——————————————————————— СПЕКТРОСКОПИЯ КОНДЕНСИРОВАННОГО СОСТОЯНИЯ ————

УДК 535.373.3:541.14:539.19

ВЛИЯНИЕ ЭКСТРАЛИГАНДИРОВАНИЯ НА СПЕКТРАЛЬНО-КИНЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ПРОЦЕССЫ ТУШЕНИЯ ВОЗБУЖДЕННЫХ СОСТОЯНИЙ МУЛЬТИПОРФИРИНОВЫХ КОМПЛЕКСОВ МОЛЕКУЛЯРНЫМ КИСЛОРОДОМ

© 2011 г. Е. И. Сагун*, Э. И. Зенькевич**, В. Н. Кнюкшто*, А. М. Шульга*

*Институт физики им. Б.И. Степанова НАН Беларуси, Минск, Белоруссия **Белорусский национальный технический университет, Минск, Белоруссия E-mail: sagun@imaph.bas-net.by Поступила в редакцию 20.05.2010 г.

На основании исследования спектрально-кинетических параметров димеров Zn-порфиринов и мультипорфириновых самособирающихся комплексов, сформированных на их основе, установлено, что экстралигандирование димеров пиридином не приводит к заметному понижению энергии триплетного уровня E(T₁). Показано, что усиление безызлучательной дезактивации T₁ ~~ S₀ энергии электронного возбуждения димеров Zn-порфиринов в этом случае обусловлено не только ростом фактора Франка-Кондона. Обсуждены механизмы тушащего действия экстралиганда, связанные с акцептирующей ролью высокочастотных обертонов колебаний молекул экстралигандов, усилением спин-орбитального взаимодействия из-за понижения энергии от *-состояний и внеплоскостной дисторсией димеров, вызванной выходом иона Zn²⁺ из плоскости тетрапиррольного макроцикла. Тушение триплетных состояний экстралигандированных димеров Zn-порфиринов молекулярным кислородом в жидких растворах при 295 К зависит от характера донорно-акцепторных взаимодействий с пиридином и жесткости связующего молекулярного фрагмента. Установлено, что константы скорости кислородного тушения возбужденных электронных состояний S_1 и T_1 мультипорфириновых комплексов зависят от их строения и состава, а также от стерических препятствий, создаваемых димерами ("эффекты экранирования") для контактных взаимодействий π-сопряженной системы свободного основания ("экстралиганда") с молекулярным кислородом. Эффекты экранирования экстралигандов молекулами димеров Zn-порфиринов, уменьшающие константы скорости кислородного тушения k_S и k_T, практически не влияют на значения квантовых выходов генерации синглетного кислорода ул.

ВВЕДЕНИЕ

Известно, что тетрапиррольные соединения играют важную роль при решении многих научных и прикладных задач (фотодинамическая терапия, электрохимические сенсоры, рецепторный анализ, промышленный катализ [1], молекулярная электроника [2, 3], нелинейная оптика [4], запасание и преобразование солнечной энергии [5]). Эффективность практического использования тетрапиррольных соединений различных классов определяется их спектральными и окислительно-восстановительными характеристиками, при этом во многих случаях пути и динамика фотоиндуцированных процессов существенно зависят от условий микроокружения, влияющего на их структуру и свойства возбужденных электронных состояний. Так, например, в природных условиях центральные ионы металлов биологических пигментов (хлорофиллы, бактериохлорофиллы и т.д.), как правило, нековалентно связаны с дополнительными экстралигандами, в качестве

которых выступают аминокислоты боковых цепей [6]. Такие пигмент-белковые комплексы, имеющие определенную структурную и энергетическую организацию, характеризуются строгой направленностью их функциональных свойств в различных биопроцессах [7, 8]. При этом экстралигандирование тетрапиррольных соединений может существенно повлиять на положение уровней энергии, их окислительно-восстановительные потенциалы, а следовательно, и на эффективность протекания природных темновых и фотоиндуцированных процессов (каталитическое ускорение биохимических процессов, фотоиндуцированное разделение зарядов, генерация синглетного кислорода в растворах и опухолях и т.п.).

Можно обоснованно утверждать, что на данный момент достигнута достаточно полная ясность в понимании спектрально-кинетических эффектов экстралигандирования мономерных молекул металлокомплексов порфиринов [9], а также интерпретации процессов тушения их возбужденных состояний молекулярным кислородом [10]. Следует отметить, что исследованию закономерностей тушения низших возбужденных электронных состояний металлокомплексов химических димеров порфиринов в условиях экстралигандирования и взаимодействия с молекулярным кислородом, приводящим к фотосенсибилизированной генерации синглетного кислорода $({}^{1}\Delta_{g})$, в литературе уделено значительно меньше внимания [11, 12], а для мультипорфириновых ансамблей такие данные в литературе практически отсутствуют.

В данной работе был исследован ряд димеров Zn-комплексов тетрапиррольных соединений (порфирины, хлорины, циклодимеры), а также мультипорфириновые триадные и пентадный комплексы. сформированные на их основе. Выбор Zn-комплексов тетрапиррольных соединений, применяемых для синтеза химических димеров и формирования мультипорфириновых ансамблей, обусловлен рядом причин. Во-первых, 4-координированные Zn-комплексы обладают относительно высокой фотостабильностью и способны к образованию пятой координационной связи за счет присоединения одного экстралиганда [13-16]. Известно, что Zn-порфирины, Zn-хлорины и их пиридинатные комплексы обладают заметной флуоресценцией и фосфоресценцией (при 77 К), что позволяет исследовать дезактивацию синглетных (S_1) и триплетных (T_1) состояний в таких системах [17-19]. Во-вторых, эти комплексы имеют сравнительно низкие потенциалы окисления [20], что делает их также удобными объектами для изучения фотоиндуцированных электронотранспортных процессов в мультимолекулярных ансамблях, содержащих акцепторы электрона.

Целью данной работы являлись исследование и сравнительный анализ влияния экстралигандирования на дезактивацию низших возбужденных электронных состояний S_1 и T_1 различных типов мультипорфириновых систем, а также на процессы их взаимодействия с молекулярным кислородом.

МЕТОДИКА ЭКСПЕРИМЕНТА

Структурные формулы и используемые обозначения исходных *мезо*-замещенных мономерных молекул и исследуемых химических димеров Zn-порфиринов и хлоринов с учетом данных ЯМР(¹Н) и масс-спектроскопии приведены на рис. 1. Синтез, очистка, установление структуры и идентификация химических димеров с жестким фенильным (Ph) связующим фрагментом (спейсером) 1,4-*бис*-{[Zn(II)]5-(2,3,7,8,12,13,17,18-октаэтил-порфиринил)]}бензол, (ZnOEP)₂Ph, и 1,4*бис*-{[Zn(II)]5-(10,15,20-три(*p*-гексилфенил)-порфиринил)]}бензол, (ZnHTPP)₂, основанных на мо-

номерных молекулах Zn-октаэтилпорфина, ZnOEP и Zn-гексилтетрафенилпорфина, ZnHTTP соответственно, были проведены по методикам, описанным в [21] и ссылках, приведенных в данной работе. Синтез и идентификация димеров 1.2-бис-{[Zn(II)]5-(2,3,7,8,12,13,17,18-октаэтил-порфиринил)]}этан, (ZnOEP)2 и 1,2-бис-{[ү-Zn(II)]-октаэтил-хлоринил)]}этан, (ZnOEChl)2, в которых π-сопряженные макроциклы ковалентно связаны по мезо-положениям через гибкий спейсер -CH2-CH2-, (Zn-этан-бис-порфирин, Zn-этан-бисхлорин соответственно), выполнены по методикам, изложенным в [22, 23]. Процедура синтеза и идентификации химического димера Zn-циклопентанпорфирина, (Zn-3¹,5¹-CD), представлена в [24]. Этот димер включает одну молекулу Zn-3¹,5¹-шикло-3¹-метил-2,7,8,12,13,17,18-гептаэтилпорфина (ZnOЭП-цикл) и вторую молекулу Zn-3¹,5¹-шикло-3¹-экзометилен-2,7,8,12,13,17,18гептаэтил-21H,23H-порфин (ZnOЭП-цикл=CH₂).

Формирование в растворах самособирающихся мультипорфириновых комплексов с направленно изменяемой структурой и контролируемым числом взаимодействующих компонент было осуществлено за счет комбинации методов химического синтеза (ковалентно связанные Zn-содержащие димеры) и нековалентных координационных взаимодействий (эффекты экстралигандирования) центральных ионов Zn²⁺ с неподеленной парой электронов атомов азота (N) *мезо*-пиридильных заместителей свободного основания тетрапиррольного экстралиганда (L).

Для самосборки триадных комплексов (рис. 2д-23) в качестве экстралигандов были использованы мономеры свободного основания порфирина (H₂P) с пиридильными заместителями (Pyr), в мезо-положениях макроцикла, синтез которых описан ранее [19]. В этих соединениях два атома азота (N) находились либо в napa-, либо в мета-положении двух (n = 2) соседних ($H_2P(p^Pyr)_2$ и H₂P(m[^]Pyr)₂ соответственно) или противоположных $H_2P(m-Pyr)_2$ пиридильных колец (рис. 2а-2в) Самосборка пентадного комплекса (рис. 2и) происходила в условиях координационного взаимодействия центральных ионов Zn²⁺ двух димеров с экстралигандом, в качестве которого был использован мономер свободного основания порфирина (рис. 2г) с атомами N в *мета*-положении четырех (n = 4) пиридильных колец H₂P(m-Pyr)₄, синтез которого описан в [23, 25]. Формирование самособирающихся пентадных комплексов при комнатной температуре происходило при титровании разбавленных растворов ($C \sim 5 \times 10^{-7} - 8 \times 10^{-6}$ M) химических димеров Zn-порфиринов концентрированными ($C \sim 0.3 \times 10^{-4} - 1.6 \times 10^{-4}$ M) растворами экстралигандов.

Рис. 1. Структурные формулы исследованных мономеров (слева, a-d) и химических димеров (справа, $e-\kappa$) тетрапиррольных соединений, а также используемые сокращения: $a - ZnOEP-CH_3$, $6 - ZnOEChl-CH_3$, B - ZnOEP-Ph, r - ZnHTPP, $d - ZnOЭП-цикл=CH_2$, $e - ZnOEP-CH_2-CH_2-ZnOEP$, (ZnOEP)₂; $x - ZnOEChl-CH_2-CH_2-ZnOEChl$, (ZnOEChl)₂; 3 - ZnOEP-Ph-ZnOEP, (ZnOEP)₂Ph; u - ZnHTPP-ZnHTPP, (ZnHTPP)₂; $\kappa - ZnOЭП-цикл-ZnOЭП-цикл-ZnOЭП-цикл-CH₂, (<math>ZnO=1^3$, 5^1 -CD).

В качестве растворителей использовали нелигандирующие растворители толуол (Тол) и метилциклогексан (МЦГ, Aldrich), осушенный над металлическим Na. В случае *мезо*-замещенных мономерных молекул и химических димеров Zn-порфиринов и хлоринов экстралигандом служил пиридин (Пир), осушенный над BaO по стандартным методикам. Все эксперименты выполнялись на свежеприготовленных растворах исследуемых соединений. Спектры поглощения регистрировались на автоматическом двухлучевом спектрофотометре Cary-500 M (Varian, США) с использованием кварцевых кювет 10×10 мм (Туре 111 QS, VWR Inter., Германия). Основные спектральнолюминесцентные исследования и измерения кинетических параметров затухания флуоресценции и фосфоресценции были выполнены на высокочувствительных автоматизированных установках, подробно описанных в работе [26], где также приведены основные методики и погрешности измерений. При измерении квантовых выходов флуоресценции ϕ_F и фосфоресценции ϕ_{Ph}

Рис. 2. Структурные формулы используемых экстралигандов (слева, а-г) и оптимизированные геометрии самособирающихся мультимолекулярных комплексов порфиринов (справа, д-и), рассчитанные по программе HyperChem, release 4, HyperCube Inc., полуэмпирические методы AM1 и PM3. Экстралиганды: а – $H_2P(m-Pyr)_2(Ph)_2$, б – $H_2P(m^Pyr)_2(iso-PrPh)_2$, в – $H_2P(p^Pyr)_2(Ph)_2$, г – $H_2P(m-Pyr)_4$. Триады: д – $(ZnHTPP)_2\otimes H_2P(m-Pyr)_2(Ph)_2$, е – $(ZnHTPP)_2\otimes H_2P(m^Pyr)_2(iso-PrPh)_2$, ж – $(ZnOEP)_2Ph\otimes H_2P(m^Pyr)_2(iso-PrPh)_2$. 3 – $(ZnHTPP)_2\otimes H_2P(p^Pyr)_2(Ph)_2$. Пентада: и – $2(ZnOEP)_2Ph\otimes H_2P(m-Pyr)_4$. Пара-гексилфенильные заместители $Ph(p-C_6H_{13})$, находящиеся в *мезо*-положениях димера (ZnHTPP)_2 в составе триад (д, е, з), а также этильные группы $-C_2H_5$ по β-положениям димера (ZnOEP)_2 в триаде (ж) и пентаде (и) не приведены.

исследуемых соединений в качестве эталона использовался ZnOEP в МЦГ ($\varphi_F = 0.04$, $\tau_S = 1.6$ нс при 295 К; $\varphi_{Ph} = 0.085$, $\tau_{Ph} = 125$ мс при 77 К [14]). Кинетика дезактивации возбужденных T_1 -состояний, а также генерация синглетного кислорода измерялись на лабораторном универсальном измерительном комплексе, описанном в [27]. Возбуждение образцов производилось второй гармоникой ($\lambda = 532$ нм) частотного Nd³⁺: YAG-лазера с активной модуляцией добротности ЛТИ-401 (энергия импульса E = 1-5 мДж с разбросом в ±5%, длительность $\Delta t_{1/2} = 15$ нс).

Бимолекулярные константы скорости тушения возбужденных триплетных (T_1) и синглетных (S_1) состояний исследуемых соединений молекулярным кислородом k_T и k_S соответственно при 295 К рассчитывались по формуле

$$k_{T,S} = \frac{(\tau_{T,S})^{-1} - (\tau_{T,S}^{0})^{-1}}{[O_2]},$$
(1)

где τ_T и τ_S – времена жизни возбужденных состояний T_1 и S_1 в присутствии кислорода, τ_T^0 и τ_S^0 – времени жизни этих состояний в дегазированных растворах, $[O_2]$ – концентрация растворенного кислорода 1.8 × 10⁻³ М в толуоле и 2.6 × 10⁻³ М в МЦГ [28]. Относительные ошибки измерений для исследуемых параметров составляли ±3% для τ_S , ±5–7% для τ_T , ±10% для k_S и ±15% для k_T .

Процедура измерения квантового выхода генерации синглетного кислорода (γ_{Δ}) основывалась на сравнительном анализе интенсивностей фотосенсибилизированной люминесценции синглетного кислорода (${}^{1}\Delta_{g}$) исследуемого соединения (I_{x}) и эталона (I_{0}) при $\lambda = 1.27$ мкм. В том случае, когда исследуемое соединение и эталон находились в одном растворителе, величина γ_{Δ}^{x} для исследуемого соединения определялась по формуле

$$\gamma_{\Delta}^{x} = \gamma_{\Delta}^{0} I_{x} \beta_{0} / I_{0} \beta_{x}, \qquad (2)$$

где γ_{Λ}^{0} — квантовый выход фотосенсибилизированного образования синглетного кислорода эталона, $\beta_x = (1-10^{-D_x})$ и $\beta_0 = (1-10^{-D_0})$ — доли света, поглощенного исследуемым и эталонным растворами на длине волны фотовозбуждения соответственно. Значения интенсивностей I_x и I_0 получали путем усреднения (~30 импульсов лазера) и экстраполяции экспериментальных данных к максимальной интенсивности лазерного возбуждения. При измерениях величины γ_{Λ}^x в качестве эталонного соединения использовался Pd-*мезо*порфирин, Pd-MP ($\gamma_{\Lambda}^0 = 1.0$ [29]). Во всех случаях оптическая плотность исследуемых и эталонных

ОПТИКА И СПЕКТРОСКОПИЯ том 110 № 2 / 2011

растворов на длине волны возбуждения не превышала D = 0.2 при длине оптического пути 10 мм. Относительная ошибка измерения γ_{Δ}^{x} не превышала 15%.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Спектрально-кинетические свойства исследуемых мультимолекулярных комплексов

Химические димеры. На рис. 3 приведены изменения спектров поглощения исследуемых димеров Zn-комплексов тетрапиррольных соединений при их взаимодействии с пиридином. В табл. 1 также представлены спектрально-люминесцентные и фотофизические параметры для некомплексованных и экстралигандированных форм исследуемых соединений. Для проведения сравнительного анализа по влиянию экстралигандирования на спектрально-кинетические свойства димеров в табл. 1 также представлена информация для исходных Zn-содержащих мономерных молекул, имеющих в мезо-положении тетрапиррольного макроцикла заместители, родственные по химическому составу и природе связующим молекулярным фрагментам, используемым в химических димерах.

При изложении экспериментального материала представляется уместным раздельно обсудить результаты, полученные при исследовании влияния экстралигандирования (пиридин) на спектрально-люминесцентные свойства Zn-димеров тетрапиррольных соединений с двумя различными типами спейсеров между тетрапиррольными макроциклами: 1) жестким фенильным спейсером в димерах (ZnOEP)₂Ph и (ZnHTPP)₂ (рис. 13, 1и) и 2) гибким мостиком -- СН2-- СН2-- в димерах (ZnOEP)₂ и (ZnOEChl)₂ (рис. 1е, 1ж соответственно). Сравнительный анализ результатов, полученных для этих двух групп исходных и комплексованных димеров, позволит выделить в чистом виде спектральные эффекты экстралигандирования, обусловленные взаимодействием d-орбиталей центрального иона Zn²⁺ тетрапиррольных макроциклов димеров с неподеленной парой электронов атома N молекулы пиридина. Как видно из рис. За, для пиридинатного комплекса (ZnHTPP), наблюдается батохромный сдвиг и относительный рост интенсивности длинноволновой Q_v(0, 0)-полосы поглошения и испускании на 410-560 см⁻¹. Аналогичные эффекты известны для мономерных молекул Zn-TPP [3, 16, 30] и некоторых димеров [31, 32].

Взаимодействие (ZnOEP)₂Ph с пиридином также приводит к батохромному сдвигу всех полос поглощения и флуоресценции на 270-440 см⁻¹ (рис. 36). Однако в отличие от димера (ZnHTPP)₂ относительная интенсивность длинноволновой поло-

Рис. 3. Спектры поглощения (слева) и флуоресценции (справа) димеров Zn-порфиринов и Zn-хлоринов в МЦГ (штриховая линия) и в смеси растворителей МЦГ-Пир (100 : 1, сплошная линия) при 295 К. Концентрации исследуемых соединений (1-3) × 10⁻⁶ M, *l* = 1 см. а – (ZnHTPP)₂, 6 – (ZnOEP)₂Ph, в – (ZnOEP)₂, г – (ZnOECh)₂.

сы Q(0, 0) для димера (ZnOEP)₂Ph при лигандировании уменьшается. В отсутствие сильных экситонных взаимодействий в области длинноволновой полосы $Q_{x}(0, 0)$ поглощения химических димеров (ZnHTPP)₂ и (ZnOEP)₂Ph с жестким фенильным спейсером (молярные десятичные коэффициенты поглощения $\varepsilon \sim 10^4 \, \text{M}^{-1} \, \text{см}^{-1}$) спектральные изменения, наблюдающиеся в этой области, вызваны в основном эффектами экстралигандирования и обусловлены дестабилизацией верхней заполненной молекулярной а_{2и}-орбитали (ВЗМО). Различное поведение полос $Q_x(0, 0)$ для (ZnHTPP)₂ и (ZnOEP)₂Ph при аксиальном экстралигандировании молекулой пиридина объясняется в рамках четырехорбитальной модели Гоутермана [33]. Из нее следует, что интенсивность длинноволновых $Q_{\rm r}(0,0)$ -полос поглощения порфиринов определяется разностью энергий (ΔE) двух верхних заполненных молекулярных орбиталей a_{1u} и a_{2u} , т.е. чем больше

абсолютная величина const × $[{}^{1}E(a_{1u}e_{g}) - {}^{1}E(a_{2u}e_{g})]^{2} =$ $=A[Q_{r}(0, 0)]/A[Q_{r}(0, 1)],$ тем слабее квазизапрет для перехода $S_0 - S_1$ и тем сильнее интенсивность этого перехода в поглощении. Результаты квантово-химических расчетов показывают [33], что при окта-алкильном замещении по пиррольным кольцам (как в случае с (ZnOEP), Ph) имеет место ситуация, при которой энергии соответствующих ВЗМО определяются неравенством $E(a_{1\mu}) > E(a_{2\mu})$. При фенильном замещении по мезо-положениям макроцикла (ZnHTPP)₂ ситуация с энергиями ВЗМО противоположная, т.е. $E(a_{2u}) > E(a_{1u})$. При экстралигандировании димеров пиридином центральный ион Zn выходит из плоскости макроциклов обоих димеров [34], его связь с л-сопряженной системой ослабевает, что в соответствии с расчетами [33, 35] приводит к возрастанию энергии ВЗМО a_{2u} , тогда как энергия ВЗМО a_{1u} остается неизменной. В результате при экстралиган-

Соединение	Поглощение λ_{0-0} , нм	Флуоресценция λ ₀₀ , нм	Фосфоресценция λ ₀₋₀ , нм	$\Delta E_{\mathcal{S}_1-T_1}$, см $^{-1}$	$\varphi_F \times 10^2$	$\phi_{Ph} \times 10^3$	τ _{Ph} , мс
мезо-замещенные мономеры							
ZnOEP-Ph ^a	575	576	706	3200	3.0	30.0	90.0
	580	582	720	3290	2.5	12.0	54.0
ZnOEP-CH ₃	587	589	745	3560	2.0	7.0	35.0
	591	594	755	3590	1.5	3.0	28.0
ZnHTPP	598	600	793	4060	4.0	7.0	26.0
	616	629	810	3550	4.5	3.0	19.0
ZnOEChl-CH ₃	620	621	840	4200	3.0	0.3	5.0
	625	627	840	-4050	3.5	0.3	5.0
	•	' X	имические димеры	1 	, ,		
(ZnOEP) ₂ Ph	582	589	740	3460	3.5	10.0	38.0
	590	596	748	3410	2.0	5.0	28.0
Zn-3 ¹ ,5 ¹ -CD	593	595	755	3560	1.5	15.0	67.0
	594	596	748	3380	1.5	10.0	38.0
(ZnOEP) ₂	599	605	764	3440	4.0	16.0	41.0
	595	598	766	3670	3.5	6.0	28.0
(ZnHTPP) ₂	615	627	830	3900	3.5	1.0	22.0
	617	633	832	3620	4.5	1.0	16.0
(ZnOEChl) ₂	630	630	852	4140	3.0	0.2	5.0
-	633	633	850	4030	3.0	0.2	5.0

Таблица 1. Влияние экстралигандирования на спектрально-люминесцентные и фотофизические параметры *ме-зо*-замещенных мономерных молекул и химических димеров Zn-порфиринов и Zn-хлоринов при 77 К

^а Верхняя строка относится к МЦГ, а нижняя – к смеси растворителей МЦГ– пиридин (100:1).

дировании димера $(ZnOEP)_2$ Ph множитель $[{}^{1}E(a_{1u}e_g) - {}^{1}E(a_{2u}e_g)]^2$ становится меньше, т.е. интенсивность его полосы $Q_x(0, 0)$ падает по сравнению с нелигандированной формой. В случае экстралигандирования пиридином димера $(ZnHTPP)_2$ абсолютное значение параметра $[{}^{1}E(a_{1u}e_g) - {}^{1}E(a_{2u}e_g)]^2$ увеличивается и соответственно интенсивность полосы $Q_y(0, 0)$ возрастает.

Как видно из рис. За и 36, коротковолновая *В*полоса поглощения (Соре, $\lambda = 400-450$ нм) нелигандированных димеров (ZnHTPP)₂ и (ZnOEP)₂Ph расщеплена на две компоненты, что типично для большинства химических димеров порфиринов [35–41] и обусловлено экситонным взаимодействием сильных *В*-переходов ($\varepsilon \sim 3 \times 10^5$ M⁻¹ см⁻¹). При образовании пиридинатных комплексов расщепленные компоненты коротковолновой полосы Соре димеров (ZnHTPP)₂ и (ZnOEP)₂Ph также испытывают батохромный сдвиг ~520 и 740 см⁻¹ соответственно.

Спектральная картина экситонного расцепления (отношение интенсивностей компонент), наблюдаемая для этих димеров, имеет свою специфичность. Так, в димере (ZnOEP)₂Ph, имеющем

ОПТИКА И СПЕКТРОСКОПИЯ том 110 № 2 / 2011

объемные этильные заместители по В-положениям пиррольных колец, связующий молекулярный фенильный фрагмент расположен практически ортогонально по отношению к плоскостям взаимодействующих макроциклов [42], т.е. усиление сопряжения двух макроциклов с участием и фенильного спейсера в таком случае маловероятно. Следовательно, в димере (ZnOEP)₂Ph формирование полосы Соре обусловлено исключительно экситонными эффектами. В то же время для димера (ZnHTPP)₂ спектральная картина экситонного расшепления полосы Соре может быть обусловлена двумя причинами. Ранее [43] на основании сопоставления экспериментальных абсорбционных данных в растворах при 295 К и квантово-химических расчетов электронных спектров поглощения для различных конформаций димера (ZnTPP)₂ нами была обоснована преимущественная конформация данного димера, в которой фенильный спейсер и плоскости мономерных тетрапиррольных макроциклов расположены друг относительно друга под углом 60°. В этом случае частичное сопряжение молекулярных орбиталей (МО) фенильного связующего фрагмента с л-орбиталями тетрапиррольных макроциклов в димере (ZnHTPP)₂

должно сказаться на спектральной картине экситонного расшепления полосы Соре. Очевидно, что эффективность взаимодействия "через связь" должна существенно зависеть от угла межлу плоскостями фенильного спейсера и порфириновых макроциклов, поскольку при этом меняется степень перекрытия МО спейсера и мономерных субъединиц. Соответственно экстралигандирование пиридином этого димера может повлиять на характер электронного взаимолействия (coupling) МО фенильного связующего фрагмента и тетрапиррольных макроциклов за счет изменений как двугранного угла между плоскостью спейсера и порфириновыми макроциклами, так и локальной электронной плотности на мезоатомах углерода $(a_{2\mu}$ - и $e_{\sigma x}$ -орбитали), по которым осуществляется связь мономерных субъединиц. В результате спектральные изменения полосы Соре для димеров с жесткой структурой (ZnHTPP), и (ZnOEP), Ph при экстралиганлировании пирилином булут несколько отличаться.

Электронные спектры поглощения димера (ZnOEP)₂ с гибким молекулярным спейсером – СН₂-СН₂- и его пиридинатного комплекса приведены на рис. Зв. Обращает на себя внимание тот факт, что расщепление полосы Соре имеет разный характер в спектрах поглощения нелигандированного и комплексованного димеров. Так, в спектре поглощения пиридинатного комплекса димера наблюдаются большой красный сдвиг (~1700 см⁻¹) и четко выраженное экситонное расшепление ($\Delta v \sim 700 \text{ см}^{-1}$) полосы Соре. Такое поведение полосы Соре отражает более сложный характер конформационных изменений этого димера при экстралигандировании. Известно, что в жидких растворах при 295 К димер (ZnOEP)2 характеризуется конформационной лабильностью порфириновых макроциклов вокруг одиночной связи связующего мостика -СН₂-СН₂-. В этих условиях реализуется динамическое равновесие между иис-и транс-конформациями димера с изменением межцентрового расстояния от 5.5 до 10.6 А. Конформационная динамика этих димеров существенно зависит от температуры и природы растворителя, при этом энергетически наиболее выгодной при понижении температуры является транс-конформация [44]. Как следствие, при 295 К формирование полосы Соре такого димера отражает вклад обеих конформаций, различающихся энергией экситонных взаимодействий $V_{12} \sim (\mu_1 \mu_2 / r^3) f(\phi, \theta)$ [39, 45], зависящей от межцентрового расстояния r, угла между плоскостями тетрапиррольных макроциклов ф и относительной ориентации в взаимодействующих диполей ($\mu_1\mu_2$). Как было показано нами ранее [45], при экстралигандировании пиридином димера (ZnOEP), динамическое равновесие смещается в сторону увеличения вклада его транс-конформации, что приводит к значительному увеличению экситонного расщепления и росту силы осциллятора более длинноволнового перехода по сравнению с силой осциллятора коротковолнового перехода полосы Соре.

В случае димера (ZnOEChl)₂, в котором две молекулы Zn-октаэтилхлорина связаны таким же гибким спейсером -CH₂-CH₂-, наличие гидрированного пиррольного кольца и объемных этильных (-С2H5) заместителей вблизи связуюшего фенильного спейсера в обоих макроциклах (рис. 1ж) создает стерические затруднения и способствует смещению динамического конформашионного равновесия в сторону транс-конформации при 295 К даже без наличия экстралиганда [45, 46]. При этом установлено, что спектр поглощения данного димера лишь незначительно изменяется при экстралигандировании (рис. 3г). Отметим, что в спектрах поглощения димера (ZnOEChl)₂ наряду с расщеплением полосы Соре $(\Delta v = 900 \text{ см}^{-1})$ обнаруживается наличие двух компонент в области перехода Q(0, 0) в поглощении и флуоресценции (расщепление $\Delta v = 280 \text{ см}^{-1}$) (рис. 3г, область 600-650 нм). Такое расщепление полос поглощения Q(0, 0) отсутствует для мономезо-замещенного ZnOEChl-CH₃, а также для большинства химических димеров порфиринов с различными спейсерами [35-41]. Наличие расщепленных компонент в области перехода Q(0, 0)для (ZnOEChl), связано с экситонным взаимодействием длинноволновых электронных переходов компонент димера. В данном случае проявление экситонных эффектов расщепления становится возможным из-за роста на ~1.5 порядка коэффициентов поглощения полосы Q(0, 0) хлориновых субъединиц ($\epsilon_{622} = 10^5 \, \text{см}^{-1} \, \text{M}^{-1}$ в бензоле при 297 К), входящих в состав этого димера, по сравнению с димером (ZnOEP)₂ [21, 46].

Наконец, отметим, что у Zn-циклодимера (Zn-3¹,5¹-CD), связанного жестким связующим мостиком по шиклопентаноновым кольцам, из-за стерических взаимодействий исключена принципиальная возможность для конформационных перестроек в интервале температур 77-300 К. Этот димер характеризуется лишь одной устойчивой конформацией, имеющей практически ортогонально расположенные макроциклы с межцентровым расстоянием R = 10.6 Å в жидких растворах при 295 К [47]. В этом случае ортогональность макроциклов и отсутствие резонансных условий между ними (из-за неравнозначности циклопентаноновых колец (рис. 1к)) приводят к сильному ослаблению экситонных эффектов, а спектры поглощения Zn-циклодимера представляют собой сумму спектров мономерных форм его компонент, имеющих в своем составе неэквивалентные циклопентаноновые кольца. В этом случае слабое взаимное влияние π-электронных систем Znциклодимера приводит лишь к небольшому батохромному сдвигу электронных спектров его компонент ($\sim \Delta v = 30-60 \text{ сm}^{-1}$) по сравнению с соответствующими мономерами [48, 49]. Влияние пиридина на спектр поглощения (Zn-3¹,5¹-CD) индивидуально для каждой его половины и не отличается по своему характеру от его мономерных компонент. Поэтому спектральное поведение этого димера при комплексообразовании с пиридином не представлено на рис. 3.

Фотофизические свойства исследуемых соединений. В табл. 1 представлены спектральнолюминесцентные и фотофизические параметры исследуемых мезо-замещенных мономерных и димерных молекул Zn-тетрапиррольных соединений, а также их пиридинатных комплексов при 77 К. Данные этой таблицы показывают, что для всех исследованных пирилинатных комплексов мезо-замещенных мономерных молекул Zn-порфиринов и Zn-хлоринов в смеси растворителей МЦГ-пиридин (100:1) при 77 К наблюдается батохромное смещение длинноволновой полосы поглощения и флуоресценции. Обращает на себя внимание аномально большой батохромный сдвиг поглощения и флуоресценции в случае пиридинатных комплексов мономерной молекулы ZnHTPP (18 и 29 нм соответственно). Однако следует отметить, что образование пиридинатных комплексов слабо влияет на квантовый выход флуоресценции ф_г этих молекул при 77 К.

Сравнительный анализ экспериментальных данных, приведенных на рис. 3 (295 К) и в табл. 1, свидетельствует о том, что при понижении температуры до 77 К спектры поглошения и флуоресценции большинства некомплексованных Zn-coдержащих димеров также испытывают батохромный сдвиг. Наличие экстралиганда в димерах только усиливает данный эффект. Действительно, как следует из данных табл. 1, для пиридинатных комплексов этих димеров при 77 К характерно дальнейшее батохромном смещение полос поглощения Q(0, 0) и спектров флуоресценции. Однако при экстралигандировании димера (ZnOEP)₂ с гибким спейсером -CH2-CH2-, а также при переходе к 77 К полоса поглощения Q(0, 0) и спектр флуоресценции этого димера подвергаются гипсохромному сдвигу. Причина этого эффекта заключается в заметном смещении конформационного равновесия в сторону транс-конформации димера (ZnOEP)₂ как при экстралигандировании, так и при понижении температуры до 77 К [44].

Из табл. 1 следует, что наиболее чувствительными энергетическими характеристиками по отношению к экстралигандированию как *мезо*-замещенных мономеров, так и димеров при 77 К являются параметры состояния T_1 . Так, значения длительности (τ_{Ph}) и квантовых выходов (ϕ_{Ph}) фосфоресценции Zn-димеров в присутствии пиридина существенно уменьшаются, при этом с понижением энергии уровня T_1 – в ряду (ZnOEP)₂Ph \longrightarrow $Zn-3^1,5^1$ -CD \longrightarrow (ZnOEP)₂ \longrightarrow (ZnHTPP)₂ \longrightarrow (ZnOEChl)₂ эффективность сокращения τ_{Ph} и уменьшения ϕ_{Ph} падает от ~2.5 до нуля.

Как видно из табл. 1, сам процесс экстралигандирования исследуемых димеров пиридином не приводит к заметному понижению энергии их уровней Т₁ (максимум фосфоресценции практически не изменяется). Следовательно, тушащий эффект пиридина в этом случае не связан напрямую с ростом вероятностей безызлучательных процессов вследствие понижения энергии уровня Т₁ (фактор Франка--Кондона), а определяется другими причинами. Следует полагать, что высокочастотные обертоны колебаний молекул экстралигандов могут принимать участие в дополнительной дезактивации энергии электронного возбуждения состояний T_1 димеров, как это наблюдалось ранее в случае мономерных молекул ZnOEP [50]. Известно, что присоединение экстралиганда к центральному иону металла уменьшает притяжение π-электронов и способствует их большей делокализации по π-сопряженному макроциклу [51]. Вероятности интеркомбинационной конверсии определяются спин-орбитальной связью, включающей участие синглетных σπ*-состояний, формируемых связью центральный ион металла-азот пиррольного кольца [52]. Поскольку при экстралигандировании димеров взаимодействие Zn²⁺--- N ослабляется, это приводит к понижению энергии σπ*-состояний, т.е. к возрастанию спин-орбитальной связи и, как следствие, к возрастанию вероятностей безызлучательных интеркомбинационных переходов T₁ ~~ So. Наконец, внеплоскостная дисторсия димеров, связанная с выходом иона Zn²⁺ из плоскости макроцикла на 0.2-0.3 Å при экстралигандировании, может также усилить спин-запрещенбезызлучательные переходы вследствие ные перекрытия *n*-орбиталей атома азота с *n*-орбиталями тетрапиррольного макроцикла [17]. Очевидно, что все вышеперечисленные причины могут привести к заметному ускорению релаксационных процессов, вызванных усилением безызлучательной дезактивации состояния T₁Znсодержащих димеров при экстралигандировании их пиридином. Анализ данных, приведенных в табл. 1, показывает, что экстралигандирование димеров (ZnOEP)₂Ph, Zn-3¹,5¹-CD, (ZnOEP)₂ с относительно высоким энергетическим положением уровня T₁ и большим временем жизни фосфоресценции т_{Рh} приводит к заметному сокращению параметров триплетного состояния (ϕ_F и τ_{Ph}) этих соединений. У димеров (ZnHTPP)2 и (ZnO-EChl)₂ с низким энергетическим положением уровня T_1 и относительно коротким временем

жизни $\tau_{\rm Ph}$ собственная константа скорости безызлучательного интеркомбинационного перехода $k(T_1 \cdots S_0) = 1/\tau_{\rm Ph}$ изначально (вследствие большого значения фактора Франка-Кондона) достаточно велика. В этом случае дополнительный канал усиления дезактивации уровня T_1 этих соединений, связанный с экстралигандированием молекулы пиридина, становится малоэффективным.

Таким образом, можно утверждать, что влияние экстралигандирования на спектрально-кинетические и энергетические характеристики Znсодержащих димеров в целом подобно влиянию этого процесса на спектрально-люминесцентные и фотофизические параметры исходных *мезо*-замещенных мономерных молекул тетрапиррольных соединений, за исключением тех случаев, когда присоединение молекул экстралигандов к макроциклу приводит к существенным конформационным перестройкам димеров Zn-комплексов тетрапиррольных соединений.

Тушение возбужденных электронных состояний молекулярным кислородом

Мезо-замещенные мономерные молекулы и химические Zn-лимеры. Оптические свойства самособирающихся мультимолекулярных комплексов тетрапиррольных соединений (рис. 2д-2и), основанных на эффектах координационного взаимодействия химических Zn-лимеров с ди-(триада) или mempa-пиридилзамещенными (пентада) молекулами экстралигандов, подробно описаны нами в работах [21, 25, 53, 54]. Анализ спектральных свойств этих комплексов показал, что флуоресценция химических Zn-димеров в составе триад и пентад сильно потушена, в то время как в этих комплексах регистрируется сенсибилизированное свечение экстралигандов (хотя в последних свечение порфириновых экстралигандов испытывает сильное падение интенсивности и сокращение длительности). На основании экспериментальных данных и теоретических расчетов было обосновано, что после фотовозбуждения в ходе последующих релаксационных процессов (перенос энергии Zn-димер — экстралиганд, фотоиндуцированный перенос электрона или "дырки", рекомбинация электроно-дырочной пары) нижними возбужденными электронными состояниями мультипорфириновых комплексов являются уровень S_1 или уровень T_1 молекулы экстралиганда. Не останавливаясь на конкретном анализе механизмов и путей первичных фотоиндуцированных процессов, протекающих в этих комплексах и приводящих на финальной стадии к локализации энергии электронного возбуждения на экстралиганде (см., например, [53-56]), отметим лишь те фундаментальные вопросы, решение которых составило основу этой части исследований. 1. Какие субъединицы мультимолекулярных комплексов ответственны за процессы взаимодействия с молекулярным кислородом в жидких растворах? 2. Будут ли наблюдаться специфические отличия в процессах взаимодействия молекулярного кислорода с мономерными и димерными тетрапиррольными соединениями, с одной стороны, и с мультипорфириновыми комплексами, с другой? 3. Как влияет пространственное строение триадных и пентадного комплексов на контактные взаимодействия с молекулой кислорода (эффекты экранирования) и эффективность обменных процессов, приводящих к "кислородному тушению" возбужденных электронных состояний этих комплексов и фотосенсибилизированной генерации "синглетного кислорода"?

Вначале представляется уместным провести сравнительный анализ влияния экстралигандирования на константу скорости тушения состояния T_1 исходных Zn-содержащих *мезо*-замещенных мономерных молекул и димеров молекулярным кислородом. Известно, что молекулы Zn-порфиринов и Zn-хлоринов [14], а также их химические димеры [12] характеризуются относительно коротким временем жизни флуоресценции ($\tau_s^0 = 1.2-1.9$ нс), которая практически не тушится кислородом в жидких растворах при нормальном атмосферном давлении при 295 К.

Полученные данные по длительности флуоресценции т_лдля мезо-замещенных мономерных молекул, а также димеров Zn-порфиринов, Znхлоринов и их пирилинатных комплексов исследуемых соединений приведены в табл. 2. В этой же таблице приведены данные по длительности триплетных состояний τ_T и значения бимолекулярных констант скоростей тушения k_{T} , указывающие на специфичность кислородного тушения состояний Т₁ исследуемых соединений в условиях экстралигандирования. Из табл. 2 видно, что константа скорости k_тдля нелигандированных мезо-замещенных мономерных молекул увеличивается в ряду ZnHTPP \rightarrow ZnOEP-Ph \rightarrow ZnOEP-CH₃ \rightarrow → ZnOECh1-CH₃, а для димеров в ряду $(ZnHTPP)_2 \longrightarrow (ZnOEP-Ph)_2 \longrightarrow (ZnOEP)_2 \longrightarrow$ \rightarrow (ZnOEChl)₂ \rightarrow (Zn-3¹,3¹-CD). Известно, что тушение состояния Т₁ тетрапиррольных соединений (Р) молекулярным кислородом происходит в столкновительном донорно-акцепторном комплексе [Р+...О₂] и коррелирует с одноэлектронным потенциалом окисления E_{1/2} порфиринов и хлоринов [10, 12]. В этом случае последовательный рост константы k_T в представленных рядах качественно отражает тенденцию понижения потенциалов окисления $E_{1/2}^{\text{ox}}$ для этих соединений, обусловленную присутствием в макроциклах электронодонорных молекулярных фрагментов (алкильные мезо-заместители, гидрирование пирро-

Соединение	т _{.S} , нс	τ _{<i>T</i>} , нс	$k_T \times 10^9$, M ⁻¹ c ⁻¹	k _T (лиг)/k _T	
	M	езо-замещенные моном	еры	· · · · · · · · · · · · · · · · · · ·	
ZnHTPP ^a	1.9	570	1.0	1.0	
	1.4	550	1.0		
ZnOEPPh	1.4	340	1.6	0.95	
	1.4	370	1.5		
ZnOEPCH ₃	1.7	330	1.7	1.05	
	1.6	300	1.8		
ZnOEChl-CH ₃	1.2	290	1.9	1.05	
	1.2	270	2.0		
	1	Химические димеры			
(ZnOEP) ₂ Ph	1.2	490	1.1	1.0	
	1.2	490	1.1		
(ZnHTPP) ₂	1.5	570	1.0	1.1	
	1.4	500	1.1		
Zn-3 ¹ ,5 ¹ -CD	2.5	320	1.7	1.1	
	2.5	300	1.9		
(ZnOEChl) ₂	1.2	350	1.6	1.2	
	1.2	290	1.9		
(ZnOEP) ₂	1.3	440	1.2	1.6	
	1.2	290	1.9	· · · · · · · · · · · · · · · · · · ·	

Таблица 2. Времена жизни возбужденных состояний S_1 и T_1 и константы скорости тушения молекулярным кислородом состояния $T_1(k_T)$ мезо-замещенных мономерных молекул, а также химических димеров Zn-порфиринов, Zn-хлоринов и их пиридинатных комплексов при 295 К

^а Верхняя строка относится к толуолу, а нижняя к смеси растворителей толуол-пиридин (100:1).

лов, наличие циклопентаноновых колец) [10, 12, 20].

Из этой таблицы видно, что при добавлении к толуольному раствору ~1% пиридина наблюдаются изменения константы скорости тушения триплетного состояния k_T как для исходных Zn-комплексов *мезо*-замещенных мономеров, так и для химических димеров. В то время как для исходных мономерных молекул изменения k_T при экстралигандировании составляют $\pm 5\%$ и находятся в пределах ошибки измерений, для химических димеров наблюдается систематический рост (10– 60%) константы скорости тушения k_T .

Данные, представленные в табл. 2, свидетельствуют о том, что экстралигандирование оказывает минимальное влияние на константу скорости k_T в тех случаях, когда в качестве связующего фрагмента в химических димерах (ZnOEP)₂Ph и (ZnHTPP)₂ находится электроноакцепторный фенильный (Ph) спейсер. Можно полагать, что небольшое уменьшение потенциалов окисления $E_{1/2}^{0x}$ при экстралигандировании Zn-порфиринов пиридином (0.02–0.11 В [40]) недостаточно для заметного экспериментально регистрируемого

ОПТИКА И СПЕКТРОСКОПИЯ том 110 № 2 2011

роста константы скорости тушения k_T в случае фенилсодержащих химических димеров. Можно полагать, что наличие электроноакцепторных фенильных колец (от одного в (ZnOEP)2Ph до четырех в (ZnHTPP)₂), увеличивающих потенциал окисления Zn-порфирина, "сглаживает" электронодонорное влияние пиридина, которое заметно проявляется в росте k_T в случае димеров (ZnOEP)2 и (ZnOEChl)2. Из этой таблицы видно, что максимальное влияние экстралигандирования на константу скорости кислородного тушения k_T (рост ~60%) наблюдается у этан-бис-порфирина (ZnOEP)2, имеющего гибкий электронодонорный связующий мостик -CH2-CH2-. В этом случае максимальное влияние пиридина на константу скорости k_T может быть связано как с дальнейшим уменьшением потенциала окисления для этого димера при экстралигандировании, так и с изменением его равновесной конформации. В этом случае, как уже отмечалось ранее, после экстралигандирования пиридина наиболее вероятной становится транс-конформация димера с развернутыми макроциклами ($R_{\rm ДA} = 10.6$ Å), при которой в результате миграции энергии между одноименными компонентами димера суще-

САГУН и др.

Соединение	т _{<i>S</i>} , нс	τ_S^0 , HC	$k_S \times 10^9$, M ⁻¹ c ⁻¹	τ ₇ , нс	$k_T \times 10^9$, M ⁻¹ c ⁻¹	γΔ
Пиридил-замещенные	свободны	е основан	ия порфиринов (з	кстрали	анды)	L
$H_2P(m-Pyr)_2(Ph)_2$	8.7	11.3	10.1	270	1.4	0.65
$H_2P(m^Pyr)_2(iso-PrPh)_2$	8.7	11.4	10.5	260	1.5	0.68
$H_2P(p^Pyr)_2(Ph)_2$	8.7	11.2	10.0	290	1.3	0.66
$H_2P(m-Pyr)_4$	8.3	10.5	9.7	290	1.3	0.60
	[′] Триад	ные комп.	лексы		1	1
$(ZnHTPP)_2 \otimes H_2P(m-Pyr)_2(Ph)_2$	8.3	10.0	7.9	400	0.9	0.65
$(ZnHTPP)_2 \otimes H_2P(m^Pyr)_2(iso-PrPh)_2$	8.4	10.2	8.1	380	1.0	0.65
$(ZnOEP)_2Ph \otimes H_2P(m^Pyr)_2(iso-PrPh)_2$	7.7	9.3	8.5	370	1.0	0.68
$(ZnHTPP)_2 \otimes H_2P(p^Pyr)_2(Ph)_2$	8.2	10.5	10.0	330	1.2	0.68
	1	Пентада	I I		I	I
$2(ZnOEP)_2Ph \otimes H_2P(m-Pyr)_4$				680	0.5	0.64

Таблица 3. Времена жизни и бимолекулярные константы скорости тушения молекулярным кислородом возбужденных синглетных (k_S) и триплетных (k_T) состояний индивидуальных молекул пиридилзамещенных свободных оснований порфиринов (экстралиганды) и в составе триадных и пентадного комплексов в метилциклогексане при 295 К, а также квантовые выходы генерации синглетного кислорода (γ_A)

 τ_S и τ_T – времена жизни возбужденных состояний S_1 и T_1 в присутствии молекулярного кислорода, τ_S^0 – время жизни флуоресценции в дегазированном растворе.

ственно возрастает его сечение взаимодействия с молекулярным кислородом. Не исключено также, что исходная частично развернутая равновесная конформация димера (ZnOEChl)₂, обусловленная стерическими взаимодействиями объемных заместителей гидрированных пиррольных колец, принадлежащих соседним половинкам, также может частично измениться в сторону *транс*-конформации в результате взаимодействия этого димера с пиридином.

Таким образом, комплексообразование химических димеров Zn-порфиринов и Zn-хлоринов с пиридином не оказывает существенного влияния на длительность возбужденного состояния S_1 , но сказывается на сокращении квантового выхода и длительности фосфоресценции, величина которого зависит от энергетического положения уровня T_1 . В случае тушения возбужденного триплетного состояния молекулярным кислородом эффекты экстралигандирования зависят от природы связующего фрагмента и конформационной динамики химических димеров.

Триалные и пенталный комплексы. В табл. 3 представлены экспериментальные результаты, полученные при исследовании процессов взаимодействия триадных и пентадного комплексов мультипорфириновых соединений с молекулярным кислородом в МЦГ при 295 К. Как уже отмечалось выше, было показано [53–56], что при возбуждении в области поглощения димерной компоненты в триадных и пентадных мультипорфириновых комплексах в жидких растворах при 295 К

реализуются два конкурирующих процесса — эффективный перенос энергии электронного возбуждения Zn-димер --- экстралиганд и фотоиндуцированный перенос электрона с димера на пиридилзамещенную молекулу свободного основания. Поэтому для проведения сравнительного анализа процессов кислородного тушения в табл. 3 приведена информация для большинства мономерных пиридилзамещенных молекул экстралигандов, участвующих в формировании мультипорфириновых комплексов в жидких растворах. Из анализа этих данных следует, что тушение возбужденных синглетных и триплетных состояний исследуемых комплексов имеет свои особенности. Так, для большинства триадных комплексов характерно заметное по сравнению с мономерными экстралигандами уменьшение констант скоростей кислородного тушения k_S (~25%) и k_T (до 50%), которое зависит от строения триады. Так, минимальное значение констант тушения k_s и k_T наблюдается для триады (ZnHTPP)₂ \otimes H₂P(m-Pyr)₂Ph₂, а максимальное – в случае триады $(ZnHTPP)_2 \otimes H_2 P(p^Pyr)_2(Ph)_2$, параметры тушения возбужденных состояний которой практически совпадают с аналогичными характеристиками индивидуального экстралиганда, входящего в состав этой триады. Принимая во внимание тот экспериментальный факт, что значения k_s и k_T зависят от строения триадного комплекса, можно полагать, что одной из возможных причин этого являются эффекты экранирования, при которых π-сопряженная система молекулы экстралиганда

в составе триады имеет некоторые стерические затруднения для контакта с молекулярным кислородом. Действительно, химический димер (ZnHTPP)₂ или (ZnOEP)₂-Ph, входящий в состав исследуемых триад, ограничивает свободный доступ кислорода к возбужденной молекуле экстралиганда и существенно уменьшает их сечение взаимодействия. Данные табл. 3 показывают, что в случае "открытой" триады $(ZnHTPP)_2 \otimes H_2 P(p^Pyr)_2(Ph)_2$ (рис. 23), характеризующейся минимальным экранирующим эффектом и хорошим доступом кислорода к экстралиганду, константы скорости тушения k_s и k_r практически идентичны константам скорости тушения возбужденных электронных состояний S₁ и T₁ индивидуального экстралиганда H₂P(p[^]Pyr)₂(Ph)₂. Для "закрытой" триады (ZnHTPP)₂Ph⊗H₂P(*m*-Pyr)₄ (рис. 2д), в которой контакт кислорода и возбужденной молекулы экстралиганда наиболее затруднен, характерно заметное уменьшение констант скоростей тушения k_s и k_r. В случае "заслоненных" триад (ZnHTPP)₂ \otimes H₂P(m[^]Pyr)₂(iso-PrPh)₂ или $(ZnOEP)_{2}Ph\otimes H_{2}P(m^{Pyr})_{2}(iso-PrPh)_{2}$ (рис. 2e и 2ж) константы скоростей тушения k_S и k_T имеют промежуточные значения.

В соответствии с этой интерпретацией можно утверждать, что большое время жизни ($\tau_T = 680$ нс) и соответственно минимальное значение константы скорости "кислородного" тушения состояния T_1 пентады 2(ZnOEP)₂Ph \otimes H₂P(*m*-Pyr)₄ по сравнению с исследуемыми триадными комплексами (табл. 3) обусловлены максимальным экранирующим эффектом, затрудняющим доступ кислорода к экстралиганду именно для пентады (рис. 2и). Следует отметить, что в случае пентадного комплекса измерения константы скорости тушения k_{S} не проводились, поскольку в результате миграции энергии и последующего энергетически благоприятного фотоиндуцированного переноса "дырки" с возбужденной молекулы экстралиганда на Zn-димер и образованием состояния с переносом заряда по схеме $[2(ZnO\Theta\Pi)_{2}Ph)^{*}\otimes H_{2}P(m-Pyr)_{4}] \longrightarrow [2(ZnO\Theta\Pi)_{2}Ph)\otimes$

 \otimes H₂P(*m*-Pyr)₄^{*}] \longrightarrow [2(ZnOЭП)₂Ph)⁺ \otimes H₂P(*m*-Pyr)₄⁻] флуоресценция этого комплекса при 295 К сильно потушена [25, 54].

Наконец, как видно из данных, приведенных в табл. 3, исследуемые мультипорфириновые комплексы обладают достаточно высокими значениями квантовых выходов генерации синглетного кислорода γ_{Δ} . При этом экранирование экстралигандов молекулами димеров, уменьшающее константы скорости кислородного тушения k_S и k_T , практически не влияет на значения квантовых выходов γ_{Δ} . Действительно, стерически затрудненный доступ кислорода к экстралиганду для

мультипорфириновых ансамблей в экспериментальном смысле равносилен росту вязкости исследуемого растворителя, что и отражается в численных значениях бимолекулярных констант тушения k_S и k_T . В то же время относительно большое время жизни состояния Т₁ экстралиганла в жилких растворах при 295 К обеспечивает возможность диффузионного контакта практически всех триплетновозбужденных молекул экстралиганда и кислорода. Кроме того, высокие экспериментальные значения квантовых выходов генерации синглетного кислорода ул служат доказательством того, что низшим возбужденным электронным состоянием мультипорфириновых комплексов (в том числе и в пентаде) в жидких растворах при 295 К является триплетное состояние. Следует отметить, что аналогичные эффекты, связанные с уменьшением константы скорости кислородного тушения k_T при неизменном квантовом выходе генерации синглетного кислорода ул наблюдались ранее при исследовании характера и мест локализации (типы сайтов) водорастворимого катионного 5,10,15,20-тетракис(4метилпиридил)порфирина (H₂TMPyP⁴⁺) в комплексах с ДНК [57], а также хлорина е₆ с полимерным носителем поливинилпирролидоном (PVP) [58] и были объяснены затрудненным доступом кислорода к встроенной молекуле тетрапиррольного макроцикла.

Таким образом, на основании исследования спектрально-кинетических параметров мультипорфириновых комплексов установлено, что экстралигандирование пиридином димеров Zn-тетрапирролов не приводит к заметному понижению энергии триплетного уровня $E(T_1)$. Показано, что усиление безызлучательной дезактивации энергии электронного возбуждения T₁ ---- S₀ димеров Zn-порфиринов в этом случае обусловлено не только ростом фактора Франка-Кондона. Обсуждены механизмы тушащего действия экстралиганда, связанные с акцептирующей ролью высокочастотных обертонов колебаний молекул экстралигандов, усилением спин-орбитального взаимодействия из-за понижения энергии σπ*состояний и внеплоскостной дисторсией димеров, вызванной выходом иона Zn²⁺ из плоскости тетрапиррольного макроцикла. Тушение триплетных состояний экстралигандированных димеров Zn-порфиринов молекулярным кислородом в жидких растворах при 295 К зависит от характера донорно-акцепторных взаимодействий с пиридином и жесткости связующего молекулярного фрагмента. Длительности возбужденных электронных состояний S₁ и T₁ мультипорфириновых комплексов, а также тушение этих состояний молекулярным кислородом зависят от их строения и состава, а также от стерических препятствий, создаваемых Zn-содержащими димерами (эффекты экранирования) для контактных взаимодействий π -сопряженной системы свободного основания (экстралиганда) с молекулярным кислородом. При этом эффекты экранирования экстралигандов молекулами Zn-содержащих димеров, уменьшающие константы скорости кислородного тушения k_S и k_T , практически не влияют на значения квантовых выходов генерации синглетного кислорода γ_A .

Эти факты следует иметь в виду при формировании и отборе многокомпонентных систем, обеспечивающих эффективный перенос энергии и/или электрона, а также при анализе темновых и фотоиндуцированных процессов, протекающих с участием мультипорфириновых комплексов и молекулярного кислорода в природных условиях (фотодинамическая терапия и генерация синглетного кислорода в опухолях и тканях).

Авторы благодарят С.М. Бачило и Д.А. Старухина за помощь в измерении квантового выхода генерации синглетного кислорода, а также выражают искреннюю благодарность ГКПНИ "КМС-17", "Нанотех 6.18" и БРФФИ (проект №Ф10СО-005) за частичную финансовую поддержку.

СПИСОК ЛИТЕРАТУРЫ

- Ogoshi H., Mizutani T., Kuroda Y. // The Porphyrin Handbook / Ed. by Kadish K.M., Smith K.M., Guilard R. N.Y.: Academic Press, 2000. V. 6. P. 1–340.
- Tour J.M. // Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming. Singapore: World Scientific Publishing Co. Pte. Ltd, 2003. P. 1–352.
- Visser J., Katsonis N., Vicario J., Ferinda B.L. // Langmuir. 2009. V. 25. № 10. P. 5980–5985.
- Senge M.O., Fazekas M., Notaras E.G.A., Blau W.J., Zawadzka M., Locos O.B., Ni Mhuircheartaigh E.M. // Advanced Materials. 2007. V. 19. № 19. P. 2737–2774.
- Allegrucci A., Lewcenko N.A., Mozer A.J., Dennany L., Wagner P., Officer D.L., Sunahara K., Mori S., Spiccia L. // Energy Environ. Sci. 2009. V. 2. P. 1069– 1073.
- 6. Moore T.A., Moore A.L., Gust D. // Phil. Trans. R. Soc. Lond. B. 2002. V. 357. № 1426. P. 1481–1498.
- Gust D., Moore T.A. // The Porphyrin Handbook / Ed. by Kadish K.M., Smith K.M., Guilard R. N.Y.: Academic Press, 2000. V. 8. P. 153-190.
- Imahori H., Mori Y., Matano Y. // J. Photochem. Photobiol. C. 2003. V. 4. № 1. P. 51–83.
- Кузьмицкий В.А., Соловьев К.Н., Цвирко М.П. // Порфирины: спектроскопия, электрохимия, применения / Под ред. Ениколопяна Н.С. М.: Наука, 1987. Гл. 1. С. 7–126.
- Ганжа В.А., Джагаров Б.М., Сагун Е.И. // Фотобиология и мембранная биофизика / Под ред. Волотовского И.Д. Минск: Технопринт, 1999. Ч. III. Гл. 14. С. 244-267.

- 11. Зенькевич Э.И., Шульга А.М., Черноок А.В., фон Борцисковски К., Ремпель У. // ЖПС. 1995. Т. 62. № 2. С. 93-110.
- 12. Сагун Е.И., Ганжа В.А., Джагаров Б.М., Шульга А.М. // Хим. физика. 1991. Т. 10. № 4. С. 477-484.
- Nappa M., Valentine J.S. // J. Amer. Chem. Soc. 1978.
 V. 106. № 10. P. 5075-5080.
- Кнюкшто В.Н., Шульга А.М., Сагун Е.И., Зенькевич Э.И. // ЖПС. 1998. Т. 65. № 6. С. 900-907.
- Sanders J.K.M., Bampos N., M. Watson Z.C., Kim H.-J. et al. // The Porphyrin Handbook / Ed. by Kadish K.M., Smith K.M., Guilard R. N.Y.: Academic Press, 2000. V. 3. P. 348-350.
- 16. Satake A., Kobuke Y. // Tetrahedron. 2005. V. 61. P. 13-41.
- Knyukshto V.N., Shulga A.M., Zenkevich E.I., Sagun E.I., Bachilo S.M. // Chem. Phys. Lett. 1998. V. 297. № 1-2. P. 97-108.
- Кнюкшто В.Н., Сагун Е.И., Шульга А.М., Бачило С.М., Зенькевич Э.И. // Хим. физика. 1999. Т. 18. № 5. С. 30-39.
- Zenkevich E.I., Knyukshto V.N., Sagun E.I., Shulga A.M., Bachilo S.M. // J. Fluorescence. 2000. V. 10. № 1. P. 55-68.
- Майрановский В.Г. // Порфирины: спектроскопия, электрохимия, применения / Под ред. Ениколопяна Н.С. М.: Наука, 1987. Гл. 2. С. 127–181.
- Chernook A.V., Shulga A.M., Zenkevich E.I., Rempel U., von Borczyskowski C. // J. Phys. Chem. 1996. V. 100. № 5. P. 1918-1926.
- 22. Smith K.M., Busset G.M.F., Bushell M.J. // Bioorg. Chem. 1980. V. 9. P. 1-6.
- Шульга А.М., Пономарев Г.В. // Химия гетероцикл. соед. 1988. № 3. С. 339-341.
- 24. Пономарев Г.В., Шульга А.М. // ДАН СССР. 1983. Т. 281. № 2. С. 365-367.
- Chernook A.V., Rempel U., von Borczyskowski C., Zenkevich E.I., Shulga A.M. // Chem. Phys. Lett. 1996. V. 254. P. 229-241.
- 26. Зенькевич Э.И., Сагун Е.И., Кнюкшто В.Н., Шульга А.М., Миронов А.Ф., Ефремова О.А., Боннет Р., Кассем М. // ЖПС. 1996. Т. 63. № 4. С. 599-612.
- Bachilo S.M. // J. Photochem. Photobiol. A. 1995. V. 91. P. 111–115.
- Murrov S.L, Carmichael I., Hug G.L. // Handbook of Photochemistry. N.Y.-Basel-Hong Kong: Marcel Deccer Inc., 1993. P. 269–278.
- 29. Ганжа В.А., Гуринович Г.П., Джагаров Б.М., Егорова Г.Д., Сагун Е.И., Шульга А.М. // ЖПС. 1989. Т. 50. № 4. С. 618-623.
- 30. Kim H.-J., Bampos N., Sanders J.K.M. // J. Amer. Chem. Soc. 1999. V. 121. № 35. P. 8120-8121.
- Slone R.V., Hupp J.T. // Inorg. Chem. 1997. V. 36. № 24. P. 5422-5423.
- Rempel U., Meyer S., von Maltzan B., von Borczyskowski C. // J. Luminesc. 1998. V. 78. P. 97– 110.
- 33. Spellane P.J., Gouterman M., Antipas A., Kim S., Liu Y.C. // Inorg. Chem. 1980. V. 19. № 2. P. 386-391.

ОПТИКА И СПЕКТРОСКОПИЯ том 110 № 2 2011

- 34. Senge M.O. // J. Photochem. Photobiol. B. 1992. V. 16. P. 3–36.
- 35. Rempel U., von Maltzan B., von Borczyskowski C. // J. Luminesc. 1992. V. 53. P. 175-178.
- Osuka A., Maruyama K., Mataga N. et. al. // Chem. Phys. Lett. 1991. V. 181. P. 413–418.
- Salabert I., Tran-Thi T.H., Ali H., Van-Lier J., Houde D., Keszei E. // Chem. Phys. Lett. 1994. V. 223. № 44. P. 313-317.
- 38. Гуринович Г.П., Зенькевич Э.И., Сагун Е.И., Шульга А.М. // Опт. и спектр. 1984. Т. 56. В. 6. С. 1037-1043.
- 39. Гуринович Г.П., Зенькевич Э.И., Шульга А.М., Сагун Е.И., Суйсалу А. // ЖПС. 1984. Т. 41. № 3. С. 446-455.
- 40. Gust D., Moore T.A., Moore A.L., Kang H.K., DeGraziano J.M., Liddell P.A., Seely G.R. // J. Phys. Chem. 1993 V. 97. P. 13637–13642.
- Кузьмицкий В.А., Гаель В.И. // ЖПС. 1995. Т. 62.
 № 2. С. 164–170.
- Кнюкшто В.Н., Сагун Е.И., Шульга А.М., Бачило С.М., Зенькевич Э.И. // Опт. и спектр. 2000. Т. 88. №2. С. 241-254.
- 43. Авилов И.В., Зенькевич Э.И., Филатов И.В., Шульга А.М. // ЖПС. 2003. Т. 70. № 2. С. 230—236.
- Зенькевич Э.И., Шульга А.М., Черноок А.В., Сагун Е.И., Гуринович Г.П. // Хим. физика. 1989. Т. 8. № 6. С. 842-853.
- 45. Авилов И.В., Филатов И.В., Зенькевич Э.И., Шульга А.М. // ЖПС. 2001. Т. 68. № 1. С. 16—23.
- 46. Зенькевич Э.И., Старухин А.С., Шульга А.М. // ЖПС. 1999. Т. 66. № 4. С. 500-504.
- 47. Зенькевич Э.И., Шульга А.М., Сагун Е.И., Черноок А.В., Гуринович Г.П. // ЖПС. 1985. Т. 43. № 3. С. 455-461.

- 48. Зенькевич Э.И., Шульга А.М., Черноок А.В., Гуринович Г.П. // ЖПС. 1986. Т. 45. № 6. С. 984– 991.
- Зенькевич Э.И., Черноок А.В., Шульга А.М., Сагун Е.И., Гуринович Г.П. // Хим. физика. 1989. Т. 8. № 7. С. 891-901.
- 50. Градюшко А.Т., Дворников С.С., Кнюкшто В.Н., Соловьев К.Н. // Опт. и спектр. 1978. Т. 45. В. 6. С. 1097-1101.
- Clark R.H., Hotchandani S., Jaganathan S.P., Leblanc R.M. // Photochem. Photobiol. 1982. V. 36. P. 575-579.
- 52. McGlynn S.P., Azumi T., Kinoshita M. // Molecular Spectroscopy of the Triplet State / Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1969. Ch. 8. P. 305– 348.
- 53. Сагун Е.И., Зенькевич Э.И., Кнюкшто В.Н., Шульга А.М., Ивашин Н.В. // Опт. и спектр. 2009. Т. 107. № 6. С. 1011–1025.
- 54. Сагун Е.И., Зенькевич Э.И., Кнюкшто В.Н., Шульга А.М., Ивашин Н.В. // Опт. и спектр. 2010. Т. 108. № 4. С. 590-607.
- Bachilo S., Willert A., Rempel U., Shulga A., Zenkevich E., von Borczyskowski C. // J. Photochem. Photobiol. A. 1999. V. 126. P. 99–112.
- Zenkevich E.I., Willert A., Bachilo S.M., Rempel U., Kilin D.S., Shulga A.M., von Borczyskowski C. // Mater. Sci. Eng. C. 2001. V. 18. № 1–2. P. 99–111.
- Kruk N.N., Dzhagarov B.M., Galievsky V.A., Chirvony V.S., Turpin P.-Y. // J. Photochem. Photobiol. B. 1998. V. 42. № 3. P.181–190.
- Isakau H.A., Parkhats M.V., Knyukshto V.N., Dzhagarov B.M., Petrov E.P., Petrov P.T. // J. Photochem. Photobiol. B. 2008. V. 92. P. 165-174.