Номер	Номер	Исходная намагниченность		Намагничено со знаком +		Намагничено со знаком -	
	точки в	Остаточная	Ср. показан.,	Остаточная	Ср. показан.,	Остаточная	Ср. показан.,
	сечении	индукц., мТл	МКМ	индукц., мТл	МКМ	индукц., мТл	МКМ
I	1	-0,18	243	3,27	243	-2,67	242
	2	-0,15	222	2,14	221	-2,56	221
	3	0,23	215	2,59	216	-3,48	215
	4	0,24	234	3,21	232	-3,01	232
II	1	-0,19	238	2,78	238	-3,28	237
	2	0,27	229	2,71	230	-2,94	229
	3	-0,16	222	2,29	222	-1,99	220
	4	0,14	236	2,16	237	-2,31	234
III	1	0,27	235	3,17	236	-3,03	233
	2	0,21	245	3,35	245	-2,79	244
	3	0,11	233	3,24	235	-2,48	232
	4	0,18	221	2,64	221	-3,25	220

Таблица – Результаты измерений толщины никелевого покрытия в различном магнитном состоянии

Исследовательские испытания доработанного прибора МТНП-1 проведены в Университете ИТМО (г. С.-Петербург) на натурной части КС ЖРД. Цель испытаний — оценка эффективности размагничивающей системы. Остаточная намагниченность никелевого покрытия характеризовалась исходным состоянием КС ЖРД либо создавалась с помощью приставного цилиндрического магнита из неодим-железо-бора, при этом знак намагниченности (+ или -) определялся полюсом, которым магнит был приставлен к покрытию. Измерения выполнены в трех контрольных сечениях, расположение и номера которых показаны на рисунке 3.

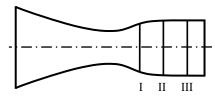


Рисунок 3 — Расположение сечений КС ЖРД при измерении толщины никелевого покрытия

В каждом сечении камеры сгорания измерения выполнены в четырех точках, расположенных по окружности сечения. Полученные данные приве-

дены в таблице, из которой следует, что при условии применения размагничивающей системы остаточная намагниченность никелевого покрытия КС ЖРД практически не влияет на результаты измерений его толщины. Это подтверждает возможность использования доработанных толщиномеров МТНП-1 для контроля изделий, выпускаемых авиа-космическими предприятиями.

Литература

- 1. Приборы неразрушающего контроля, разработанные в ИПФ НАН Беларуси [Электронный ресурс]: официальный сайт ГНУ «Институт прикладной физики НАН Беларуси». Режим доступа: http://iaph.bas-net.by/ VDev/index.html.
- 2. Лухвич, А.А. Влияние остаточной намагниченности на результаты контроля магнитодинамическими толщиномерами специальных покрытий камер сгорания жидкостных ракетных двигателей / А.А. Лухвич, О.В. Булатов, А.Л. Лукьянов // Шестой белорусский космический конгресс, Минск, 28-30 октября 2014 г. : материалы: в 2-х т. / Объединенный институт проблем информатики НАН Беларуси. Минск, 2014. Т. 1. С. 58—61.

УДК 620.179.142.6

КОНТРОЛЬ ТОЛЩИНЫ НАМАГНИЧЕННЫХ ДВУХСЛОЙНЫХ ХРОМОНИКЕЛЕВЫХ ПОКРЫТИЙ ДОРАБОТАННЫМИ МАГНИТОДИНАМИЧЕСКИМИ ПРИБОРАМИ МТДП-1 Шарандо В.И.¹, Кременькова Н.В.¹, Лукьянов А.Л.¹, Чернышев А.В.¹, Булатов О.В.¹, Калошин В.А.², Кинжагулов И.Ю.³

¹Институт прикладной физики НАН Беларуси, Минск, Республика Беларусь ²АО «НПО Энергомаш им. акад. В.П. Глушко», Химки, Московская область, Российская Федерация ³Университет ИТМО, С.-Петербург, Российская Федерация

Слой хрома, нанесенный на никелевое покрытие камеры сгорания жидкостного ракетного двигателя (КС ЖРД), обеспечивает ей дополнительную защиту от прогорания. По заданию программы Союзного государства «Космос-НТ» (2008-2011 гг.) в Республике Беларусь созданы магнитодинамические приборы МТДП-1 для неразрушающего контроля толщины таких двухслойных покрытий [1]. В 2012 году этот тип приборов был сертифицирован в Российской Федерации (внесен в Госреестр РФ под № 50930-12). Однако при проведении исследо-

вательских производственных испытаний указанного прибора была выявлена существенная зависимость его показаний, полученных при измерении толщины слоя хрома, от остаточной намагниченности никелевого покрытия, в первую очередь обусловленной технологией изготовления КС ЖРД. Результаты исследований показали, что индукция остаточного магнитного поля над поверхностью никелевого покрытия определяется в основном нормальной составляющей индукции поля, создаваемого постоянным цилиндрическим магнитом преобразователя магнитодинамического толщиномера, и может достигать ±5 мТл. Так как постоянный магнит, установленный в преобразователе, предназначенном для измерения толщины слоя хрома, создает относительно слабое поле, остаточная намагниченность никелевогопокрытия, расположенного под слоем хрома, приводит к дополнительной погрешности, которая в некоторых случаях может достигать десятков процентов [2].

В рамках программы Союзного государства «Мониторинг-СГ» (2013–2017 гг.) создан доработанный магнитодинамический толщиномер МТДП-1, оснащенный встроенной размагничивающей системой, принцип действия которой изложен в работе «Контроль толщины намагниченных никелевых покрытий доработанными магнитодинамическими приборами МТНП-1», опубликованной в настоящем сборнике. Так как прибор МТДП-1 комплектуется двумя съемными преобразователями, один из которых предназначен для измерения толщины слоя хрома, а другой - слоя никеля, размагничивающая катушка входит в состав каждого из этих преобразователей. Внешний вид такого прибора приведен на рисунке 1.

Таблица 1 – Результаты измерений толщины слоя хрома на слое никеля, полученные при различных магнитных состояниях никеля

Номер	Номер точки в сечении	Исходная намагниченность слоя никеля КС ЖРД		Слой никеля намагничен приставным магнитом				
				со знаком +		со знаком -		
		Остаточная	Ср. показан.,	Остаточная	Ср. показан.,	Остаточная	Ср. показан.,	
		индукц., мТл	MKM	индукц., мТл	MKM	индукц., мТл	МКМ	
IV	1	0,29	135	2,95	136	-2,79	134	
	2	0,38	123	4,79	123	-4,58	122	
	3	-0,27	132	3,54	132	-3,73	130	
	4	0,49	127	2,98	127	-2,56	126	
V	1	0,18	139	2,37	139	-2,69	139	
	2	0,69	129	3,33	128	-3,58	127	
	3	0,39	133	3,12	132	-3,42	132	
	4	0,17	149	2,97	148	-3,24	149	
VI	1	0,22	131	3,85	132	$-3,\!27$	130	
	2	-0,19	133	4,72	133	-4,51	133	
	3	-0,20	140	4,11	141	-3,95	140	
	4	0,17	126	3,98	127	-3,51	126	

Таблица 2 – Результаты измерений толщины слоя никеля под слоем хрома, полученные при различных магнитных состояниях никеля

Номер	Номер точки в сечении	Исходная намагниченность слоя никеля КС ЖРД		Слой никеля намагничен приставным магнитом				
				со знаком +		со знаком -		
		Остаточная индукц., мТл	Ср. показан., мкм	Остаточная индукц., мТл	Ср. показан., мкм	Остаточная индукц., мТл	Ср. показан., мкм	
IV	1	0,11	371	2,15	374	-3,43	371	
	2	0,21	425	4,44	426	-4,37	424	
	3	-0,17	362	3,24	366	-3,53	362	
	4	0,34	366	3,72	367	-3,54	363	
V	1	-0,12	350	3,31	350	-2,39	349	
	2	0,37	359	4,23	360	-4,36	358	
	3	0,26	362	3,02	364	-3,12	362	
	4	-0,13	340	1,99	342	-2,94	340	
VI	1	0,17	386	2,95	386	-2,87	384	
	2	0,19	403	3,97	405	-3,81	402	
	3	-0,31	394	3,71	395	-4,05	393	
	4	0,24	388	4,12	388	-3,74	386	

Для оценки эффективности эксплуатации в условиях производства доработанный магнитодинамический толщиномер МТДП-1, показанный на рисунке 1, был испытан в Университете ИТМО на натурной части КС ЖРД, имеющей двухслойное хромоникелевое покрытие в области ее критического сечения. Измерения толщин хрома и никеля выполнены в трех контрольных сечениях, расположение и номера которых приведены на рисунке 2.

- преобразователь для измерения толщины хрома, нанесенного на никелевое покрытие;
- 2 преобразовтель для измерения толщины никеля, расположенного под слоем хрома

Рисунок 1 — Доработанный магнитодинамический толщиномер МТДП-1, оснащенный размагничивающей системой

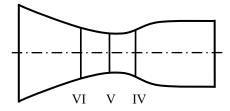


Рисунок 2 — Расположение сечений КС ЖРД при измерении толщины двухслойного хромоникелевого покрытия

Как и при проведении исследовательских испытаний доработанного магнитодинамического толщиномера МТНП-1, остаточная индукция была определена измерителем магнитных полей ИМП-1 [1]. Толщины слоев хрома и никеля при разных условиях создания намагниченности (в исходном состоянии КС ЖРД, а также после намагничивания слоя никеля приставным постоянным магнитом со знаком + или —) измерены по методике, реализованной в ходе указанных испытаний.

Приведенные в таблицах 1 и 2 данные свидетельствуют о том, что остаточная намагниченность никеля не оказывает влияния на результаты измерений толщин слоев хрома и никеля. Это подтверждает эффективность размагничивающей системы, встроенной в доработанный магнитодинамический толщиномер МТДП-1.

Литература

- 1. Приборы неразрушающего контроля, разработанные в ИПФ НАН Беларуси [Электронный ресурс]: официальный сайт государственного научного учреждения «Институт прикладной физики Национальной академии наук Беларуси». Режим доступа: http://iaph.bas-net.by/VDev/index.html. Дата доступа: 19.06.2018.
- 2. Лухвич, А.А. Влияние остаточной намагниченности на результаты контроля магнитодинамическими толщиномерами специальных покрытий камер сгорания жидкостных ракетных двигателей / А.А. Лухвич, О.В. Булатов, А.Л. Лукьянов // Шестой белорусский космический конгресс, Минск, 28-30 окт. 2014 г. : материалы: в 2-х т. / Объединенный институт проблем информатики НАН Беларуси. Минск, 2014. Т. 1. С. 58—61.

УДК 621.06

УСТРОЙСТВО ПРОВЕРКИ ОСТРОТЫ РЕЖУЩИХ КРОМОК МЕДИЦИНСКИХ СКАЛЬПЕЛЕЙ Киселев М.Г., Монич С.Г., Яхимович П.Г.

Белорусский национальный технический университет, Минск, Республика Беларусь

Скальпель или хирургический нож – медицинский инструмент, предназначенный для рассечения мягких тканей. В зависимости от конструкции и назначения выделяют множество видов скальпелей [2].

Медицинский скальпель состоит из таких компонентов как:

- 1. Режущая часть, которая состоит из режущей кромки, собственно лезвия, окончания (острого, закругленного).
- 2. Рукоятка. Может быть разных размеров, из различных материалов, начиная от металических сплавов и заканчивая пластмассой.
 - 3. Шейка.
 - 4. Обушка.

Рисунок 1 – Примеры выполнения хирургических ножей