УДК 621.9

В. А. Оковитый¹, Ф. И. Пантелеенко¹, д – р техн. наук, проф., В. В. Оковитый¹, В. М. Асташинский², П. П. Храмцов², В. В. Углов³

¹БНТУ, г. Минск, Беларусь

²Институт тепло - и массообмена имени А. В. Лыкова Национальной академии наук Беларуси, г. Минск, Беларусь

³Белорусский государственный университет, г. Минск, Беларусь Тел./Факс: (017)293-92-23; E-mail: scvdmed(a)bntu.by

РАЗРАБОТКА ПРОЦЕССА НАПЫЛЕНИЯИ ПОСЛЕДУЮЩЕЙ ВЫСОКО-ЭНЕРГЕТИЧЕСКОЙ ОБРАБОТКИ ПЛАЗМЕННЫХ ПОКРЫТИЙ НА ОСНОВЕ ДИОКСИДА ЦИРКОНИЯ НАЭЛЕМЕНТЫ ЭКРАНОВ ПРОТИВОМЕТЕОРНОЙ ЗАЩИТЫ

Основной причиной разрушения плазменных покрытий являются термомеханические напряжения, возникающие из-за неравномерного теплового расширения керамического слоя и слоев основного металла и неравномерного распределения температурного поля в покрытии. В рамках оптимизации параметров процесса плазменного напыления материала ZrO2. Оптимизация параметров на основе осаждения проводилась для максимизации коэффициента использования материала.

Ключевые слова: керамическое покрытие, плазменное напыление, коэффициент использования материала, оптимизация параметров.

V. A. Okovity, F. I. Panteleenko, V. V. Okovity, V. M. Astashinskiy, P. P. Hramcov, V. V. Uglov

DEVELOPMENT OF THE PROCESS OF SPRAYING UPON THE FOLLOWING HIGH POWER EN-GINEERING OF PLASMA COATINGS BASED ON ZIRCONIUM DIOXIDE, THE NUCLEAR ELECTRONS OF ANTIMETHEOUS PROTECTION SCREENS

The main cause of destruction plasma coatings are thermomechanical stresses arising from mismatch thermal expansion a ceramic and a base metal layers and uneven distribution the temperature field in the coating. As part of the optimization of the parameters of air plasma spraying process for the material ZrO_2 . Optimization of the parameters on the basis of the deposition was carried out to maximize the utilization rate of the material. **Keywords:** ceramic coating, plasma spraying, utilization rate of the material, optimization of the parameters.

В общем случае антиметиоритные покрытия представляет собой многослойную систему, включающую металлический подслой и внешний керамический слой. Термомеханические напряжения усугубляются действием остаточных напряжений, возникающих в покрытии при напылении, и ослабляются эффектами пластичности и ползучести, реализующимися в металлическом подслое [1-3].

В качестве материалов для керамического слоя антиметиоритных покрытий часто применяют композиции на основе частичного стабилизированного диоксида циркония (ЧСЦД) [4]. Это обусловлено рядом его свойств: сравнительно высоким коэффициентом линейного термического расширения и возможностью обеспечения высоких механических свойств упрочненной керамики, в частности ударной вязкости.

Оптимизация проводилась по методике, описанной в источник E[4]. На первом этапе проводилась оптимизация на основании получения максимального коэффициента использования материала. Вначале КИМ определяли при различных значения тока (400 A; 500 A; 600 A; 700 A) и расходах плазмообразующего газа R_{N2} (40; 45; 50; 55) л/мин, но с постоянной дистанцией напыления L=120 мм (рис. 1). На следующем этапе оптимальные значения дистанции напыления определялись с постоянными значениями тока

© Оковитый В.А., Пантелеенко Ф.И., Оковитый В.В., Асташинский В.М., Храмцов П.П., Углов В.В.; 2017

и величины расхода плазмообразующего газа (I=600 A; R_{N2}=50 л/мин) (рис. 2) и наконец для оптимальной дистанции напыления и постоянном значении R_{N2} изменялся ток (L=110мм, R_{N2}=50 л/мин) (рис. 3). Покрытия напылялись с и без охлаждения порошком фракционного состава < 50 мкм. Увеличение тока и расхода плазмообразующего газа (рис. 1) до определенных значений приводят к увеличению КИМ, т.к. эти параметры влияют на степень проплавления порошка [5-7]. Дальнейшее их увеличение приводит к тому, что частицы перегреваются и при ударе о подложку разбрызгиваются, следовательно КИМ уменьшается. При увеличении расхода N2 происходит уменьшение значений тока для максимального КИМ. Для R_{N2}=55 л/мин максимальный КИМ=56% соответствует I=450 A, для R_{N2}=50 л/мин максимальный КИМ=62% соответствует I=600 A, для R_{N2}=45 л/мин максимальный КИМ=57% соответствует I=650 А. Похожая тенденция сохраняется и при изменении дистанции напыления (рис. 2) при оптимизации значения расхода N_2 и тока (в нашем случае $R_{N2}=50$ л/мин, I=600 A). При малых дистанциях напыления частица не успевает достаточно нагреться и достигает подложки с температурой < t_{пл}. [8].В нашем случае возрастание КИМ идет до L=110 мм, дальнейшее увеличение дистанции напыления приводит к тому, что частица из-за длительного нахождения в струе переплавляется и при ударе о подложку разбрызгивается, соответственно КИМ падает [9].

●- R_{N2}=55л/мин , ▲- R_{N2}=50 л/мин,

▼- R_{N2}=45 л/мин, ∎- R_{N2}=40 л/мин

Рисунок 1. Влияние тока и расхода плазмообразующего газа (N₂) на КИМ при напылении покрытий на основе ZrO₂ L=120 мм (размер порошка менее 50 мкм)

Рисунок 2. Влияние дистанции напыления на величину КИМ при напылении покрытий на основе $ZrO_2 R_{N2}=50$ л/мин, I=500 A

 – расход сжатого воздуха 1,5 м3/мин р=6 атм; ▲ – расход сжатого воздуха 1 м3/мин р=4 атм; ■– без охлаждения

Рисунок 3. Влияние тока на величину КИМ при напылении покрытия на основе ZrO2 при L=110 мм, RN2=50 л/мин (размер порошка менее 50 мкм)

После воздействия на покрытие компрессионными плазменными потоками в атмосфере азота кубическая модификация оксида циркония сохраняется как основная фаза, присутствующая в покрытия, что обнаружено с помощью рентгеноструктурного анализа (рис. 4). При этом исчезает обнаруженная в исходном состоянии фаза моноклинной модификации оксида циркония. Параметр решетки кубической модификации оксида циркония составляет 0,5174 нм. Результаты расшифровки полученной рентгеновской дифрактограммы представлены в таблице 1. Ввиду использования азота в качестве плазмообразующего вещества происходит его взаимодействие с атомами циркония покрытия и образуется нитрид циркония *c*-ZrN с кубической кристаллической решеткой (параметр решетки 0,4580 нм).

Рисунок 4. Рентгеновская дифрактограмма покрытия после воздействия компрессионным плазменным потоком

Анализ морфологии поверхности покрытия до воздействия компрессионными плазменными потоками, проведенный с помощью растровой электронной микроскопии, показал наличие развитого рельефа поверхности с частичным ее оплавлением (рис. 5). Структура самого покрытия представлена совокупностью крупных (5 – 7 мкм) и мелких (1 – 2 мкм) частиц оксида циркония, спеченных между собой (рис. 6).

Рисунок 5. РЭМ-изображение участка поверхности покрытия до воздействия компрессионными плазменными потоками (увеличение x1000)

Рисунок 6. РЭМ-изображение участка поверхности покрытия до воздействия компрессионными плазменными потоками (увеличение x5000)

После воздействия компрессионными плазменными потоками на сформированное покрытие происходит плавление его поверхностного слоя и его скоростная кристаллизация. В результате возникновения внутренних механических напряжений в закристаллизовавшейся части происходит растрескивание поверхностного слоя (рис. 9).

Рисунок 7. РЭМ-изображение участка поверхности покрытия после воздействия компрессионными плазменными потоками (увеличение x200)

Выводы. Проведена оптимизация параметров APS (плазменное напыление на воздухе) процесса для материала ZrO₂. Оптимизация параметров напыления проводилась на основании получения максимального коэффициента использования материала. На оптимальных режимах (ток дуги - 600А; дистанция напыления-110 мм; расход плазмообразующего газа азота-50 л/мин; фракционный состав порошка диоксида циркония <50 мкм; расход сжатого воздуха для охлаждения 1 м³/мин; р=4 атм) мы получаем антиметиоритных покрытий на основе диксида циркония с коэффициентом использования материала -62% и общую пористость керамического слоя -6%. После воздействия на покрытие компрессионными плазменными потоками в атмосфере азота кубическая модификация оксида циркония является основной фазой, присутствующей в покрытии. Структура самого покрытия представлена совокупностью крупных (5 – 7 мкм) и мелких (1 – 2 мкм) частиц оксида циркония, спеченных между собой.

ЛИТЕРАТУРА:

1. Акишин, А. И. Космическое материаловедение. Методическое и учебное пособие / А. И. Акишин – М: НИИЯФ МГУ, 2007. – 209 с.

2. Новые наукоемкие технологии в технике. Энциклопедия. Воздействие космической среды на материалы и оборудование космических аппаратов / под ред. Л. С. Новикова, М. Н. Панасюка – М.: Изд-во ЭНЦИТЕХ, 2001. – Т. 16, 17.

3. Effects of Space Conditions on materials. Ed. A.I. Akishin, 2001, Nova Science Publ., N. J., p. 199.

4. Оковитый, В. А. Создание градиентных плазменных покрытий на основе диоксида циркония / В. А. Оковитый // Международная научно-техническая конференция «Инновационные технологии в машиностроении» Полоцк. 19 - 20.10.11. С. 239-241.

5. Пат. 15565 Респ. Беларусь, МПК В22F 3/23; С04В 35/10 Способ получения композиционного керамического материала / Оковитый В. А., Девойно О. Г., Пантелеенко А. Ф., Оковитый В. В. заявитель - БНТУ -№ а 2010990; заявл. 29.06.2010, опубл. 30.12.11 // Афіцыйны бюл. Нац. Цэнтр інтэлектуал. уласнасці. – 2012. – № 15.

6. Пантелеенко, Ф. И. Оптимизация процесса напыления керамических плазменных покрытий на модели элементов экранов противометеорной защиты / Ф. И. Пантелеенко, В. А. Оковитый, О. Г. Девойно, В. А. Асташинский // Тезисы международной научно-технической конференции «Машиностроение и техносфера 21 века», 15 - 20 сентября 2014 г., г. Севастополе. – Т. 2. – С. 123-127.

7. Девойно, О. Г. Плазменные теплозащитные покрытия на основе диоксида циркония с повышенной термостойкостью / О. Г. Девойно, В. В. Оковитого. // «Наука и техника», БНТУ – Минск, 2014. – Вып. 6. – С. 3 -7.

8. Пантелеенко, Ф. И. Разработка технологии нанесения плазменных композиционных покрытий на основе диоксида циркония для систем космических аппаратов / Пантелеенко Ф. И., Оковитый В. А., Девойно О. Г., Асташинский В. М., Оковитый В. В., Соболевский С. Б. – «Наука и техника», БНТУ – Минск, 2015. – Вып. 3. – С. 5-9.

9. Оковитый, В. В. Выбор оксидов для стабилизации диоксида циркония при получении теплозащитных покрытий аппаратов / В. В. Оковитый // «Наука и техника», БНТУ – Минск, 2015. – Вып. 5. – С. 26-32.

Поступила в редколлегию 29.05.2017 г.