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Unmanned aerial vehicles (UAVs) are increasingly used in military and scientific research. Some miniaturized 
UAVs rely entirely on the global positioning system (GPS) for navigation. GPS is vulnerable to accidental or deliberate 
interference that can cause it to fail. It is not unusual, even in a benign environment, for a GPS outage to occur for pe-
riods of seconds to minutes. For UAVs relying solely on GPS for navigation such an event can be catastrophic. This 
article proposes an extended Kalman filter approach to estimate the location of a UAV when its GPS connection is lost, 
using inter-UAV distance measurements Increasing the accuracy of coordinate’s determination is one of the most cru-
cial tasks of the modern UAV navigation. This task can be solved by using different variants of integration of navigation 
systems. One of the modern variants of integration is the combination of GPS/GLONASS-navigation with the extended 
Kalman filter, which estimates the accuracy recursively with the help of incomplete and noisy measurements. Currently 
different variations of extended Kalman filter exist and are under development, which include various number of vari-
able states [1]. This article will show the utilization efficiency of extended Kalman filter in modern developments.

Keywords: Kalman filter, GPS, coordinates UAV, mathematical modeling, aerial vehicle, visual odometry, projective ge-
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Theory analysis
The integration of observation channels in con-

trol systems of objects subjected to perturbations 
and measurement errors of the motion is based on 
on the observations control theory started in the 
early 1960s. The first works on this topic were 
based on the simple Kalman filter property, namely: 
the possibility of determining the root-mean-square 
estimation error in advance, without observations, 
by solving the Riccati equation for the error covari-
ance matrix [2]. The development of this method-
ology allowed solving problems with a combina-
tion of discrete and continuous observations for 
stochastic systems of discrete-continuous type. At 
the same time, methods were developed for solving 
problems with constraints imposed on the compo-
sition of observations, temporal and energy con-
straints both on separate channels and on aggre-
gate. For a wide class of problems with convex 
structure, necessary and sufficient conditions for 
optimality were obtained, both in the form of dy-
namic programming equations and the generalized 
maximum principle, which opens the possibility of 
a numerical solution. The tasks of integrating sur-
veillance and control systems for UAVs open a new 
wide field of application of the observation control 

methods, especially when performing autonomous 
flight tasks. One of the most important problems is 
the detection of the erroneous operation of individ-
ual observation subsystems, in which the solution 
of navigational tasks should be redistributed or 
transferred to backup subsystems or other systems 
operating on other physical principles [3].

A typical example: navigation through satel-
lite channels such as global positioning system 
(GPS), which is quite reliable in simple flight con-
ditions, but in a complex terrain (mountains, 
gorges), it is necessary to use methods to deter-
mine your position with the help of other systems 
based, for example, on landmarks observed either 
with optoelectronic cameras, or radar.

Here the serious problem of converting the 
signals of these systems into data suitable for nav-
igation arises. The human-operator copes with this 
task on the basis of training. That is the serious 
problem in computer vision area and it is one of 
the mainstream in the UAV autonomous flight. 
Meanwhile, the prospects for creating artificial in-
telligence systems of this level for UAV applica-
tions are still far from reality.

At the same time, the implementation of sim-
ple flight tasks, such as either access to the aerial 
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survey area or tracking the reference trajectory 
the organization of data transfer in conditions of 
limited time and energy storage and even landing, 
are quite accessible for performing UAVs in the 
autonomous mode with reliable navigation aids. 

Unmanned aerial, land-based and underwa-
ter-based vehicles that perform the autonomous 
missions use, as a rule, an on-board navigation sys-
tem supplemented by sensors of various physical 
nature. At the same time, unlike remote control 
systems in which these sensors present information 
in the form as operator-friendly as possible, the 
measurement results should be converted into the 
input signals of the control system, which requires 
other approaches. This is especially evident in the 
example of an optical or optoelectronic surveillance 
system, whose purpose in remote control mode is 
to provide the operator with the best possible im-
age of the surrounding terrain. At the same time, in 
an autonomous flight, the observing system should 
be able to search for the characteristic objects in 
the observed landscape and give the control system 
their coordinates and estimate the distances be-
tween them. Of course, the issue of providing an 
exellent image and determining the metric proper-
ties of the observed images are connected, and in 
no case cancel one another. However, what a hu-
man operator does automatically basing on a suffi-
ciently high-quality image of the terrain, the read-
ings of other sensors and undoubtedly on previous 
experience, the control system algorithm must do 
by using data from video and other systems, with 
the same accuracy as the human operator [5].

Mathematical Model Construction
In the given example we will talk about the UAV 

horizontal motion, in other words, we will look 
through the problem of 2d localization [2]. In our 
case, this is justified by the facts that for many sit-
uations that are practically encountered, the UAV 
can remain at about the same height. This suppo-
sition is widely used to simplify the modeling of 
aircraft dynamics [2]. Dynamic UAV model is 
given by the following system of equations:
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where {x(t), y(t)} are the UAV coordinates in hor-
izontal plane as the function of time, h(t) is the 
UAV direction, w(t) is the UAV angular velocity, 
and v(t) is the UAV actual velocity, ew(.) and ev(.) 
functions are constant.

They are mutually independent with the cer-
tain covariances E[ew(t) ew(S)] and E[ev(t) ev(S)] 
equal to Qwδ(t – s) and Qvδ(t – s) respectively and 
are used for modeling of the UAV acceleration 
caused by the wind, pilots’ maneuvers, etc. Qu and 
Qv values are the derivatives of the UAV maxi-
mum angular velocity and measured values of the 
UAV linear velocity variation δ is the Kronecker 
sign.

The given system of equations is approximate 
because of nonlinearity of the model and the 
noise. The simplest way of approximation here is 
the approximation by Euler method. The discrete 
model of the dynamic UAV motion system is 
shown below.
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where qk = [xk, yk, hk, wk, vk] is the discrete state 
vector of the Kalman filter, which allows one to 
approximate the value of the continuous state vec-
tor. Dtk is the time interval between k and k + 1 
measurements. {ew, k} and {ev, k} is the sequences 
of values of white Gaussian noise with zero mean 
value.

The covariance matrix for the first sequence is 
as follows [11]:

E{ew, kew, j} = QwDtkδkj

Analogically, for the second sequence is 

E{ev, kev, j} = QvDtkδkj

Performing the corresponding substitutions in 
the system equations (2), we obtain:
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The {ϒw, k} and {ϒv, k} sequences are mutu-
ally independent. They are also the sequences of 
values of white Gaussian noise with zero mean 
value and the Qw and Qv covariance matrixes re-
spectively. The advantage of this configuration 
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is that is shows the discrete noise changing in 
the interval between each measurement. As a re-

sult, we have the following discrete dynamic 
model [8]:
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The equation for dk is as follows:
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where x and y are the UAV coordinates at the k-time 
and ed,k is the Gaussian sequence of random pa-
rameters with zero mean value which is used to 
specify the error.

The given sequence is supposed to be inde-
pendent from {ew, k} and {ev, k}.

The equations (3) and (4) serve as a basis for 
assessing the location of the UAV, where the coor-
dinates are obtained with the help of the Extended 
Kalman filter. Simulating the failure of navigation 
systems regarding this type of filter shows its sig-
nificant effectiveness [9].

To be clearer we will give a simple example. 
Let an UAV fly at uniformly accelerated speed, 
with some constant a-acceleration.

 1 ,t t tx x tdt+ = + a + δ   (6)

where x is the UAV coordinate at the t – time and 
δ is a random value.

During the flight, the following GPS data 
were collected: time, geocentric latitude, geocen-
tric longitude, altitude time of arrival, pulse width, 
signal frequency and amplitude. The longitude, 
latitude and height (LLH) coordinates recorded 
by the UAV are not well suited for navigation and 
tracking problems because linear motion becomes 
non-linear in these coordinates. In comparison, 
a local coordinate system whose X and Y axes are 
in the local horizon and Z axis points to the local 
Zenith is much better suited and is the industry 
standard. Therefore, the geocentric latitude and 
longitude location information is first converted 
into a local coordinate system, which is shown in 
Figure 1. X’Y’Z’ is the local coordinate system. 
The origin of the local coordinate system is ran-
domly chosen to be the starting location of UAV. 
In the figure, j and g are the geocentric latitude 
and longitude respectively. j is the geodetic lati-
tude [12]. Refer to [13] for a detailed description 
on how to convert the LLH coordinates into local 
coordinates.

Let us suppose that we have a GPS-sensor, 
which receives the data about the UAV location. 
Let us perform the result of the modeling of this 
process through MATLAB.

Simulation
At the present time, the UAV are not equipped 

to determine inter-UAV distances; hence, as indi-
cated in the introduction, loss of a GPS connec-
tion is likely currently to be fatal. For this reason, 
the real world data we use is entirely data ob-
tained when UAV do actually have a GPS connec-
tion. From this data, we are able to simulate loss 
of a GPS connection and acquisition of inter-UAV 
distance measurements in the following way. A cer-

Figure 1. Coordinate transformation. XYZ is the geocentric 
coordinate system and X’Y’Z’ is the local coordinate system
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tain time series of intervals of synthetic GPS out-
age is postulated. During these intervals, inter-UAV 
distances are synthesized at discrete instants of 
time. This is done by taking the actual GPS mea-
surements, determining the corresponding in-
ter-UAV distance, and then adding on to the re-
sulting value a Gaussian random variable with 
zero mean and standard deviation of 10m. This is 
delivered to the algorithm as a (synthesized) in-
ter-UAV distance, and the Kalman filter is run 
with this data. Validation occurs by comparing the 
estimated UAV tracks delivered by the Kalman 
filter with those in the original real- world data, 
where GPS measurements are actually available, 
so that actual UAV tracks are known [14].

In the simulations, we assume that UAV has 
a GPS connection most of the time but it may 
temporarily lose the GPS connection for up to 54s 
(see Figure 2).

In the simulation, the first two state variables 
of the initial state vector are chosen to be the ini-

tial GPS location of UAV and other state variables 
are chosen randomly. The initial value of P is cho-
sen based on an empirical estimate as P = diag{1000 
1000 0.3 0.01 1}. It is found that generally the 
choice of P has little impact on the filter perfor-
mance; however a very large deviation of P from 
its true value does cause the divergence of the fil-
ter. The value of Q is chosen based on an empiri-
cal estimate as Q = diag{0.0003 10}. The choice 
of Q is critical for the filter performance and Q 
should be chosen carefully based on an in-depth 
understanding of the UAV dynamics. The value of 
R is chosen to be 100. In real applications, the val-
ue of R can be obtained via a priori calibration of 
the distance measurement equipment. The dis-
tance measurement can be obtained by a simple 
round trip timing mechanism [10].

The UAV location obtained from GPS is used 
as the «true location» of the UAV. The path of 
UAV starts from the rectangular on the right side 
of the figure. Apparently, the estimated location 

Figure 2. Time interval between adjacent GPS measurements for UAV

Table 1. Steps of the simulations
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has larger error on this part of the figure. As time 
evolves, the estimated location gradually con-
verges to the true location, which is evidenced by 
much less deviation from the true location on the 
left side of the figure. Figure 3 and 4 shows the 
variation of error. As shown in the Table, both the 
estimate of x and the estimate of y have a bias. As 
a reference, the value of x varies within the range 
of [-5000, 1000] and the value of y varies within 
the range of [-6000, 3000]. Therefore, the value of 
the bias is comparatively small. However, both 

biases have a fairly consistent trend in all ten sim-
ulations [13].

Figure 5 shows the effectiveness of filtering 
by Kalman algorithm. However, in a real situa-
tion, signals often have non-linear dynamics and 
abnormal noise. In such cases, the extended Kal-
man filter is used. In case, if the noise variances 
are not too large (i.e. the linear approximation is 
adequate) the application of the extended Kalman 
filter yields the solution of the problem with high 
accuracy. But in case if the noise is not Gaussian 

Figure 3. Variation of error in x with Time

Figure 4. Variation of error in y with Time
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the extended Kalman filter mustn’t be applied. In 
this case, a partial filter is usually used, which 
uses numerical methods for taking integrals based 
on Monte Carlo methods with Markov chains.

Partial Filter
Let us perform one of the algorithms, which 

develop the ideas of the extended Kalman filter – 
a partial filter. Partial filtering is a non-optimal fil-
tering method that works when performing 
a Monte Carlo join on a set of particles that repre-
sent the probability distribution of the process. 
Here a particle is an element taken from the a pri-
ori distribution of the estimated parameter. The 
main idea of the partial filter is that the large 
amount of particles can be used to represent the 
distribution estimate. The larger the number of 
particles is used, the more precise the set of parti-
cles will represent the a priori distribution. The 
particle filter is initialized by placing N of parti-
cles in it from the a priori distribution of the pa-
rameters that we want to estimate. The filtering 
algorithm involves running these particles through 
a special system, and then weighing it using infor-
mation obtained from measuring these particles. 
The resulting particles and associated masses rep-
resent the posterior distribution of the evaluation 
process. The cycle is repeated for each new mea-
surement and the weights of the particles are up-
dated to represent the subsequent distribution. 
One of the main problems of the traditional meth-
od of particle filtering is that as a result such an 

approach usually has several particles with a huge 
weight unlike most others with a very light 
weight. It leads to the filtering instability [6]. This 
problem can be solved by introducing a sampling 
frequency, where N of new particles are taken 
from a distribution composed of old particles. The 
result of the evaluation is obtained by getting 
a sample of the mean value of the particle set. If 
we have several independent samples, the mean 
sample will be an accurate estimate of the mean 
value that determines the final variance.

Even if the particle filter is not optimal, then 
as the number of particles tends to infinity, the ef-
ficiency of the algorithm approaches the Bayesian 
estimation rule. That is why it is recommended to 
have the possible number of particles to get the 
best result. Unfortunately, this leads to a strong 
increase in the computational complexity and 
therefore forces us to seek a compromise between 
accuracy and calculation speed. So the number of 
particles should be chosen based on the require-
ments for the accuracy estimation problem. An-
other important factor for the operation of the par-
ticle filter is the restriction on the sampling fre-
quency. As mentioned earlier, the sampling fre-
quency is an important parameter of the particle 
filtering and without it, the algorithm eventually 
becomes degenerate. The idea is that if the 
weights are distributed too unevenly and the sam-
pling threshold is soon reached, then the low-
weight particles are discarded, and the remaining 
set forms a new probabilistic density for which 

Figure 5. Filtering the sensor reading with the help of Kalman filter
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new samples can be taken. Choosing a sampling 
frequency threshold is a rather difficult task, be-
cause too high frequency causes excessive filter 
sensitivity to noise, and too low one gives a large 
error. Another important factor is the probability 
density [11].

In general, the particle filter algorithm shows 
a good productivity of location calculation for sta-
tionary targets and in the case of relatively slow 
moving targets with unknown acceleration dy-
namics. Generally, the particle-filtering algorithm 
is more stable than the extended Kalman filter, 
and is less prone to the degeneration and serious 
failures. In cases of nonlinear, non-Gaussian dis-
tribution, this filtering algorithm shows a very 
good accuracy in determining the target location 
while the extended Kalman filtering algorithm 
cannot be used under such conditions. One of the 
disadvantages of this approach is its higher com-
plexity compared with the extended Kalman filter, 
as well as the fact that it is not always obvious 
how to select the parameters for this algorithm 
correctly [12].

Optimal estimation of a random process
In contrast to common approaches based on 

consideration as a criterion for optimizing the 
minimum of the mean square error of estimation, 
in this case the maximum of a posteriori probabil-
ity density of the evaluated process is considered 
as an optimization criterion. The a priori probabil-
ity density of the evaluated process is initially 
considered to be a Gaussian differentiable func-
tion, which allows it to be expanded in a Taylor 
series without using in the intermediate transfor-
mations the characteristic functions and decom-
position into harmonics. For small time intervals, 
the probability density of the measurement error 
vector is defined by definition also Gaussian with 
zero mathematical expectation. This makes it pos-
sible to obtain a mathematical expression for the 
discrepancy function characterizing the deviation 
of the values   of the real measurement of the pro-
cess from its mathematical model. To determine 
the optimal a posteriori estimate of the state vec-
tor, it is assumed that this estimate corresponds to 
its mathematical expectation, the maximum of the 
posterior probability density. This makes it possi-
ble to derive the Stratonovich-Kouchner equation 
on the basis of the Bayesian formula for the a pri-
ori and a posteriori probability density. The use of 

the Stratonovich-Kushner equation for various 
types and values   of the drift vector and the diffu-
sion matrix of the Markov stochastic process 
makes it possible to solve various problems of fil-
tering, identification, smoothing, and forecasting 
the state of the system for both continuous and 
discrete systems. The discrete realization of the 
developed continuous algorithms for a posteriori 
estimation allows obtaining specific discrete algo-
rithms for the implementation in the on-board 
computer of a mobile robotic system [7].

Prospective researches in this field
The use of the Kalman filter model, similar to 

what we have shown, can be seen in [3], where it 
is used to improve the characteristics of the com-
plex system (GPS + computer vision model for 
comparison with the geographic base), and the 
satellite navigation equipment failure situation is 
simulated. With the help of the Kalman filter the 
results of the system operation in case of failure 
were significantly improved (for example, the er-
ror in determining the altitude was reduced by 
about half, and the errors in determining the coor-
dinates along different axes were reduced by al-
most 9 times). The analogical use of the Kalman 
filter is also shown in [4].

The problem, which is interesting from the 
point of view of the method set, is solved in [1]. 
There is also used a Kalman filter with 5 states, 
with some differences in the construction of the 
model. The result obtained exceeds the result of 
the given model given [5] due to the use of addi-
tional means of integration, (photo and thermal 
images are used). The application of the Kalman 
filter in this case makes it possible to reduce the 
error in determining the spatial coordinates of 
a given point to a value of 5.5 m.

Conclusion
As a conclusion, we can note that the use of 

the Kalman filter in the UAV location systems is 
practiced in many modern developments. There is 
a huge number of variances and aspects of such 
use up to simultaneous application of several sim-
ilar filters with different factors of states. One of 
the most promising trends in Kalman filter devel-
opment is working on creating a modified filter, 
where the errors of will be represented by color 
noise, which will make it even more valuable for 
solving real problems. The great interest in this 
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area is a partial filter by means of which it is pos-
sible to filter non-Gaussian noise. The given vari-
ety and the tangible results in increasing accuracy, 
especially in case of the failure of standard satel-

lite navigation systems, are the main factors of the 
impact of this technology on various scientific fields 
related to the development of accurate and fault-tol-
erant navigation systems for various aircrafts.
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АРЕФЬЕВ Н. Н.

ФИЛЬТР КАЛМАНА ДЛЯ ОПТИМАЛЬНОГО ПОЛУЧЕНИЯ КООРДИНАТ 
БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Белорусский национальный технический университет 
В статье даётся классификация основных компонентов систем беспилотного летательного аппарата (БЛА), 

даётся обоснование фильтру Калмана и необходимость использования его для точного получения координат беспи-
лотных летательных аппаратов. Беспилотные летательные аппараты (БПЛА) все чаще используются в военных 
и научных исследований. Некоторые миниатюрные БПЛА полагаются полностью на глобальной системе позициони-
рования (GPS). GPS уязвим для случайного или преднамеренного вмешательства что может привести к его сбою. 
Для БПЛА, полагающихся исключительно на GPS для навигации такое событие может быть катастрофическим. 
В настоящем документе предлагается расширенный подход фильтра Калмана для оценки местоположения БПЛА, 
когда его GPS-соединение потеряно. Приводится альтернативное использование частичного фильтра. В конце дела-
ется вывод о необходимых направлениях дальнейших научных исследований.

Ключевые слова: беспилотный летательный аппарат, математическое моделирование, фильтр Калмана, GPS, 
контроль, навигация, интеграция, геометрия движения.
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