в воздухе, по формуле:

ОЦЕНКА ВЛИЯНИЯ РАССЕЯННОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Магистрант гр. 7М1131 Новиченко А. В. Кандидат физ.-мат. наук, доцент Шахлевич Г. М. Белорусский государственный университет информатики и радиоэлектроники

Рассеянное излучение возникает при генерации полезного пучка излучения и обусловлено неидеальной конструкцией диафрагм формирователя пучка излучения, а также геометрическими размерами поля излучения и самого помещения, в котором проводятся испытания.

Оценка влияния рассеянного излучения должна производиться с использованием ионизационной камеры с соответствующей чувствительностью, колебания отклика которой в рассматриваемом спектральном диапазоне на единицу кермы в воздухе в зависимости от энергии и направления пучка невелики [1].

Оценка влияния рассеянного излучения выполняется в следующем порядке:

- 1. Подготовить к работе установку поверочную рентгеновского излучения и измерительное оборудование.
- 2. Провести не менее пяти измерений значений мощности кермы в воздухе и определить их среднеарифметическое значение.
- 3. Повторить п.2 для расстояний 0,5; 1 и 2,5 м от фокуса рентгеновской трубки (РТ).
 - 4. Проверить соблюдение закона обратных квадратов расстояний.

Рассчитывается коэффициент C_i представляющий собой произведение значения мощности кермы K_{ai} в i-й рабочей точке на квадрат соответствующего расстояния R_i , м, с учетом ослабления рентгеновского излучения

$$C_{i} = K_{ai} \cdot R_{i}^{2} \cdot e^{\mu Ri}$$

где μ — линейный коэффициент ослабления рентгеновского излучения в воздухе, м⁻¹, (для средней энергии 250 кэВ μ = 0,0142 м⁻¹). Рассчитывают среднее арифметическое значение коэффициента \overline{c} по всем рабочим точкам установки и определяют относительный разброс ΔC_i , %:

$$\Delta C_i = \frac{C_i - \overline{C}}{\overline{C}} \cdot 100 \%.$$

Результаты проверки считают положительными, если значения относительного разброса ΔC_i не превышают ± 4 %.

5. На каждом из расстояний провести измерения значений мощности кермы в воздухе в плоскости перпендикулярной оси пучка, на расстоянии, равном удвоенному радиусу пучка и определить их средние значения.

Значения мощности кермы в воздухе для рассеянного излучения должны составлять не более 5 % соответствующих значений мощности кермы в воздухе на центральной оси пучка [1].

На рисунке 1 схематично изображен формирователь поля. Где Fo- фокус рентгеновской трубки, A1-A3- диафрагмы, S- заслонка, F- фильтр, M- камера-монитор, P- точка испытаний, D- детектор [1].

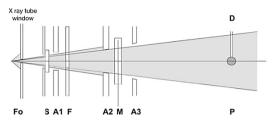


Рис. 1. Формирователь поля рентгеновского излучения

Результаты оценки влияния рассеянного излучения для диафрагмы диаметром 16,2 мм на разных расстояниях приведены в таблицах 1 и 2.

Таблица 1 – Мощности кермы на различных расстояниях

R от РТ, м		$\overset{ullet}{K}_{ai}$, мГр	/c	Среднее, мГр/с	C_i , м Γ р·м 2 /с	
0,5	2,2042	2,2042	2,2039	2,2042	0,5550	
1	0,5588	0,5588	0,5590	0,5588	0,5668	
2,5	0,0863	0,0865	0,0861	0,0863	0,5591	

Таблица 2 – Мощности кермы в плоскости перпендикулярной оси пучка

	- 1	1		· · · · · · · · · · · · · · · · · · ·		1	,
R от РТ, м	К _{ai} , мкГр/с	г от оси, мм	$\overset{ullet}{K}_{ai}$, мк Γ р/с	Р-ое излу- е, %	г от оси, мм	$\overset{ullet}{K}_{ai}$, мкГр/с	Рас-ое излуч-е, %
0,5	30,8	35	0,36	1,17	-35	0,32	1,04
1	13,1	55	0,18	1,36	-55	0,2	1,52
2,5	2,13	140	0,06	2,82	-140	0,06	2,82

Исходя из вышеизложенного, значения мощности кермы в воздухе за пределами центральной оси пучка не превышают требуемых 5 %, что свидетельствует о незначительном вкладе рассеянного излучения.

Литература

1. Dosimetry in diagnostic radiology: an international code of practice, Technical reports series № 457. – Vienna: IAEA, 2007.