Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Промышленная теплоэнергетика и теплотехника»

ЭКОЛОГИЯ ПРОМЫШЛЕННЫХ ТЕПЛОТЕХНОЛОГИЙ

Методические указания и контрольные задания для студентов специальности 1-43 01 05 «Промышленная теплоэнергетика»

В 3 частях

Часть 1

ОСНОВЫ ИНЖЕНЕРНЫХ РАСЧЕТОВ

Минск БНТУ 2011 УДК 628.52(075.8) ББК 20.1я7 Э 40

Составители: В.А. Седнин, О.Ф. Краецкая

Рецензенты: Н.Б. Карницкий, Р.И. Есьман

Методические указания предназначены для оказания помощи студентам при выполнении контрольных работ.

В издании излагаются основные положения инженерной экологии и защиты окружающей среды, приводятся варианты контрольных заданий.

Материал методической части способствует более глубокому изучению и освоению материала.

ВВЕДЕНИЕ

Дисциплина «Экология промышленных теплотехнологий» играет важную роль в формировании экологического мировоззрения инженера-теплоэнергетика, работающего как на промышленных предприятиях в энергетической отрасли, так и в других отраслях народного хозяйства.

Для студентов, обучающихся по специальности 1-43 01 05 «Промышленная теплоэнергетика», она является основной для более глубокого исследования современного, экологически безопасного теплоэнергетического оборудования, встроенного в технологические процессы различных отраслей народного хозяйства, с целью повышения энергетической и экологической эффективности современных энерготехнологических процессов.

ОБЩИЕ УКАЗАНИЯ

При выполнении контрольных работ необходимо соблюдать следующие требования:

- исходные параметры четко выписаны;
- конечная цель расчета определена;
- все вычисления проводятся в развернутом виде;
- решение задач сопровождаются кратким пояснительным текстом.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАЗДЕЛАМ ДИСЦИПЛИНЫ

Изучению дисциплины «Экология промышленных теплотехнологий» должна предшествовать глубокая проработка современного состояния энергетической и экологической безопасно-

сти в Республике Беларусь, путей совершенствования теплоэнергетического оборудования и теплотехнических технологий.

Проблема экологической безопасности различных отраслей народного хозяйства является важной научно-технической задачей, стоящей перед современным производством. Экологическая чистота и безопасность современных технологий являются основными критериями конкурентоспособности рыночного продукта.

Дисциплина является основной в комплексной программе непрерывной экологической подготовки по специальности 1-43 01 05 «Промышленная теплоэнергетика».

ЭКОЛОГИЯ ПРОМЫШЛЕННЫХ ТЕПЛОТЕХНОЛОГИЙ

1. Воздействие энергетических и теплотехнологических процессов на окружающую среду

При изучении данной темы необходимо рассмотреть загрязнение окружающей среды теплоэнергетическими системами ТЭК, тепловыми (ТЭС) и атомными (АЭС) электростанциями, ТЭЦ и котельными. Изучить воздействие вредных выбросов систем теплоэнергетического комплекса (ТЭК), теплопотребляющего и технологического оборудования. Следует подробно остановиться на воздействии вредных выбросов и загрязнений, обусловленных энергетическими и теплотехнологическими процессами, включая добычу, переработку, использование и транспортировку топливноэнергетических ресурсов (ТЭР) на биосферу (человека, животный и растительный мир).

Нужно рассмотреть воздействие энергетики и теплоэнергетических систем на атмосферу, проанализировать воздействие

вредных газопылевых выбросов на человека, животных, растения, сооружения и материалы.

Следует изучить мероприятия по предупреждению загрязнения воздушной среды при функционировании теплоэнергетических установок и систем теплоиспользования (устранение и уменьшение выбросов путем совершенствования технологических процессов и оборудования; внедрение безотходных, ресурсо- и энергосберегающих теплотехнологий; рекуперация и утилизация ценных компонентов из промышленных выбросов; защита воздушного бассейна путем создания безотходных технологий и многократного последовательного использования теплоты продуктов сгорания; использование теплоты газообразных отходов в качестве вторичных энергоресурсов (ВЭР); разработка новых видов топлив и энергетических процессов, обеспечивающих чистоту окружающей среды).

Необходимо проанализировать воздействие энергетики на гидросферу и литосферу, рассмотреть общую характеристику производственных сточных вод ТЭС и АЭС.

2. Методы, средства и оборудование очистки газообразных отходов теплоэнергетических систем энергетического комплекса и снижения их вредного влияния на окружающую среду

При проработке данной темы необходимо провести анализ методов снижения вредных выбросов при сжигании топлива (облагораживание топлива, газификация твердого и жидкого топлива, удаление серы из твердого, жидкого и газообразного топлива, очистка газообразного топлива от сероводорода сухими и жидкостными способами).

Следует также изучить снижение выбросов окислов азота при сжигании топлива следующими методами:

подавления образования окислов азота в пределах топочных устройств и паровых котлов;

– очистки продуктов сгорания от окислов азота (абсорбционные, каталитические, селективные и неселективные, метод гомогенного восстановления окислов азота аммиаком).

Нужно рассмотреть и методы устранения выбросов сажи, бензапирена, окиси углерода:

- беспламенное сжигание газа и сжигание с образованием светящегося факела;
 - методы, обеспечивающие полное сгорание жидкого топлива;
- сжигание твердого топлива с высоким и малым выходом летучих;
- совместное сжигание жидкого, твердого и газообразного топлива;
- методы снижения выбросов оксидов азота от энергетических котлов.

При оценке и выборе сооружений и аппаратов очистки необходимо изучить принципы, методы и конструкции сооружений и аппаратов очистки газообразных отходов систем ТЭК и промышленных предприятий. Более подробно следует остановиться на классификации газоочистных аппаратов (сухие механические пылеуловители, циклоны, электрическая очистка газов, электрофильтры, мокрые механические пылеуловители, аппараты с осаждением пыли на пленку жидкости, пенные аппараты, форсуночные скрубберы, скрубберы Вентури, тканевые фильтры).

3. Сооружения и аппараты очистки производственных сточных вод

При анализе сооружений и аппаратов очистки производственных сточных вод необходимо предварительно изучить принципы, методы и конструкции сооружений и аппаратов очистки выбросов промышленных предприятий: сооружения для осаждения примесей сточных вод, сооружения механической очистки сточных вод, гидроциклоны и центрифуги, фи-

зико-химическая очистка сточных вод, фильтрационные установки, установки для коагуляции и нейтрализации сточных вод, аппараты для адсорбционной обработки промышленных вод, физико-химические методы очистки производственных сточных вод, установки для нейтрализации промышленных вод. Гидроциклоны, адсорбционные методы очистки газов, электрохимическая очистка промышленных вод, установка для очистки сточных вод окислителями.

4. Экономические аспекты экологических и природоохранных мероприятий

При изучении данной темы рассматриваются следующие вопросы:

- оценка ущерба, наносимому народному хозяйству из-за загрязнений окружающей среды;
- оценка экологической деятельности промышленных предприятий и экономические санкции за нарушение ПДВ вредных веществ;
- технико-экономическое обоснование природоохранных мероприятий и расчет их экономической эффективности;
- методика проведения энерго- и экологоаудита на промпредприятиях;
 - методики расчета выбросов загрязняющих веществ;
 - нормирование выбросов загрязняющих веществ.

КОНТРОЛЬНЫЕ ЗАДАНИЯ

Задание 1. Расчет циклона

Задание: выбрать циклон типа ЦН-15 и определить его гидравлическое сопротивление.

Исходные данные: расход газа при нормальных условиях V_0 , м³/ч; плотность газа при нормальных условиях ρ_0 , кг/м³; температура очищаемого газа t_Γ , °C, барометрическое давление $P_{\text{бар}}$, кПа; разрежение при входе в циклон $P_{\text{ц}}$, кПа; начальная концентрация пыли C_1 , г/м³; плотность пыли $\rho_{\text{п}}$, кг/м³. Циклон должен работать без дополнительных устройств в сети.

			•				
№ п/п	V_0 , ${ m M}^3/{ m q}$	$ρ_0$, $κΓ/M^3$	t _Γ , °C	$P_{\text{бар}}$, кПа	P_{II} , кПа	C_1 , Γ/M^3	ρ_{Π} , $\kappa\Gamma/M^3$
1	4100	1,3	140	101,5	30	10	3000
2	5800	1,1	250	100	25	20	2000
3	4600	1,2	150	99	27	80	1500
4	5000	1,25	200	100,5	50	120	2500
5	4200	1,05	180	101,3	20	150	1700
6	4500	1,2	280	98,5	15	40	2600
7	5200	1,26	240	100	22	20	2200
8	7000	1,15	300	99,1	17	10	3300
9	5600	1.3	110	101	30	40	3000

Варианты заданий

Методические указания к расчету циклона

Определяем плотность газа при рабочих условиях:

$$\rho_{\Gamma} = \rho_0 \cdot \frac{273 \cdot (P_{6ap} - P_{II})}{(273 + t_{\Gamma}) \cdot P_{6ap}}, \kappa_{\Gamma}/M^3.$$

Расход газа при рабочих условиях

$$V_{\Gamma} = \frac{V_0 \rho_0}{\rho_{\Gamma} 3600}, \, \text{m}^3/\text{c}.$$

Диаметр циклона

$$D = \sqrt{\frac{V_{\Gamma}}{0.785 \cdot v_{\text{OHT}}}} , M,$$

где $\upsilon_{\text{опт}}$ — оптимальная скорость движения газа, которая для ЦН-15 составляет 3,5 м/с (табл. 1.1).

Таблица 1.1

Тип циклона	v_{ont} , m/c
ЦН-11, ЦН-15	3,5
ЦН-24	4,5
СДК-ЦН-33	2,0
СК-ЦН-34	1,7

Действительная скорость газа в циклоне

$$v_{\rm A} = \frac{V_{\rm r}}{0.785D^2}$$
, m/c.

Действительная скорость газа в циклоне не должна отличаться от оптимальной более чем на 15 %. В случае, если разница в скоростях превышает указанную величину, расчеты повторяют, выбрав циклон другого типа.

Коэффициент сопротивления принятого к установке циклона

$$\zeta = K_1 K_2 \zeta_{500}$$
,

где ξ_{500} — коэффициент сопротивления циклона диаметром 500 мм (табл. 1.2);

 K_1 — поправочный коэффициент, учитывающий влияние диаметра циклона (табл. 1.3) (диаметр циклона, превышающий 500 мм, не оказывает влияние на коэффициент сопротивления циклона; в этом случае величина K_1 выбирается при D = 500 мм);

 K_2 — поправочный коэффициент, учитывающий запыленность газа (табл. 1.4).

Таблица 1.2

Тип циклона	ξ500
ЦН-11	245
ЦН-15	155
ЦН-24	75
СДК-ЦН-33	520
СК-ЦН-34	1050

Таблица 1.3

Тин именомо	Диаметр циклона, мм						
Тип циклона	150	200	300	450	500		
ЦН-11	0,94	0,95	0,96	0,99	1		
ЦН-15, ЦН-24	0,85	0,9	0,93	1	1		
СДК-ЦН-33, СК-ЦН-34	1	1	1	1	1		

Таблица 1.4

Тин инитоно	Запыленность, г/м ³								
Тип циклона	0	10	20	40	80	120	150		
ЦН-11	1	0,96	0,94	0,92	0,9	0,87	0,85		
ЦН-15	1	0,93	0,92	0,91	0,9	0,87	0,68		
ЦН-24	1	0,95	0,93	0,92	0,9	0,87	0,86		
СДК-ЦН-33	1	0,81	0,785	0,78	0,77	0,76	0,745		
СК-ЦН-34	1	0,98	0,947	0,93	0,915	0,91	0,9		

Гидравлическое сопротивление циклона

$$\Delta P = \xi \cdot \upsilon_{\pi} \cdot \rho_{\Gamma} / 2$$
, Πa .

Задание 2. Расчет электрофильтра

Задание: выбрать электрофильтр для очистки дымовых газов барабанной сушилки.

Uсходные данные: расход газов при нормальных условиях V_0 , $M^3/4$; плотность газов при нормальных условиях ρ_0 , $\kappa \Gamma/M^3$; температура очищаемых газов t_Γ , °C, барометрическое давление $P_{\text{бар}}$, $\kappa \Pi a$; разрежение в системе P, $\kappa \Pi a$; рабочее напряжение U_p , κB ; средний размер частиц $d_{\text{с.p.}}$, мкм. Состав газов близок к атмосферному воздуху.

№ п/п	V_0 , м 3 /ч	ρ_0 , $\kappa \Gamma/M^3$	t_{Γ} , °C	$P_{\text{бар}}$, кПа	<i>P</i> , кПа	$U_{\rm p}$, к ${ m B}$	$d_{ m c.p.}$, мкм
1	85 000	1,3	130	101,3	2	70	0,9
2	50 000	1,1	220	100	5	80	0,5
3	70 000	1,25	150	99,8	2,5	80	0,05
4	80 000	1,15	200	100,2	3	70	0,6
5	60 000	1,1	180	101,3	4	90	0,01
6	90 000	1,05	280	98,5	1	70	0,02
7	85 000	1,1	240	100	2	80	0,8
8	70 000	1,0	300	99,1	1,5	100	0,3
9	90 000	1,35	110	101,5	3	70	0,9

Варианты заданий

Методические указания к расчету электрофильтра

Определяем плотность газа при рабочих условиях:

$$\rho_{\Gamma} = \rho_0 \cdot \frac{273 \cdot (P_{6ap} - P_{II})}{(273 + t_{\Gamma}) \cdot P_{6ap}}, \text{ KG/M}^3.$$

Расход газа при рабочих условиях

$$V_{\Gamma} = \frac{V_0 \rho_0}{\rho_{\Gamma} 3600}$$
, M^3/c .

По данным практики, принимаем скорость потока газов в электрофильтре $\upsilon_{\Gamma} = 0.8$ м/с, тогда необходимая площадь поперечного сечения электрофильтра:

$$F = \frac{V_{\Gamma}}{v_{\Gamma}}, \, \mathrm{M}^2.$$

По табл. 2 выбираем тип электрофильтра, принимаемого к установке.

Фактическая скорость потока газов в электрофильтре

$$v_{\rm M} = \frac{V_{\rm r}}{F_{\rm db}}$$
, m/c,

где F_{φ} – площадь активного сечения принятого фильтра (см. табл. 2.1).

Относительная плотность газов при стандартных условиях ($P_{\rm cr} = 101,3~{\rm k\Pi a};~T_{\rm cr} = 20~{\rm ^{\circ}C}$)

$$\rho_{\text{OTH}} = \frac{\left(P_{\text{бар}} - P\right)\left(273 + T_{\text{CT}}\right)}{P_{\text{CT}}(273 + T)}, \text{ KF/M}^3.$$

Критическая напряженность электрического поля

$$E_{\rm kp} = 3.04 \left(\rho_{\rm OTH} + 0.0311 \sqrt{\frac{\rho_{\rm OTH}}{R_1}} \right) 10^6 , \, \text{B/M},$$

где R_1 – радиус коронирующего электрода R_1 = 0,001 м. Средняя напряженность электрического поля

$$E_{\rm cp} = \frac{U_{\rm p}}{d}$$
, B/M,

где d = 13,7 см — расстояние между плоскостями осадительных и коронирующих электродов.

Скорость дрейфа $\upsilon_{\scriptscriptstyle \rm J}$ для частиц мельче 1 мкм:

$$v_{_{\rm I\!I}} = \frac{0.17 \cdot 10^{-11} E_{cp}}{\mu}$$
 , M/c,

где μ — динамическая вязкость газов при данной температуре, μ = 23,1·10⁻⁶ Па·с.

Таблица 2.1 Технические характеристики электрофильтров

	Площадь	Число	чис-	Шаг между	Актив-	Общая
Типораз-	активно-	сек-	ЛО	одноименны-	ная дли-	площадь
мер	го сече-		полей	ми электрода-	на поля,	осажде-
	ния, м ²	ции		ми, мм	M	ния, м ²
УГ1-3-10	10		3	_	2,51	630
УГ1-3-15	15	_	3	_	2,51	940
УГ2-3-26	26	_	3		2,51	1690
УГ2-3-37	37	_	3		2,51	2360
УГ2-3-53	53	_	3	_	2,51	3370
УГ2/2-74	74	_	3		2,51	4700
УГ-3-88	88		3	_	3,95	9200
УГ3-3-115	115		3	_	3,95	12100
УГ3-4-115	115		4	_	3,95	16100
УГ3-3-177	177		3	_	3,95	18400
УГ3-4-177	177		4	_	3,95	24600
УГ3-3-230	230	_	3	_	3,95	24200
УГ3-4-230	230	_	4		3,95	32200
УГ3-3-265	265	_	3		3,95	27600
УГ3-4-265	265	_	4	_	3,95	36900
УВ-2x10	21	2	1	275	7,4	1200
УВ-3x10	32	3	1	275	7,4	1800
УВ-1x16	16	1	1	275	7,4	900
УВ-2х16	32	2	1	275	7,4	1800
УВ-2х24	48	2	1	275	7,4	2600
УВВВ-8	8	1	1	350	6,2	285
УВВВ-12	12	1	1	350	6,2	430
УВВ-16	16	1	1	350	6,2	570
УВВ-2x12	24	2	1	350	6,2	870

Удельная площадь осаждения электрофильтра

$$f = \frac{F_{\text{oc}}}{V_{\Gamma}}, \, \text{M}^2 \cdot \text{c/M}^2,$$

где F_{oc} — площадь поверхности осаждения принятого фильтра (см. табл. 2.1).

Коэффициент полезного действия фильтра

$$\eta = 1 - e^{-\upsilon} \pi^f$$
.

Практика показала, что практическая скорость дрейфа может существенно отличаться от расчетной, поэтому КПД электрофильтра обычно ниже расчетного.

Задание 3. Расчет скруббера Вентури

Задание: рассчитать скруббер Вентури для очистки мартеновского газа.

Исходные данные: влагосодержание газа f_1 , г/м³; количество газа V_0 , м³/ч; температура газа, поступающего в газоочистку t, °C; запыленность газа q_1 , г/м³; разрежение перед трубами Вентури p, Па; барометрического давление $p_{6ap} = 101\ 325\ \Pi a$; требуемая конечная запыленность газа q_2 , мг/м³; температура воды, подаваемой в аппараты t_1 , °C. Состав газа: $20\ \%\ CO_2$, $70\ \%\ N_2\ и\ 10\ \%\ O_2$.

Варианты заданий

№ п/п	f_1 , Γ/M^3	$V_0, {\rm M}^3/{\rm q}$	t, °C	q_1 , Γ/M^3	<i>p</i> , Па	q_2 , M Γ /M 3	t₁, °C
1	50	80 000	250	4	3 000	90	30
2	40	75 000	200	5	2 000	100	25
3	50	60 000	300	6	2 500	110	20
4	60	80 000	150	4	2 750	80	35
5	50	70 000	200	7	2 200	95	30
6	40	65 000	250	5	3 000	100	20
7	60	80 000	300	6	2 500	85	25
8	50	75 000	150	4	2 300	90	22
9	40	60 000	200	7	2 800	110	30

Методические указания к расчету скруббера Вентури

Требуемая эффективность пылеуловителя

$$\eta = (q_1 - q_2) / q_1.$$

Число единиц переноса¹

$$N_{\rm q} = \ln [1/(1-\eta)].$$

Значение удельной энергии ${\rm K_T}^2~(\kappa Д ж/1000~{\rm M}^3)$ находим из формулы

$$N_{\rm q} = A \cdot K_{\rm T}^{\rm B}$$
.

Значения А и В принимаются по данным табл. 3.1.

Количество газа, поступающего в трубы Вентури при рабочих условиях

$$V_1 = \frac{V_0}{3600} \cdot \frac{101325(273+t)}{273(101325-P)}, \text{ m}^3/\text{c}.$$

Общий расход воды на трубы Вентури

$$V_{\rm B} = m \cdot V_1$$
, ${\rm M}^3/{\rm c}$,

где удельный расход воды $m = 1 \text{ л/м}^3$.

Таблица 3.1

¹ Величина п недостаточно характеризует качество очистки в интервале высоких степеней очистки (0,98–0,99), поэтому используют понятие единиц переноса, аналогично применяемому в технологических процессах, связанных с тепло- и массообменном.

 $^{^2}$ Величина $K_{\scriptscriptstyle T}$ учитывает способ ввода жидкости в аппарат, диаметр капель, вязкость, поверхностное натяжение и другие свойства жидкости.

Значения параметров А и В пыли для некоторых технологических процессов черной металлургии

Вид пыли	A	В
Конверторная пыль	9,88·10 ⁻²	0,4663
Пыль мартеновских печей	1,565·10 ⁻⁶	1,619
Пыль из доменных печей	0,1925	0,3255
Пыль закрытой печи, выплавляющей углеродистый феррохром	6,49·10 ⁻⁵	1,1
Зола дымовых газов ТЭЦ	0,17	0,3

Гидравлическое сопротивление скруббера Вентури

$$\Delta p = K_{\rm T} - p_{\rm B} \cdot m$$
,

где давление воды рв равно 300 Па.

Плотность газа при нормальных условиях на входе в трубу Вентури

$$\rho_0 = 1/100 \cdot (\rho_{01} \cdot a_1 + \rho_{02} \cdot a_2 + \dots + \rho_{0n} \cdot a_n), \, \kappa\Gamma/M^3,$$

где $a_1, a_2, ..., a_n$ — содержание компонента газа в смеси, % (объем); $\rho_{01}, \rho_{02}, ..., \rho_{0n}$ — плотности компонентов газа при нормальных условиях, значения которых приведены в табл. 3.2.

Таблица 3.2

Газ	Плотность при 0 °C и давлении 0,101 МПа, кг/м ³
Азот N ₂	1,2507
Углекислый газ CO ₂	1,963
Кислород О2	1,42895

Температура газа на выходе из трубы Вентури:

$$t = (0.133 - 0.041 \cdot m) \cdot t_1 + 35$$

где m – удельный расход воды, равный 1 л/м³.

Находим влагосодержание газа на выходе из труб Вентури, пользуясь диаграммой I –х (см. рис. 3.1):

$$x_1 = f_1 / \rho_0$$
.

Из точки на диаграмме I — х, характеризуемой параметрами x_1 и t_1 , проводим линию I до пересечения с изотермой t_2 и, опустив перпендикуляр из полученной точки, найдем x_2 , кг/кг, или $f_2 = x_2 \cdot \rho_0$, кг/м³.

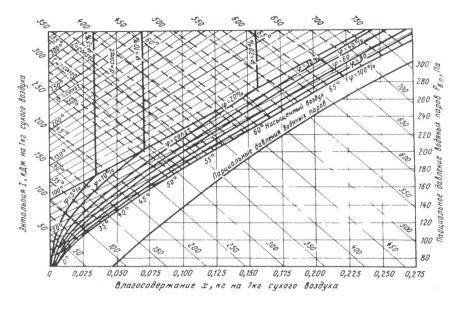


Рис. 3.1. Диаграмма влажного воздуха

Плотность газа при рабочих условиях на выходе из скруббера Вентури

$$\rho_2 = \frac{(\rho_0 + f_2) \cdot 273 \cdot (p_{\text{бар}} - p - \Delta p)}{(1 + f_2/0,804) \cdot 101325 \cdot (273 + t_2)}, \text{kg/m}^3.$$

Находим количество газа на выходе из трубы Вентури:

$$V_2 = (V_0 / 3600) \cdot (\rho_0 / \rho_2), \text{ m}^3/\text{c}.$$

Размеры инерционного пыле- и каплеуловителя (бункера):

$$D_{\delta} = 1.13 \cdot \sqrt{\frac{V_2}{v_{\delta}}}$$
, M,

скорость в поперечном сечении бункера υ_{6} равна 2,5 м/с.

Высоту цилиндрической части бункера принимаем $H_6 = 4,3$ м. Гидравлическое сопротивление бункера

$$\Delta p_{0} = \xi \cdot (v_{0}^{2}/2) \cdot \rho_{2}, \Pi a,$$

где ξ принимаем равным 80.

Выбираем для установки скоростной золоуловитель типа МС-ВТИ (табл. 3.3) и находим его диаметр:

$$D_{\rm ckp} = 1.13 \cdot \sqrt{\frac{V_2}{v_2}} , M,$$

скорость газа в цилиндрической части скруббера принимаем $\upsilon_2 = 4,5$ м/с.

Таблица 3.3 Технические характеристики скоростных золоуловителей типа МС-ВТИ

Типоразмеры	Диаметр аппарата, м	Полная высота корпуса, м	Длина трубы распылителя, м	Номинальная производи- тельность, тыс. м³/ч	Расход воды на орошение корпуса, т/ч	Масса аппарата, т
МС-ВТИ-2800	2,8	9,66	2,95	90	4,4	7
МС-ВТИ-3000	3,0	10,32	3,27	108	4,7	8
МС-ВТИ-3200	3,2	10,98	3,51	125	5,0	9,1
МС-ВТИ-3600	3,6	12,29	3,74	160	5,7	11,5
МС-ВТИ-4000	4,0	13,61	4,13	200	6,3	14,2
МС-ВТИ-4500	4,5	15,25	4,69	250	7,0	18,0

Предусматриваем стандартный скруббер (см. табл. 3.3) и рассчитываем действительную скорость газа в нем:

$$\upsilon = 4 \cdot V_2 / \pi D^2_{\text{ckp}}, \text{ m/c}.$$

Гидравлическое сопротивление скруббера

$$\Delta p_{\rm ckp} = \xi \cdot (\upsilon^2 / 2) \cdot \rho_2, \Pi a,$$

где ξ принимаем равным 34.

Гидравлическое сопротивление труб Вентури:

$$\Delta p_{\text{TB}} = \Delta p - \Delta p_{\text{6}} - \Delta p_{\text{ckp}}$$
, Πa .

Задание 4. Расчет тканевого рукавного фильтра с регенерацией (обратной продувкой)

Задание: рассчитать рукавный фильтр из лавсана, предназначенный для очистки дымовых газов, полное гидравлическое сопротивление фильтра, продолжительность работы фильтра между двумя регенерациями, площадь фильтрования.

Исходные данные: расход газа при нормальных условиях V_0 , м³/ч; плотность газа при нормальных условиях ρ_0 , кг/м³ (плотность воздуха при нормальных условиях равна 1,29 кг/м³); динамический коэффициент вязкости при нормальных условиях μ_0 , $\Pi a \cdot c$ ($\mu_0 = 2 \cdot 10^{-9} \Pi a \cdot c$); температура газа перед входом в фильтр $t_{\rm r}$, °C; разрежение перед входом в фильтр $P_{\rm r}$, Πa ; гидравлическое сопротивление фильтра Δp , Πa ; плотность частиц пыли $p_{\rm ч}$, кг/м³; характеристика дисперсного состава пыли: концентрация пыли в газе перед фильтром z_0 , г/м³; средний размер частиц (дисперсность пыли) d_m , мкм.

Принимаем допустимую температуру газа для лавсана $t_{\Gamma} = 130$ °C, температуру воздуха $t_{B} = 30$ °C.

Варианты заданий

$$N_{\Omega}$$
 п/п V_{0} · 10^{-3} , м³/ч t , , °C P_{Γ} , Па Δp , кПа Z_{0} , г/м³ ρ_{Ψ} , кг/м³ d_{m} , мкм

1	125	140	300	1,4	50	3000	10
2	150	250	2500	0,5	20	1500	15
3	75	150	1000	1,0	30	2000	7,5
4	100	200	500	1,5	25	2500	12
5	90	180	2000	0,7	15	1800	17
6	70	280	800	1,2	35	2800	18
7	110	240	2200	0,8	25	2000	13
8	130	300	1000	0,8	10	3500	20
9	105	240	2300	0,9	27	2300	14

Методические указания к расчету фильтра

Определяем подсос воздуха перед фильтром:

$$V_{0\text{\tiny B}} = V_0 \cdot \frac{t_{\Gamma}^{\prime} - t_{\Gamma}}{t_{\Gamma} - t_{\text{\tiny B}}}, \, \text{M}^3/\text{q}.$$

Полный расход газа, идущего на фильтрование, при нормальных условиях

$$V_{0\Gamma} = V_0 + V_{0B}, \, \text{M}^3/\text{q}.$$

Расход газа, идущего на фильтрование, при рабочих условиях

$$V_{\Gamma} = V_{0\Gamma} \cdot \frac{(273 + t_{\Gamma}) \cdot P_{6ap}}{273 \cdot (P_{6ap} - P_{\Gamma})}, \, \text{M}^{3}/\text{q}.$$

Запыленность газа перед фильтром при рабочих условиях

$$Z = \frac{Z_0 \cdot V_0}{V_{\rm c}}, \Gamma/M^3.$$

Допустимая газовая нагрузка на фильтр в данных условиях

$$q_{\Phi} = q_{\text{H}} \cdot C_1 \cdot C_2 \cdot C_3 \cdot C_4 \cdot C_5, \text{ M}^3/(\text{M}^2 \cdot \text{MUH}).$$

Скорость фильтрации:

где $q_{\rm H}$ — нормативная удельная нагрузка, зависящая от вида пыли и ее склонности к агломерации, м³/(м²·мин);

 $q_{\rm H}=1,2$ — пары металлов; 1,7 — кокс, летучая зола; 2,0 — цемент, уголь, известняк;

 C_1 – коэффициент, учитывающий скорость регенерации (при регенерации обратной продувкой с встряхиванием $C_1 = 0.7$);

 C_2 — коэффициент, учитывающий начальную запыленность газа (определяют по рис. 4.1);

 C_3 – коэффициент, учитывающий дисперсность пыли;

 C_4 – коэффициент, учитывающий влияние температуры газа;

 C_5 — коэффициент, учитывающий требования к качеству очистки.

Коэффициенты C_3 и C_4 выбираются из табл. 4.1 и 4.2.

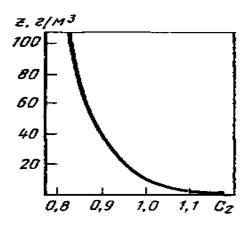


Рис. 4.1. Зависимость коэффициента C_2 от концентрации пыли

Таблица 4.1

d_m , мкм	> 100	50-100	10-50	3–10	< 3

C_3 1,2–1,4	1,1 1,0	0,9 0,7–0,9)
---------------	---------	-------------	---

Таблица 4.2

t_{Γ} , °C	20	40	60	80	100	120	140	160
C_4	1,0	0,9	0,84	0,78	0,75	0,73	0,72	0,7

Коэффициент C_5 находится из условий: при $z_0 > 30$ мг/м³, $C_5 = 1$; при $z_0 < 30$ мг/м³, $C_5 = 0.95$.

Плотность газа при рабочих условиях

$$\rho_{\Gamma} = \rho_0 \cdot \frac{273 \cdot \left(P_{\text{бар}} - P_{\Gamma} \right)}{\left(273 + t_{\Gamma} \right) \cdot P_{\text{бар}}}, \, \kappa \Gamma / M^3.$$

Динамический коэффициент вязкости при рабочих условиях

$$\mu = \mu_0 \cdot 273/t_{\text{\tiny Γ}} \cdot (t_{\text{\tiny Γ}}/273)^{1.5}, \, \Pi \text{a.c.}$$

Полное гидравлическое сопротивление фильтра Δp

$$\Delta p = \Delta p_{\phi} + \Delta p_{\kappa}$$
, Πa ,

где $\Delta p_{\rm K}$ – сопротивление корпуса аппарата, Па.

$$\Delta p_{\rm K} = \frac{\zeta \omega_{\rm BX}'^2 \rho_{\rm F}}{2}$$
, Πa ,

где ζ – коэффициент сопротивления, который задается в пределах 1,5–2,5;

 $\acute{\omega}_{\text{вx}}$ — скорость газа при входе в фильтр, принимается в пределах 5–15 м/с;

 Δp_{ϕ} – сопротивление фильтровальной перегородки, Па.

Гидравлическое сопротивление фильтровальной перегородки складывается из

$$\Delta p_{\phi} = \Delta p - \Delta p_{\kappa}$$
, Πa

Продолжительность периода фильтрования между двумя регенерациями

$$\tau_{\phi} = \frac{(\Delta p_{\phi}/\mu \cdot \omega_{\phi}') - A}{B \cdot \omega_{\phi}' \cdot Z}, c.$$

Коэффициенты A и B для пыли (ткань—лавсан) выбираются из табл. 4.3.

Таблица 4.3

d_m , мкм	A, M^{-1}	В, м/кг
10-20	$(1100-1500)\cdot 10^6$	$(6,5-16)\cdot 10^9$
2,5–3	$(2300-2400)\cdot 10^6$	$80 \cdot 10^9$

Количество регенераций в течение часа

$$n_p = 3600 / (\tau_{\phi} + \tau_{per}),$$

где трег задается в пределах 40-60 с.

Расход воздуха на регенерацию, принимая, что скорость обратной продувки равна скорости фильтрования:

$$V_{\text{per}} = V_{\Gamma} \cdot n_{\text{P}} \cdot \tau_{\text{per}} / 3600, \, \text{m}^3/\text{q}.$$

Предварительно определяем необходимую фильтровальную площадь:

$$F_{\phi} = \left(V_{\text{per}} + V_{\text{\tiny T}}\right) / 60 \cdot q_{\phi}, \, \text{m}^2.$$

Выбираем для установки фильтр марки ФРО из табл. 4.4 с поверхностью фильтрования F_{ϕ} , состоящий из N_{c} секций.

Таблица 4.4

Характеристика	ФРО-1250-1	ФРО-1650-1	ФРО-2500-1	ФРО-4100-1	ФРО-5100-2	ФРО-6000-2	ФРО-7000-2	ФРО-8000-2
Фильтрующая поверхность F_{ϕ} , м ²	1266	1688	2530	4104	5130	6156	7182	8208
Количество рукавов	252	336	504	432	540	648	756	864
Количество секций	6	8	12	8	10	12	14	16
Высота рукава, м	8	8	8	10	10	10	10	10
Диаметр рукава, мм	200	200	200	300	300	300	300	300
Габаритные								
размеры:								
длина L	5,1	6,6	9,6	12,6	15,6	18,6	21,6	24,6
ширина В	6,84	6,84	6,84	9,84	9,84	9,84	9,84	9,84
высота Н	13,77	13,77	13,77	16,2	16,2	16,2	16,2	16,2
Масса, т	37,8	50,4	75,6	108,5	136	162,8	190	217

Площадь фильтрования $F_{\rm p}$, отключаемая на регенерацию в течение 1 ч

$$F_{\rm p} = F_{\rm o} \cdot n_{\rm p} \cdot \tau_{\rm per} / 3600, \, \mathrm{M}^2.$$

Уточненное количество воздуха, расходуемое на обратную продувку в течение 1 ч:

$$V_{\text{per}} = F_{\phi} \cdot n_{\text{p}} \cdot \tau_{\text{per}} \cdot \dot{\omega}_{\phi}, \, \text{M}^3/\text{q}.$$

Окончательная площадь фильтрования

$$F_{\cdot \Phi} = (V_{
m per} + V_{
m r}) \, / \, 60 \, \cdot \, q_{\Phi} + F_{
m p}.$$
 Задание 5. Расчет песколовки-жироловки

Задание: определить расчетный расход сточных вод и геометрические размеры песколовки-жировки для очистки сточных вод предприятия.

Uсходные данные: производственная мощность Π , т/смену; норма водоотведения на единицу продукции m, м 3 ; часовой коэффициент $K_{\mathfrak{q}}$; скорость движения воды V, м/с; средний диаметр частиц d, мкм; число рабочих часов в смену t, ч; рабочая глубина нефтеловушки H, м.

№ п/п	П, т/смену	m , M^3	$K_{\scriptscriptstyle m H}$	<i>t</i> , ч	Н, м	<i>V</i> , м/с	d, мкм
1	25	20,2	2,5	8	1,5	0,0030	100
2	30	24,8	2,0	8	1,5	0,0035	100
3	20	15,6	2,5	8	2,0	0,0032	95
4	25	25,4	2,0	7	2,0	0,0033	95
5	30	22,6	2,0	8	2,5	0,0030	90
6	35	18,6	2,2	7	3,0	0,0030	90
7	40	16,5	2,2	8	3,0	0,0025	85
8	18	16,8	2,5	7	2,5	0,0023	85
9	24	16.5	2.0	7	2.5	0,0022	80

Варианты заданий

Методические указания к расчету песколовки-жироловки

Скорость осаждения примесей

$$U = \frac{d^2 \cdot (\rho_{\text{\tiny M}} - \rho_{\text{\tiny HII}}) \cdot g}{18\mu_{\text{\tiny M}}}, \text{ M/c},$$

где $\rho_{\rm ж}$ и $\rho_{\rm H\Pi}$ — плотность воды и нефтепродуктов соответственно (принимают $\rho_{\rm ж} = 1000~{\rm kg/m^3},~\rho_{\rm H\Pi} = 800~{\rm kg/m^3};$

 $\mu_{\text{ж}}$ — коэффициент динамической вязкости среды $(0.5\cdot10^{-3}\ \Pi a\cdot c)$.

Длина нефтеловушки

$$L = \frac{\text{VH}}{K \cdot (U - W)}, \text{M},$$

где K – поправочный коэффициент, учитывающий вихревые и струйные образования вследствие конструктивных особенностей (для горизонтальных отстойников принимают K = 0,5);

W — вертикальная составляющая скорости движения воды в нефтеловушке, м/с (принимают W=0.5V).

Максимальный часовой расход сточных вод

$$Q = \frac{m \cdot \Pi \cdot K_{\mathbf{q}}}{t}, \mathbf{M}^{3}/\mathbf{q}.$$

Рабочая ширина нефтеловушки:

$$B = Q / VH \cdot 3600, M.$$

ЛИТЕРАТУРА

- 1. Экология энергетики: учебное пособие / под ред. В.Я. Путилова. М.: Издательство МЭИ, 2003. 716 с.
- 2. Мельников, А.А. Проблемы окружающей среды и стратегия ее сохранения / А. А. Мельников М.: Академический проект; Гаудеамус, 2009. 720 с.
- 3. Стриха, И.И. Экологические аспекты энергетики: атмосферный воздух: учебное пособие / И.И. Стриха, Н.Б. Карницкий. Минск: УП «Технопринт», 2001. 304 с.
- 4. Панин, В.Д. Экология для инженера / В.Д. Панин, А.И. Сечин, В.Д. Федосова. М.: Издательский дом «Ноосфера», 2001.-284 с.
- 5. Зайцев, В.А. Промышленная экология / В.А. Зайцев. М.: МХТИ, 2000. 291 с.
- 6. Хван, Т.А. Промышленная экология / Т.А. Хван. Ростов н/Д: Феникс, 2003. 320 с.
- 7. Промышленная экология: основы инженерных расчетов / С.С. Фридланд [и др.]. – М.: КолосС, 2008. – 176 с.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ОБЩИЕ УКАЗАНИЯ	3
МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАЗДЕЛАМ	
дисциплины	3
ЭКОЛОГИЯ ПРОМЫШЛЕННЫХ ТЕПЛОТЕХНОЛОГИЙ 4 1. Воздействие энергетических и теплотехнологических	ļ
процессов на окружающую среду	ļ
2. Методы, средства и оборудование очистки	
газообразных отходов теплоэнергетических систем	
энергетического комплекса и снижения их вредного влияния на окружающую среду5	.
3. Сооружения и аппараты очистки производственных	,
сточных вод	í
4. Экономические аспекты экологических	
и природоохранных мероприятий	7
КОНТРОЛЬНЫЕ ЗАДАНИЯ	7
Задание 1. Расчет циклона	
Задание 2. Расчет электрофильтра11	Į
Задание 3. Расчет скруббера Вентури14	
Задание 4. Расчет тканевого рукавного фильтра	
с регенерацией (обратной продувкой)19	
Задание 5. Расчет песколовки-жироловки	ļ
ПИТЕРАТУРА 22	7

Учебное издание

ЭКОЛОГИЯ ПРОМЫШЛЕННЫХ ТЕПЛОТЕХНОЛОГИЙ

Методические указания и контрольные задания для студентов специальности 1-43 01 05 «Промышленная теплоэнергетика»

В 3 частях

Часть 1

ОСНОВЫ ИНЖЕНЕРНЫХ РАСЧЕТОВ

Составители: СЕДНИН Владимир Александрович КРАЕЦКАЯ Оксана Фоминична

Редактор М.С. Гаращук Компьютерная верстка Д.А. Исаева

Подписано в печать 04.11.2011. Формат 60×84 ¹/₁₆. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 1,68. Уч.-изд. л. 1,3. Тираж 100. Заказ 707.

Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск.