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Ytterbium (Yb3+) ions are attractive for high-
power, efficient and wavelength-tunable laser op-
eration near 1 μm. Yb-lasers enable power scaling 
due to a low quantum defect (Stokes shift) between 
the pump λp and laser λ wavelengths and because 
they can be pumped with commercially available, 
high-power InGaAs laser diodes emitting at 930–
980 nm. The Yb3+ ion is also free of unwanted par-
asitic processes such as excited-state absorption 
and up-conversion and it typically shows very high 
luminescence quantum yield leading to exception-
ally high laser efficiency (> 80%). One of the hosts 
for Yb3+ doping are the cubic ordered and disor-
dered garnets. They possesses quite good thermo-
optical and thermo-mechanical properties as well 
as relatively high thermal conductivity.  

In the present report, we compare the microchip 
laser performance of a series of Yb-doped gallium 
garnets with ordered, Yb:Y3Ga5O12 (Yb:YGG) and 
Yb:Lu3Ga5O12 (Yb:LuGG) [1-3], as well as disor-
dered, Yb:Ca3(Nb1.5Ga0.5)Ga3O12 (Yb:CNGG) and 
Ca3LiyNb1.5+yGa3.5–2yO12 (Yb:CLNGG) [4-6], crystal 
structure.  

The Yb:LuGG and Yb:YGG crystals were grown 
in an oxygen atmosphere by the optical floating zone 
method, and Yb:CNGG and Yb:CLNGG ones were 
grown by the Czochralski method. From the as-
grown bulks, rectangular samples were cut along the 
[111] crystallographic direction. Their thickness, 
aperture and doping level are specified in Table 1. 
The samples were wrapped with indium foil to im-
prove the thermal contact and mounted in a water-
cooled copper holder kept at ~12 °C.  

Table 1. Compositional and Geometrical Parameters of the 
Studied Laser Crystals 

Crystal 
Dopin

g, 
at.% 

NYb, 
1020 
cm-3 

Thickness, 
mm 

Apertur
e, 

mm2 
Yb:LuGG 
Yb:YGG 

Yb:CNGG 
Yb:CLNGG 

7.13 
7.35 
5.80 
4.30 

9.4 
9.7 
7.1 
5.3 

6.00 
6.02 
8.00 
3.14 

3 × 3 
3 × 3 
5 × 5 
3 × 3 

 

The microchip laser cavity consisted of a flat 
pump mirror (PM), AR coated for 0.9–1.0 μm and 
HR coated for 1.02–1.20 μm, and a set of flat output 
couplers (OC) with transmission TOC = 1 %, 5 % or 
10 % at the laser wavelength. The cavities contained 
no air gaps so that their lengths were equal to the ge-
ometrical length of the crystals. The fiber-coupled 
InGaAs diode was used, nominally emitting at around 
~ 932. The pump beam was focused into the crystals 
with a lens assembly having a reimaging ratio of 1:1 
and a focal length of 30 mm. The diode had a fiber 
core diameter of 105 μm and N.A. of 0.14. The diode 
provided a maximum output power of 25 W. The 
pump spot sizes in the focus wp and confocal parame-
ter 2zR was then ~ 52 μm/1.0 mm. The crystals were 
pumped in a single-pass configuration.  

The pump saturation intensity for the studied 
crystals was estimated to be ~ 20 kW/cm2. For 
Yb:YGG, Yb:LuGG, and Yb:CNGG the pump ab-
sorption at high pump level was 60–70 % while for 
Yb:CLNGG it was ~ 50 % due to the shorter length 
of the crystal.  

In Fig. 1, the absorption σabs and stimulated-
emission cross-sections σSE spectra for the studied 
crystals are shown. The peak σSE values are slightly 
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higher for Yb:YGG and Yb:LuGG (~ 2.6×10−20 cm2) 
but Yb:CNGG and Yb:CLNGG provide broader 
emission bands (FWHM ~ 24 nm).  

 

 

Fig. 1. Absorption (a) and stimulated-emission (b)  
cross-section spectra of the studied Yb-doped gallium 

garnets 
 

Microchip laser operation was achieved with all 
garnets using the two described pump diodes. The 
input-output dependences for these lasers pumped at 
~ 932 nm are shown in Fig. 2 with respect to the 
absorbed power. The Yb:LuGG crystal demonstrat-
ed superior laser performance. For TOC = 10%, a 
maximum output power of 8.97 W was achieved at 
1040 nm with a slope efficiency η = 75 %. The opti-
cal-to-optical efficiency was 63% and the laser 
threshold was at Pabs = 1.22 W. Using OCs with 5 % 
and 1 % transmission, the slope efficiency dropped 
to 69 % and 62 %, respectively.  

 

 

Fig. 2. Input-output dependences for microchip lasers 
based on Yb:LuGG (a), Yb:YGG (b), Yb:CNGG (c) and 

Yb:CLNGG (d) crystals. The pump wavelength is 
~ 932 nm, η – slope efficiency 

 

The Yb:YGG crystal showed slightly inferior la-
ser performance. The maximum output power was 
8.40 W at 1042 nm with η = 61% for TOC = 10%. 
For Yb:CNGG and Yb:CLNGG microchip lasers, 
substantially lower output power was achieved. This 
decrease is attributed to the stronger thermo-optic 
effects in these crystals. The maximum output power 
generated with Yb:CLNGG was 6.1 W at 1039 nm 
with η = 54 % and with Yb:CNGG it was 5.1 W at 
1051 nm with η = 37 % (both for TOC = 10 %). 

 

 

Fig. 3. Microchip laser emission spectra for Yb:LuGG (a), 
Yb:YGG (b), Yb:CNGG (c) and Yb:CLNGG (d)  

diode-pumped at 932 nm. The absorbed power is 7 W 
 

For all crystals, thermal roll-over in the output 
dependences is observed. The range of Pabs corre-
sponding to a linear input-output curve narrows at 
lower TOC. For Yb:LuGG, Fig. 2(a), thermal roll-
over starts at Pabs ~ 7, 11 and 13 W for TOC = 1 %, 
5 % and 10 %, respectively. 

Typical laser emission spectra for all microchip 
lasers are shown in Fig. 3. All of them show a multi-
peak behavior. For Yb:YGG and Yb:LuGG, the use 
of TOC = 1 % corresponded to laser oscillation at 
~ 1080 nm and with 5 % and 10 % OCs, laser emis-
sion occurred at ~ 1050 and 1040 nm, respectively. 
For Yb:CNGG and Yb:CLNGG, the shift of the 
emission wavelength was less pronounced. In the 
latter case, λl was ~ 1052, 1048 and 1039 nm foOCr 
T = 10 %, 5 % and 1 %, respectively.  

The recorded laser emission spectra help to ex-
plain the peculiarities of the thermal rollover in the 
output dependences of the studied microchip lasers. 
The reason is a relatively high heat load under 
932 nm pumping, as well as strongly localized heat 
deposition (as wp was only ~ 52 μm). In particular, 
for Yb:LuGG laser, the value of ηh estimated as 
Stokes shift, was 13.2 %, 10.9 % and 10.2 % for 
1 %, 5 % and 10 % OC, respectively. Thus, stronger 
heat load is expected for lower TOC, leading to a 
thermal roll-over at lower Pabs, as seen in Fig. 3.  

The observed blue-shift of the laser wavelength 
with the increase of TOC is typical for quasi-three-
level Yb lasers and is explained with the gain cross-
section, σg, spectra, Fig. 4. Here, σg = βσSE–(1–β)σabs 
where β is the inversion ratio, β = N2/N0 where N2 
and N0 are the number of ions excited in the upper 
laser level and overall number of ions, respectively. 
The gain spectra of Yb:LuGG, Yb:YGG and 
Yb:CNGG at very low β, typical for CW microchip 
lasers, are flat and very broad in the range from 
~ 1060 to 1080 nm. For Yb:CLNGG, this range ex-
tends from 1040 to 1080 nm. With the increase of β, 
an absolute maximum is formed in the gain spectra 
and its position is shifting from 1045 to 1030 nm. 
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These spectral features are in good agreement with 
the recorded laser emission spectra, Fig. 3.  

 

 

Fig. 4. Calculated gain cross-sections of Yb:LuGG (a), 
Yb:YGG (b), Yb:CNGG (c) and Yb:CLNGG (d) crystals 

for different inversion ratios β 
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