СОБСТВЕННЫЕ КОЛЕБАНИЯ ТРЕХСЛОЙНОЙ КРУГОВОЙ ПЛАСТИНЫ, СКРЕПЛЕННОЙ С ИНЕРЦИОННЫМ ОСНОВАНИЕМ

¹Леоненко Д. В.

¹ Белорусский государственный университет транспорта, Гомель

Введение. Определение спектра собственных частот и форм колебаний является одной из важнейших задач при расчете конструкции на динамические воздействия.

рассмотрено статическое Ранее в монографии [1] И динамическое деформирование многослойных конструкций. В работах [2, 3] исследовано напряженно-деформированное состояние двухслойных пластин при циклическом нагружении. В статье [4] рассмотрены колебания трехслойных круговых пластин, несвязанных с упругим основанием, под действием нагрузок различных форм. В работах [5-8] рассмотрены колебания трехслойных элементов конструкций на безынерционном основании Винклера. Там приведены постановки начально-краевых задач, изложены методы их расчета, получен ряд аналитических и численных решений. Анализ свободных колебаний круговых трехслойных круговых пластин и стержней на безынерционных упругих основаниях проведен в статьях [9, 10], соответственно. Здесь приведена постановка и построено аналитическое решение начально-краевой задачи о собственных колебаниях трехслойной круговой пластины с несжимаемым заполнителем. Численная апробация решения проведена в случае композитной пластины.

Постановка задачи. Постановка задачи и ее решение проводим в цилиндрической системе координат r, φ, z (рисунок 1). Срединную плоскость заполнителя принимаем за координатную, ось z направлена перпендикулярно вверх, к слою 1. Для тонких внешних несущих слоев толщиной $h_1 \neq h_2$ справедливы гипотезы Кирхгофа, для толстого легкого (не работающего в тангенциальном направлении) заполнителя $(h_3 = 2c)$ принимаем гипотезу о прямолинейности и несжимаемости деформированной нормали. К наружной грани второго несущего слоя приложена реакция упругого основания q_R . На контуре пластины предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев, т. е. $\psi = 0$ при $r = r_1$.

В силу симметрии нагрузки тангенциальные перемещения в слоях отсутствуют $(u_{\phi}^{(k)} = 0, k - \text{номер слоя})$, а прогиб пластины w, относительный сдвиг в заполнителе ψ и радиальное перемещение координатной плоскости u не зависят от координаты ϕ , то есть $u(r,t), \psi(r,t), w(r,t)$. В дальнейшем эти функции считаем искомыми. Уравнения движения рассматриваемой пластины можно вывести из вариационного принципа Лагранжа, учтя вариацию работы сил инерции:

$$\delta A - \delta W = \delta A_{l}, \tag{1}$$

где δA – вариация работы внешних нагрузок, δW – вариация работы внутренних сил упругости, δA_i – вариация работы сил инерции.

Считаем, что к наружной поверхности второго несущего слоя приложена реакция основания q_R . Вариации работ будут следующие:

$$\delta A = -\iint_{S} q_{R} \delta w r \, \mathrm{d} r \, \mathrm{d} \varphi \,, \quad \delta W = \iint_{S} \left[\sum_{k=1}^{3} \int_{h_{k}} (\sigma_{r}^{(k)} \delta \varepsilon_{r}^{(k)} + \sigma_{\varphi}^{(k)} \delta \varepsilon_{\varphi}^{(k)}) \, \mathrm{d} z \right] r \, \mathrm{d} r \, \mathrm{d} \varphi \,,$$

143

$$\delta A_{I} = \iint_{S} \sum_{k=1}^{3} \iint_{h_{k}} [\rho_{k} \ddot{w} \delta w] r dr d\phi .$$
⁽²⁾

Рис. 1. Расчетная схема пластины

Связь между реакцией и прогибом принимаем в соответствии с моделью Винклера, учитывающем инерционность основания

$$q_R = \kappa_0 w + m_f \ddot{w},$$

где κ_0 – коэффициент сжатия основания, m_f – инерционный член основания, точка над прогибом обозначают производную по времени.

Предполагается, что пластина находится на упругом основании, которое моделирует поведение грунтов и представляет собой сжимаемый слой толщиной H_{f} , расположенный на бесконечно жестком основании. В этом случае расчетные параметры материала основания можно вычислить по методике, предложенной в монографии В.3. Власова, Н. Н. Леонтьева [11].

После подстановки выражений для вариаций работ (2) в (1) получаем в перемещениях следующую систему дифференциальных уравнений в частных производных, описывающую свободные поперечные колебания круговой трехслойной пластины на упругом основании:

$$L_{2}(a_{1}u + a_{2}\psi - a_{3}w,_{r}) = 0, \quad L_{2}(a_{2}u + a_{4}\psi - a_{5}w,_{r}) = 0,$$

$$L_{3}(a_{3}u + a_{5}\psi - a_{6}w,_{r}) - M_{0}^{*}\ddot{w} - \kappa_{0}w = 0.$$
(3)

Здесь $M_0^* = M_0 + m_f$ – удельная масса пластины и основания, коэффициенты a_i и дифференциальные операторы L₂, L₃ введены в [5], запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате.

В качестве начальных принимаем условия

$$w(r, 0) \equiv f(r), \qquad \dot{w}(r, 0) \equiv g(r).$$
 (4)

Задача отыскания функций u(r,t), $\psi(r,t)$, w(r,t) замыкается присоединением к (3) начальных (4) и граничных условий.

Аналитическое решение. После преобразований система (3) сводится к виду

$$u = b_1 w_{,r} + C_1 r + C_2 / r, \quad \psi = b_2 w_{,r} + C_3 r + C_4 / r,$$

$$\Delta \Delta w + \kappa^4 w + M_f^4 \ddot{w} = 0.$$
(5)

Здесь величины к, M_f , b_1 , b_2 – характеристики системы пластина-основание.

В связи с ограниченностью искомого решения в начале координат для сплошных пластин необходимо положить $C_2 = C_4 = 0$.

Искомый прогиб принимаем в виде

$$w(r,t) = v(r)(A\cos(\omega t) + B\sin(\omega t)), \qquad (6)$$

где v(r) – искомая координатная функция, ω – частота собственных колебаний рассматриваемой пластины, A и B – константы интегрирования, определяемые из начальных условий.

После подстановки выражения (6) в последнее уравнение системы (5) следует уравнение для определения координатной функции $v^*(r)$:

$$\Delta\Delta v - (\beta_f^4 - \kappa^4)v = 0.$$
⁽⁷⁾

Здесь введено обозначение

$$\beta_f^4 = M_f^4 \omega^2 \quad , \quad \lambda^4 = \beta_f^4 - \kappa^4 \,. \tag{8}$$

Уравнение (7) перепишем в виде

$$\Delta\Delta v - \lambda^4 v = 0. \tag{9}$$

Решение уравнения (9) можно представить в виде [12]

$$v(\lambda r) = C_5 J_0(\lambda r) + C_6 I_0(\lambda r) + C_7 Y_0(\lambda r) + C_8 K_0(\lambda r).$$
(10)

где J_0 , Y_0 – функции Бесселя нулевого порядка (нижний индекс) первого и второго рода (функция Неймана), соответственно; I_0 , K_0 – модифицированная функция Бесселя и функция Макдональда нулевых порядков; $C_5,...,C_8$ – константы интегрирования.

Не останавливаясь на описании указанных функций, отметим, что $Y_0(\lambda r)$ и $K_0(\lambda r)$ имеют особенность типа логарифма в начале координат [13], т. е. в центре пластины. Поэтому, исходя из ограниченности прогиба при r = 0, необходимо в (10) положить постоянные интегрирования $C_7 = C_8 = 0$.

Если край пластины защемлен, то при $r = r_1$ должны выполняться граничные условия

$$u = \psi = w = w, = 0.$$

Подставляя в два последних требования решение (6) с учетом функции (10) и ограниченности решения в начале координат, получаем однородную систему алгебраических уравнений для определения констант интегрирования C_5, C_6 :

$$C_5 J_0(\lambda r_1) + C_6 I_0(\lambda r_1) = 0, -C_5 J_1(\lambda r_1) + C_6 I_1(\lambda r_1) = 0,$$

где *J*₁, *I*₁ – функции Бесселя первого порядка.

Эта система имеет нетривиальное решение при условии равенства нулю ее детерминанта. Следовательно,

$$I_{1}(\lambda r_{1})J_{0}(\lambda r_{1}) + J_{1}(\lambda r_{1})I_{0}(\lambda r_{1}) = 0.$$
(11)

Трансцендентное уравнение (11) служит для определения собственных чисел λ_n (*n* = 0, 1, 2, ...) уравнения (7).

При шарнирном опирании контура пластины и наличии на нем жесткой диафрагмы там должны выполняться требования:

$$u = \psi = w = M_r = 0, \qquad (12)$$

где внутренний обобщенный момент *M_r* выражается через перемещения и жесткостные характеристики пластины следующим образом

$$\begin{split} M_{r} = & \left[K_{1}^{+}h_{1}\left(c + \frac{h_{1}}{2}\right) - K_{2}^{+}h_{2}\left(c + \frac{h_{2}}{2}\right) \right] u_{,r} + \left[K_{1}^{-}h_{1}\left(c + \frac{h_{1}}{2}\right) - K_{2}^{-}h_{2}\left(c + \frac{h_{2}}{2}\right) \right] \frac{u}{r} + \\ & + \left[cK_{1}^{+}h_{1}\left(c + \frac{h_{1}}{2}\right) + cK_{2}^{+}h_{2}\left(c + \frac{h_{2}}{2}\right) + \frac{2}{3}c^{3}K_{3}^{+} \right] \Psi_{,r} + \\ & + \left[cK_{1}^{-}h_{1}\left(c + \frac{h_{1}}{2}\right) + cK_{2}^{-}h_{2}\left(c + \frac{h_{2}}{2}\right) + \frac{2}{3}c^{3}K_{3}^{-} \right] \frac{\Psi}{r} - \\ & - \left[K_{1}^{+}h_{1}\left(c^{2} + ch_{1} + \frac{h_{1}^{2}}{3}\right) + K_{2}^{+}h_{2}\left(c^{2} + ch_{2} + \frac{h_{2}^{2}}{3}\right) + \frac{2}{3}c^{3}K_{3}^{+} \right] W_{,rr} - \\ & - \left[K_{1}^{-}h_{1}\left(c^{2} + ch_{1} + \frac{h_{1}^{2}}{3}\right) + K_{2}^{-}h_{2}\left(c^{2} + ch_{2} + \frac{h_{2}^{2}}{3}\right) + \frac{2}{3}c^{3}K_{3}^{-} \right] \frac{W_{,rr}}{r} , \quad K_{k}^{-} \equiv K_{k} - \frac{2}{3}G_{k} \end{split}$$

Подставляя в два последние условия (12) решение (6) с учетом функции (11) и непрерывности решения в начале координат, получаем однородную систему алгебраических уравнений для определения констант интегрирования C_5 , C_6 . Из нее следует уравнение для определения собственных чисел шарнирно опертой по контуру круговой трехслойной пластины, связанной с безынерционным упругим основанием:

$$J_{0}(\lambda r_{1}) \left[a_{7} \left(\lambda I_{0}(\lambda r_{1}) - \frac{I_{1}(\lambda r_{1})}{r_{1}} \right) + \frac{a_{8}}{r_{1}} I_{1}(\lambda r_{1}) \right] + I_{0}(\lambda r_{1}) \left[a_{7} \left(\lambda J_{0}(\lambda r_{1}) - \frac{J_{1}(\lambda r_{1})}{r_{1}} \right) + \frac{a_{8}}{r_{1}} J_{1}(\lambda r_{1}) \right] = 0, \qquad (13)$$

где

$$a_{7} = a_{6} - a_{3}b_{1} - a_{5}b_{2} , \qquad a_{8} = a_{60} + a_{3}b_{1} + a_{5}b_{2} ,$$
$$a_{60} = h_{1}\left(c^{2} + ch_{1} + \frac{1}{3}h_{1}^{2}\right)K_{1}^{-} + h_{2}\left(c^{2} + ch_{2} + \frac{1}{3}h_{2}^{2}\right)K_{2}^{-} + \frac{2}{3}c^{3}K_{3}^{-} ,$$

После вычисления параметров λ_n частоты собственных колебаний следуют из выражения (8).

После вычисления параметров λ_n частоты собственных колебаний следуют из уравнений (9), (10):

$$\omega_n^2 = \frac{\beta_n^4}{M^4}, \quad \beta_n^4 = \lambda_n^4 + \kappa^4.$$
(14)

В общем случае для описания прогиба круговой трехслойной пластины при свободных поперечных колебаниях вводим систему собственных ортонормированных функций $v_n \equiv v(\lambda_n, r)$:

$$v_n \equiv \frac{1}{d_n} \left[J_0(\lambda_n r) - \frac{J_0(\lambda_n r_1)}{I_0(\lambda_n r_1)} I_0(\lambda_n r) \right].$$
(15)

Здесь учтено вытекающее из граничного условия w = 0 соотношение между константами интегрирования $C_6 = -C_5 J_0(\lambda r_1) / I_0(\lambda r_1)$.

Константы *d_n* определяем из требования нормировки системы функций (15):

$$d_n^2 = \int_0^{r_1} \left[J_0(\lambda_n r) - \frac{J_0(\lambda_n r_1)}{I_0(\lambda_n r_1)} I_0(\lambda_n r) \right]^2 r dr = \frac{r_1^2}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2(\lambda_n r_1) \right] - \frac{1}{2} \left[J_0^2(\lambda_n r_1) + J_1^2$$

$$-\frac{r_{1}J_{0}(\lambda_{n}r_{1})}{\lambda_{n}I_{0}(\lambda_{n}r_{1})}\Big[J_{1}(\lambda_{n}r_{1})I_{0}(\lambda_{n}r_{1})+J_{0}(\lambda_{n}r_{1})I_{1}(\lambda_{n}r_{1})\Big]+\frac{r_{1}^{2}J_{0}^{2}(\lambda_{n}r_{1})}{2I_{0}^{2}(\lambda_{n}r_{1})}\Big[I_{0}^{2}(\lambda_{n}r_{1})-I_{1}^{2}(\lambda_{n}r_{1})\Big].$$

В конечном виде искомый прогиб трехслойной круговой пластины на упругом инерционном основании Винклера представляем разложением в ряд по фундаментальной системе собственных ортонормированных функций (15):

$$w(r,t) = \sum_{n=0}^{\infty} v_n (A_n \cos(\omega_n t) + B_n \sin(\omega_n t)).$$
(16)

Радиальное перемещение и относительный сдвиг получим, используя первые два уравнения из системы (5) и граничное условие на контуре $\psi(r_1, t) = u(r_1, t) = 0$:

$$u(r,t) = b_1 \sum_{n=0}^{\infty} \varphi_n (A_n \cos(\omega_n t) + B_n \sin(\omega_n t)) ,$$

$$\psi(r,t) = b_2 \sum_{n=0}^{\infty} \varphi_n (A_n \cos(\omega_n t) + B_n \sin(\omega_n t)) .$$
(17)

Здесь система функций $\phi_n \equiv \phi_n(\lambda_n, r)$ следующая:

$$\varphi_n(\lambda_n,r) = \frac{\lambda_n}{d_n} \left[J_1(\lambda_n r_1) \frac{r}{r_1} - J_1(\lambda_n r) + \frac{J_0(\lambda_n r_1)}{I_0(\lambda_n r_1)} (I_1(\lambda_n r_1) \frac{r}{r_1} - I_1(\lambda_n r)) \right].$$

Коэффициенты A_n , B_n в формулах (16), (17) следуют из начальных условий движения (4)

$$A_n = \int_{0}^{r_1} f(r) v_n r dr$$
, $B_n = \frac{1}{\omega_n} \int_{0}^{r_1} g(r) v_n r dr$.

Численные результаты. В уравнение (11) для определения собственных чисел системы пластина-основание Винклера при защемленном контуре входят жесткостные параметры системы, поэтому оно численно исследовано для пакета Д16Т–фторопласт–Д16Т [14] при $h_1 = h_2 = 0,02, h_3 = 0,1$.

Рисунок 2 иллюстрирует изменение частоты основного тона ω_0 в зависимости от коэффициента жесткости инерционного основания κ_0 при различной удельной массе основания m_f (кг/м²): $1 - m_f = 0$ (безынерционное основание), $2 - m_f = 500$, $3 - m_f = 1000$, $4 - m_f = 2000$. Из графиков следует, что учет инерции основания (2, 3, 4) приводит к уменьшению частоты более чем на 30 % по сравнению с безынерционным основанием (1).

Рис. 2. Изменение частоты собственных колебаний ω₀ в зависимости от коэффициента к₀ (Па/м) при различных коэффициентах m_f

Графики зависимости первой частоты ω_0 собственных колебаний трехслойной пластины от толщины внешнего слоя h_1 ($h_2 = 0,02$, $h_3 = 0,1$) показаны на рисунке 3, *a*.

Влияние толщины заполнителя h_3 ($h_1 = h_2 = 0,01$) на эти частоты иллюстрирует рисунок 3, б. Кривые на обоих рисунках соответствуют основаниям: 1 – безынерционное, 2 – инерционное. Учет инерционной составляющей оснований при увеличении толщины несущего слоя существенно влияет на частоты собственных колебаний. При увеличении толщины заполнителя частоты по двум моделям сближаются.

Рис. 3. Зависимость минимальной частоты собственных колебаний от толщины внешнего слоя h_1 (*a*) *и заполнителя* h_3 (*б*)

Следовательно, учет инерции основания приводит к уменьшению собственных частот; увеличение толщины несущего слоя увеличивает частоты собственных колебаний, увеличении толщины заполнителя приводит к их уменьшению.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № T18P-090).

ЛИТЕРАТУРА

- 1. Болотин, В.В. Механика многослойных конструкций / В.В. Болотин, Ю.Н. Новичков. – М.: Машиностроение, 1980. – 375 с.
- Москвитин, В.В. К исследованию напряженно-деформированного состояния двухслойных металлополимерных пластин при циклических нагружениях / В.В. Москвитин, Э.И. Старовойтов // Изв. АН СССР. Механика твердого тела. – 1986. – № 1. – С. 116–121.
- 3. Москвитин, В.В. Деформация и переменные нагружения двухслойных металлополимерных пластин / В.В. Москвитин, Э.И. Старовойтов // Механика композитных материалов. – 1985. – № 3. – С. 409.
- 4. Starovoitov, É. I. Vibrations of round three-layer plates under the action of various types of surface loads / É. I. Starovoitov, A.V. Yarovaya, D. V. Leonenko // Strength of materials. 2003. Vol. 35, № 4. P. 346–352. DOI: 10.1023/A:1025834123302.
- Starovoitov, E. I. Vibrations of circular composite plates on an elastic foundation under the action of local loads / E.I. Starovoitov, D.V. Leonenko // Mechanics of Composite Materials. – 2016. – Vol. 52, no. 5. – Pp. 665–672. doi: 10.1007/s11029-016-9615-y.
- 6. Старовойтов, Э.И. Деформирование трехслойных элементов конструкций на упругом основании / Э.И. Старовойтов, А.В. Яровая, Д.В. Леоненко. – М.: ФИЗМАТЛИТ, 2006. – 380 с.
- Starovoitov, É.I. Thermoelastic bending of a sandwich ring plate on an elastic foundation / É.I. Starovoitov, D.V. Leonenko // International Applied Mechanics. – 2008. – Vol. 44, № 9. – P. 1032–1040. DOI: 10.1007/s10778-009-0115-9.
- Плескачевский, Ю.М. Механика трехслойных стержней и пластин, связанных с упругим основанием / Ю.М. Плескачевский, Э.И. Старовойтов, Д.В. Леоненко. – М.: ФИЗМАТЛИТ, 2011. – 560 с.
- 9. Леоненко Д.В. Свободные колебания круговых трехслойных пластин на упругом основании // Экологический вестник научных центров Черноморского экономического сотрудничества. – 2008. – № 3. – С. 42–47.

- 10. Леоненко, Д. В. Собственные колебания трехслойного стержня на упругом инерционном основании Винклера / Д. В. Леоненко // Теоретическая и прикладная механика: междунар. научно-техн. журнал. Вып. 30.– Мн.: 2015. С. 61–64.
- 11. Власов, В. З. Балки, плиты, оболочки на упругом основании / В. З. Власов, Н. Н. Леонтьев. – М.: Государственное издательство физико-математической литературы, 1960. – 491 с.
- 12. Камке, Э. Справочник по обыкновенным дифференциальным уравнениям / Э. Камке. М.: Наука, 1976. 576 с.
- 13. Бейтмен, Г. Таблицы интегральных преобразований. В 2 т. / Г. Бейтмен, А. А. Эрдейи. – М.: Наука, 1970. – 670 с.
- 14. Старовойтов, Э. И. К описанию термомеханических свойств некоторых конструкционных материалов // Пробл. прочности. 1988.– № 4. С. 11–15.