac{1}{Rbz^2}$$

$$Eyc := Tc \cdot (Yn - Yc) \cdot \frac{1}{Rc^2} - Tc \cdot (Yn + Yc) \cdot \frac{1}{Rcz^2}$$

Ex := Exa + Exb + Exc = 4.821 $j := \sqrt{-1}$ $En := Ex + j \cdot Ey$ |En| = 7.686 $arg(En) = -51.154 \cdot deg$

4. Графическая диаграмма поля

$$Ra(x,y) := \sqrt{(Xa - x)^{2} + (Ya - y)^{2}} \qquad Rb(x,y) := \sqrt{(Xb - x)^{2} + (Yb - y)^{2}}$$
$$Rc(x,y) := \sqrt{(Xc - x)^{2} + (Yc - y)^{2}} \qquad Raz(x,y) := \sqrt{(Xa - x)^{2} + (Ya + y)^{2}}$$
$$Rbz(x,y) := \sqrt{(Xb - x)^{2} + (Yb + y)^{2}} \qquad Rcz(x,y) := \sqrt{(Xc - x)^{2} + (Yc + y)^{2}}$$

$$Exa(x,y) := Ta \cdot (x - Xa) \cdot \frac{1}{Ra(x,y)^2} - Ta \cdot (x - Xa) \cdot \frac{1}{Raz(x,y)^2}$$

$$Exb(x,y) := Tb \cdot (x - Xb) \cdot \frac{1}{Rb(x,y)^2} - Tb \cdot (x - Xb) \cdot \frac{1}{Rbz(x,y)^2}$$

$$\underline{Exc}(x,y) := Tc \cdot (x - Xc) \cdot \frac{1}{Rc(x,y)^2} - Tc \cdot (x - Xc) \cdot \frac{1}{Rcz(x,y)^2}$$

$$Ex_{x}(x,y) := Exa(x,y) + Exb(x,y) + Exc(x,y)$$

$$E_{Ya}(x,y) \coloneqq Ta \cdot (y - Ya) \cdot \frac{1}{Ra(x,y)^2} - Ta \cdot (y + Ya) \cdot \frac{1}{Raz(x,y)^2}$$

$$\underline{Eyb}(x,y) \coloneqq Tb \cdot (y - Yb) \cdot \frac{1}{Rb(x,y)^2} - Tb \cdot (y + Yb) \cdot \frac{1}{Rbz(x,y)^2}$$

$$\underline{Evc}(x,y) := Tc \cdot (y - Yc) \cdot \frac{1}{Rc(x,y)^2} - Tc \cdot (y + Yc) \cdot \frac{1}{Rcz(x,y)^2}$$

$$\underline{Ey}(x,y) := Eya(x,y) + Eyb(x,y) + Eyc(x,y)$$

$$n := 20 \quad \underline{m}_{i} := 12 \quad i := 0 \dots n \qquad \underline{j}_{m} := 0 \dots m \qquad x_{i} := i \qquad y_{j} := j$$
$$El_{i,j} := Ex(x_{i}, y_{j}) \qquad E2_{i,j} := Ey(x_{i}, y_{j})$$

ЗАДАЧА 67. МАГНИТНОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ

1. Исходные данные

$$I := 100 XI := 4.5 YI := 6.5 X2 := 14.5 Y2 := 6.5$$

$$R := 0.01 Xn := 7.5 Yn := 4.5 j := \sqrt{-1}$$
2. Pacuer beropa H_n в заданной точке n

$$RI := \sqrt{(XI - Xn)^2 + (YI - Yn)^2} = 3.606$$

$$R2 := \sqrt{(X2 - Xn)^2 + (Y2 - Yn)^2} = 7.28$$

$$HIx := I \cdot (Yn - YI) \cdot \frac{1}{RI^2} = -15.385$$

$$H2x := -I \cdot (Yn - Y2) \cdot \frac{1}{R2^2} = 3.774$$

$$HIy := -I \cdot (Xn - XI) \cdot \frac{1}{RI^2} = -23.077$$

$$H2y := I \cdot (Xn - X2) \cdot \frac{1}{R2^2} = -13.208$$

$$Hx := HIx + H2x = -11.611 Hy := HIy + H2y = -36.284$$

$$Hn := Hx + j \cdot Hy |Hn| = 38.097 arg(Hn) = -107.745 \cdot deg$$

$$3. \Gamma padpureckas диаграмма поля$$

$$RI_{(x,y)} := \sqrt{(XI - x)^2 + (YI - y)^2} R2_{(x,y)} := \sqrt{(X2 - x)^2 + (Y2 - y)^2}$$

$$HIx(x,y) := I \cdot (y - YI) \cdot \frac{1}{RI(x,y)^2} H2x(x,y) := -I \cdot (y - Y2) \cdot \frac{1}{R2(x,y)^2}$$

$$H_{X}(x,y) := H_{I}x(x,y) + H_{2}x(x,y) \qquad H_{I}y(x,y) := -I \cdot (x - XI) \cdot \frac{1}{RI(x,y)^{2}}$$

143

$$H2y(x,y) := I \cdot (x - X2) \cdot \frac{1}{R2(x,y)^2} \qquad Hy(x,y) := H1y(x,y) + H2y(x,y)$$

$$n := 20 \qquad m := 12 \qquad i := 0 .. n \qquad j_{m} := 0 .. m \qquad x_i := i \qquad y_j := j$$

$$H1_{i,j} := Hx(x_i, y_j) \qquad H2_{i,j} := Hy(x_i, y_j)$$

(H1,H2)
ЗАДАЧА 68. ЭЛЕКТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЕ ДВУХПРОВОДНОЙ ЛИНИИ БЕЗ УЧЕТА ЗЕМЛИ

1. Исходные данные

U := 200 I := 100 XI := 4.5 YI := 5.5 X2 := 14.5 Y2 := 5.5R := 0.01 Xn := 7.5 Yn := 7.5 $j := \sqrt{-1}$

2. Расчет зарядов проводов

$$d := \sqrt{(XI - X2)^2 + (YI - Y2)^2} = 10 \qquad TI := \frac{U}{\ln\left(\frac{d}{R}\right)} = 28.953$$
$$T2 := -TI = -28.953$$

3. <u>Расчет вектора Е_п в заданной точке n</u>

$$RI := \sqrt{(XI - Xn)^{2} + (YI - Yn)^{2}} = 3.606$$

$$R2 := \sqrt{(X2 - Xn)^{2} + (Y2 - Yn)^{2}} = 7.28$$

$$Ex := TI \cdot (Xn - XI) \cdot \frac{1}{RI^{2}} + T2 \cdot (Xn - X2) \cdot \frac{1}{R2^{2}} = 10.505$$

$$Ey := TI \cdot (Yn - YI) \cdot \frac{1}{RI^{2}} + T2 \cdot (Yn - Y2) \cdot \frac{1}{R2^{2}} = 3.362$$

$$En := Ex + j \cdot Ey \qquad |En| = 11.03 \qquad \arg(En) = 17.745 \cdot \deg$$

$$\frac{3. \operatorname{Pacuer Bektopa} H_{n} \operatorname{B} \operatorname{Sadahhoŭ touke} n$$

$$H1x := I \cdot (Yn - YI) \cdot \frac{1}{RI^{2}} = 15.385 \qquad H2x := -I \cdot (Yn - Y2) \cdot \frac{1}{R2^{2}} = -3.774$$

$$H1y := -I \cdot (Xn - XI) \cdot \frac{1}{RI^{2}} = -23.077 \qquad H2y := I \cdot (Xn - X2) \cdot \frac{1}{R2^{2}} = -13.208$$

$$Hx := H1x + H2x = 11.611 \qquad Hy := H1y + H2y = -36.284$$
$$Hn := Hx + j \cdot Hy \qquad |Hn| = 38.097 \qquad \arg(Hn) = -72.255 \cdot \deg$$

En

4. <u>Расчет потенциала</u> <u>*V*_{*n*} в заданной точке *n*</u>

$$Vn := TI \cdot ln\left(\frac{1}{RI}\right) + T2 \cdot ln\left(\frac{1}{R2}\right) = 20.344$$

5. Графическая диаграмма электрического поля

ò

6. Графическая диаграмма магнитного поля

$$HIx(x,y) := I \cdot (y - YI) \cdot \frac{1}{RI(x,y)^{2}} \qquad H2x(x,y) := -I \cdot (y - Y2) \cdot \frac{1}{R2(x,y)^{2}}$$

$$Hx(x,y) := HIx(x,y) + H2x(x,y) \qquad HIy(x,y) := -I \cdot (x - XI) \cdot \frac{1}{RI(x,y)^{2}}$$

$$H2y(x,y) := I \cdot (x - X2) \cdot \frac{1}{R2(x,y)^{2}} \qquad Hy(x,y) := HIy(x,y) + H2y(x,y)$$

$$HI_{i,j} := Hx(x_{i},y_{j}) \qquad H2_{i,j} := Hy(x_{i},y_{j})$$

ЗАДАЧА 69. МАГНИТНОЕ ПОЛЕ ТРЕХФАЗНОЙ ЛИНИИ

1. Исходные данные

 $Im_{\infty} := 100 \quad \alpha := 30 \quad \omega t := (10FRAME + \alpha) \cdot deg \quad j := \sqrt{-1}$ $Ia := Im \cdot sin(\omega t) \quad Ib := Im \cdot sin(\omega t - 120deg) \quad Ic := Im \cdot sin(\omega t + 120deg)$ $Xa := 4.5 \quad Ya := 2.5 \quad Xb := 10.5 \quad Yb := 9.5 \quad Xc := 16.5 \quad Yc := 2.5$ $R_{\infty} := 0.02 \quad Xn := 17 \quad Ym := 6 \quad Ia = 50 \quad Ib = -100 \quad Ic = 50$

2. <u>Расчет вектора Н_п в заданной точке п</u>

$$Ra := \sqrt{(Xa - Xn)^{2} + (Yb - Yn)^{2}} = 12.981$$
$$Rb := \sqrt{(Xb - Xn)^{2} + (Yb - Yn)^{2}} = 7.382$$
$$Rc := \sqrt{(Xc - Xn)^{2} + (Yc - Yn)^{2}} = 3.536$$

$$\begin{aligned} Hxa &:= Ia \cdot (Yn - Ya) \cdot \frac{1}{Ra^2} = 1.039 & Hxb := Ib \cdot (Yn - Yb) \cdot \frac{1}{Rb^2} = 6.422 \\ Hxc &:= Ic \cdot (Yn - Yc) \cdot \frac{1}{Rc^2} = 14 & Hya := -Ia \cdot (Xn - Xa) \cdot \frac{1}{Ra^2} = -3.709 \\ Hyb &:= -Ib \cdot (Xn - Xb) \cdot \frac{1}{Rb^2} = 11.927 & Hyc := -Ic \cdot (Xn - Xc) \cdot \frac{1}{Rc^2} = -2 \\ Hx &:= Hxa + Hxb + Hxc = 21.461 & Hy := Hya + Hyb + Hyc = 6.217 \\ Hn &:= Hx + j \cdot Hy & |Hn| = 22.343 & arg(Hn) = 16.157 \cdot deg \end{aligned}$$

4. Графическая диаграмма поля

$$Ra(x,y) := \sqrt{(Xa - x)^{2} + (Ya - y)^{2}} \qquad Rb(x,y) := \sqrt{(Xb - x)^{2} + (Yb - y)^{2}}$$
$$Rc(x,y) := \sqrt{(Xc - x)^{2} + (Yc - y)^{2}} \qquad Hxa(x,y) := Ia \cdot (y - Ya) \cdot \frac{1}{Ra(x,y)^{2}}$$
$$Hxb(x,y) := Ib \cdot (y - Yb) \cdot \frac{1}{Rb(x,y)^{2}} \qquad Hxc(x,y) := Ic \cdot (y - Yc) \cdot \frac{1}{Rc(x,y)^{2}}$$

$$Hx(x,y) := Hxa(x,y) + Hxb(x,y) + Hxc(x,y)$$

$$Hya(x,y) := -Ia \cdot (x - Xa) \cdot \frac{1}{Ra(x,y)^2}$$

$$Hyb(x,y) := -Ib \cdot (x - Xb) \cdot \frac{1}{Rb(x,y)^2}$$

$$Hyc(x,y) := -Ic \cdot (x - Xc) \cdot \frac{1}{Rc(x,y)^2}$$

$$Hy(x,y) := Hya(x,y) + Hyb(x,y) + Hyc(x,y)$$

 $n := 20 \qquad \underline{m} := 12 \qquad i := 0 \dots n \qquad \underline{j}_{m} := 0 \dots m \qquad x_{i} := i \qquad y_{j} := j$ $H_{1,j} := H_{x}(x_{i}, y_{j}) \qquad H_{2,j} := H_{y}(x_{i}, y_{j})$

(*H1*,*H2*)

ЗАДАЧА 70. КРУГОВОЕ ВРАЩАЮЩЕЕСЯ МАГНИТНОЕ ПОЛЕ

1. Исходные данные

$$Im_{\infty} := 100 \quad a := 30 \quad ot := (10FRAME + a) \cdot deg \qquad j := \sqrt{-1}$$

$$Ia := Im \cdot sin(ot) \quad Ib := Im \cdot sin(ot - 120deg) \quad Ic := Im \cdot sin(ot + 120deg)$$

$$Iaz := -Im \cdot sin(ot) \quad Ibz := -Im \cdot sin(ot - 120deg) \quad Icz := -Im \cdot sin(ot + 120deg)$$

$$Xa := 4.5 \quad Ya := 8.5 \quad Xc := 12.5 \quad Yc := 14.5 \quad Xb := 12.5 \quad Yb := 2.5$$

$$Xaz := 14.5 \quad Yaz := 8.5 \quad Xcz := 6.5 \quad Ycz := 2.5 \quad Xbz := 6.5 \quad Ybz := 14.5$$

$$R_{\infty} := 0.02 \quad Xn := 17 \quad Yn := 6 \quad Ia = 50 \quad Ib = -100 \quad Ic = 50$$

$$2. \frac{Pacver}{Pacver} = BEKTOPA H_{n} = 3a\pi AHHOM TOVKE n$$

$$Ra := \sqrt{(Xa - Xn)^{2} + (Yb - Yn)^{2}} = 12.981$$

$$Rb := \sqrt{(Xb - Xn)^{2} + (Yb - Yn)^{2}} = 5.701$$

$$Rc := \sqrt{(Xc - Xn)^{2} + (Yb - Yn)^{2}} = 9.618$$

$$Raz := \sqrt{(Xaz - Xn)^{2} + (Ybz - Yn)^{2}} = 13.509$$

$$Rcz := \sqrt{(Xcz - Xn)^{2} + (Ycz - Yn)^{2}} = 11.068$$

$$Hxa := Ia \cdot (Yn - Ya) \cdot \frac{1}{2} = -0.742 \qquad Hxb := Ib \cdot (Yn - Yb) \cdot \frac{1}{2} = -10.769$$

$$Hxd := Id \cdot (In - Id) \cdot \frac{1}{Ra^2} = -0.742 \quad Hxd := Id \cdot (In - Id) \cdot \frac{1}{Rb^2} = -10.769$$
$$Hxc := Ic \cdot (Yn - Yc) \cdot \frac{1}{Rc^2} = -4.595 \quad Hxaz := Iaz \cdot (Yn - Yaz) \cdot \frac{1}{Raz^2} = 1.592$$
$$Hxbz := Ibz \cdot (Yn - Ybz) \cdot \frac{1}{Rbz^2} = -4.658 \quad Hxcz := Icz \cdot (Yn - Ycz) \cdot \frac{1}{Rcz^2} = -1.429$$

$$Hya := -Ia \cdot (Xn - Xa) \cdot \frac{1}{Ra^2} = -3.709 \qquad Hyb := -Ib \cdot (Xn - Xb) \cdot \frac{1}{Rb^2} = 13.846$$

$$\begin{aligned} Hyc &:= -Ic \cdot (Xn - Xc) \cdot \frac{1}{Rc^2} = -2.432 & Hyaz := -Iaz \cdot (Xn - Xaz) \cdot \frac{1}{Raz^2} = 1.592 \\ Hybz &:= -Ibz \cdot (Xn - Xbz) \cdot \frac{1}{Rbz^2} = -5.753 \\ Hycz &:= -Icz \cdot (Xn - Xcz) \cdot \frac{1}{Rcz^2} = 4.286 \\ Hx &:= Hxa + Hxb + Hxc + (Hxaz + Hxbz + Hxcz) = -20.599 \\ Hy &:= Hya + Hyb + Hyc + Hyaz + Hybz + Hycz = 7.829 \\ Hn &:= Hx + j \cdot Hy & |Hn| = 22.037 & arg(Hn) = 159.19 \cdot deg \end{aligned}$$

3. Графическая диаграмма поля

$$\begin{aligned} Ra(x,y) &:= \sqrt{(Xa - x)^{2} + (Ya - y)^{2}} & Rb(x,y) := \sqrt{(Xb - x)^{2} + (Yb - y)^{2}} \\ Rc(x,y) &:= \sqrt{(Xc - x)^{2} + (Yc - y)^{2}} & Raz(x,y) := \sqrt{(Xaz - x)^{2} + (Yaz - y)^{2}} \\ Rbz(x,y) &:= \sqrt{(Xbz - x)^{2} + (Ybz - y)^{2}} & Rcz(x,y) := \sqrt{(Xcz - x)^{2} + (Ycz - y)^{2}} \\ Hxa(x,y) &:= Ia \cdot (y - Ya) \cdot \frac{1}{Ra(x,y)^{2}} & Hxb(x,y) := Ib \cdot (y - Yb) \cdot \frac{1}{Rb(x,y)^{2}} \\ Hxaz(x,y) &:= Iaz \cdot (y - Yaz) \cdot \frac{1}{Raz(x,y)^{2}} & Hxbz(x,y) := Ibz \cdot (y - Ybz) \cdot \frac{1}{Rbz(x,y)^{2}} \\ Hxc(x,y) &:= Ic \cdot (y - Yc) \cdot \frac{1}{Rc(x,y)^{2}} & Hxcz(x,y) := Icz \cdot (y - Ycz) \cdot \frac{1}{Rcz(x,y)^{2}} \\ Hx(x,y) &:= Hxa(x,y) + Hxb(x,y) + Hxc(x,y) + Hxaz(x,y) + Hxbz(x,y) + Hxcz(x,y) \end{aligned}$$

$$Hya(x,y) \coloneqq -Ia \cdot (x - Xa) \cdot \frac{1}{Ra(x,y)^2} \qquad Hyb(x,y) \coloneqq -Ib \cdot (x - Xb) \cdot \frac{1}{Rb(x,y)^2}$$

$$Hyaz(x,y) := -Iaz \cdot (x - Xaz) \cdot \frac{1}{Raz(x,y)^2} \qquad Hybz(x,y) := -Ibz \cdot (x - Xbz) \cdot \frac{1}{Rbz(x,y)^2}$$
$$Hyc(x,y) := -Ic \cdot (x - Xc) \cdot \frac{1}{Rc(x,y)^2} \qquad Hycz(x,y) := -Icz \cdot (x - Xcz) \cdot \frac{1}{Rcz(x,y)^2}$$

 $Hya(x,y) \coloneqq Hya(x,y) + Hyb(x,y) + Hyc(x,y) + Hyaz(x,y) + Hybz(x,y) + Hycz(x,y)$

$$n := 20$$
 $m := 16$ $i := 0...n$ $j := 0...m$ $x_i := i$ $y_j := j$
 $H1_{i,j} := Hx(x_i, y_j)$ $H2_{i,j} := Hy(x_i, y_j)$

(H1,H2)