МАГНИТНЫЕ И ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА ВЫСОКОКОЭРЦИТИВНЫХ ФЕРРИТОВ SR1–XSMXFE12–XZNXO19

У Цзэ¹, Л.А. Башкиров², С.В. Слонская², С.В Труханов³, Л.С. Лобановский³, А.И. Галяс³

¹Белорусский государственный технологический университет г. Минск, Беларусь,

²Белорусский государственный аграрный технический университет г. Минск, Беларусь,

³Научно-практический центр НАН Беларуси по материаловедению г. Минск, Беларусь,

Ферриты BaFe₁₂O₁₉, SrFe₁₂O₁₉ со структурой магнетоплюмбита являются одноосными ферримагнетиками, имеют большую величину коэрцитивной силы (H_c) и широко используются для изготовления постоянных керамических магнитов и в различных устройствах техники CBЧ [1-3]. В работе [4] показано, что в системе Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ частичное замещение ионов стронция Sr²⁺ ионами La³⁺ и ионов Fe³⁺ ионами Co²⁺ до x = 0.2 приводит к уменьшению намагниченности, но одновременно с этим происходит увеличение поля анизотропии, что позволяет из твердого раствора Sr_{0.8}La_{0.2}Fe_{11.8}Co_{0.2}O₁₉ изготавливать анизотропные постоянныемагниты с величиной $(BH)_{max} = 38.4 \text{ кДж/m}^3$.

Целью настоящей работы является получение ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0, 0.1, 0.2, 0.3, 0.4) со структурой магнетоплюмбита, изучение их намагниченности насыщения, остаточной намагниченности, коэрцитивной силы и электропроводности на постоянном токе.

Твердофазным методом на воздухе при 1473 К были получены образцы ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (x = 0, 0.1, 0.2, 0.3, 0.4). Удельная намагниченность и петли магнитного гистерезиса образцов ферритов были измерены вибрационным методом на универсальной высокополевой измерительной системе (Cryogenic Ltd London, 41S) в магнитом поле до 14 Тл при температурах 5 и 300 К.

Рентгенофазовый анализ показал, что образцы с x < 0.2 были однофазными, а при $0.2 \le x \le 0.4$, кроме основной фазы со структурой магнетоплюмбита, содержали также фазу α -Fe₂O₃, количество которой постепенно увеличивалось при повышении x до 0.4, и в образцах с $0.3 \le x \le 0.4$ в небольшом количестве присутствовали также фазы SmFeO₃. Это показывает, что предельная величина степени замещения x ионов Sr²⁺, Fe³⁺ ионами Sm³⁺, Zn²⁺ в феррите SrFe₁₂O₁₉ при 1473 K чуть равна 0.2.

Полученные для образцов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ ($0 \le x \le 0.4$) температурные зависимости удельной намагниченности (σ_{yg}), измеренной методом Фарадея в магнитном поле 684.4 кА/м (0.86 Тл) в интервале температур 77–900 К, позволили определить температуру Кюри (T_c) для этих ферритов, значения которой приведены в табл. 1. Установлено, что увеличение

параметра состава *x* образцов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ приводит к постепенному уменьшению температуры Кюри от 731 К для $SrFe_{12}O_{19}$ до 717 К для образца с x = 0.4.

На рис. 1 в качестве примера приведены петли гистерезиса удельной намагниченности для SrFe₁₂O₁₉, измеренной при температурах 5 и 300 К в 11140.8 кА/м (14 Тл). полях до Ha рис. 1 магнитных видно, что намагниченность насыщения феррита стронция SrFe₁₂O₁₉ достигается в полях 2387.3 кА/м (3 Тл), выше которых небольшое около происходит намагниченности безгистерезисное возрастание 3a счет парапроцесса. Подобные петли магнитного гистерезиса удельной намагниченности при температурах 5 и 300 К в магнитных полях до 14 Тл получены и для других образцов ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ (0 < x \leq 0.4). Однако на рис. 2 для лучшей наглядности они приведены в магнитных полях лишь до 2387.3 кА/м (3 Тл), т.е. без участка линейной зависимости $\sigma_{y_{\pi}}$ от *H*, но которые в интервале магнитных полей 3-14 Тл присутствуют на всех экспериментально полученных петлях магнитного гистерезиса исследованных ферритов. Путем экстраполяции линейного участка зависимости $\sigma_{y\pi}$ от H до H = 0 для SrFe₁₂O₁₉ (рис. 1) и для всех других исследованных ферритов при температурах 5 и 300 К определены значения удельной самопроизвольной намагниченности (σ_0), значения которых приведены в табл. 1. Для однофазных образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ с x = 0, 0.1, 0.2 по формуле

$$n_{\rm o} = \frac{\sigma_{\rm o} \cdot M}{5585},$$

где M – молярная масса соответствующего феррита, 5585 – величина, равная произведению величины магнетона Бора (μ_B) на число Авогадро, рассчитаны значения самопроизвольной намагниченности (n_o), выраженной в магнетонах Бора на одну формульную единицу феррита (табл. 1).

Рис. 1. Петли гистерезиса удельной намагниченности при температурах 5 К (1) и 300 К (2) для SrFe₁₂O₁₉

Рис. 2. Петли гистерезиса удельной намагниченности σ_{yd} при температурах 5 К (1) и 300 К (2) для $Sr_{1-x}Sm_xFe_{12-x}$ _xZn_xO₁₉ при x = 0.1 (a), 0.2 (б), 0.3 (в), 0.4 (г)

3a удельной величину намагниченности насыщения (σ_s) соответствующего феррита принималась величина удельной намагниченности, измеренной в магнитном поле 3 Тл. Данные, приведенные в табл. 1, для ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$ показывают, что величины σ_s ЛИШЬ меньше величин самопроизвольной намагниченности незначительно σ_{0} . Данные, приведенные в табл. 1, показывают, что величины самопроизвольной намагниченности (n_0) одной формульной единицы исследованных ферритов Sr₁. _xSm_xFe_{12-x}Zn_xO₁₉ со степенью замещения x = 0.1 при температурах 5 и 300 К на 12.9 и 10.1% соответственно больше, чем для базового феррита SrFe₁₂O₁₉, а коэрцитивная сила $_{\sigma}H_{c}$ при 5 и 300 К для феррита с x=0.1 на 57.2 и 23.3% соответственно меньше, чем для SrFe₁₂O₁₉

Таблица 1. Температура Кюри (T_c), удельная самопроизвольная намагниченность (σ_o), удельная намагниченность насыщения (σ_s), самопроизвольная намагниченность одной формульной единицы (n_o), удельная остаточная намагниченность (σ_r), коэрцитивная сила (_σH_c) образцов ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ при 5 и 300 K

x	<i>Т</i> _с , К	T = 5 K					<i>T</i> = 300 K			
		σ ₀ , Α·m²/κγ	$n_{ m o}, \ \mu_B$	σ _s , А∙м²/кг	σ _r , Α∙м²/κγ	_б <i>H</i> _c , кА/м	$n_{ m o},$ μ_B	σ _s , А∙м²/кг	σ _r , А∙м²/кг	_б <i>H</i> _c , кА/м
0	731	92.78	17.63	91.81	41.99	155.24	12.63	62.56	31.12	289.31
0.1	723	103.99	19.90	102.68	35.89	66.52	13.90	72.3	34.48	221.75
0.2	721	96.64	18.62	96.21	33.48	53.71	12.96	66.31	30.32	216.50
0.3	719	88.90		88.59	29.86	71.05		61.18	27.95	216.50
0.4	717	73.06		71.71	25.3	71.93		44.14	21.32	225.81

Рис. 3. Зависимости удельной электропроводности (æ) от температуры T (a) и ln æ от T⁻¹ (б) ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ при x=0 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5)

Приведенные на рис. З зависимости удельной электропроводности (æ) от температуры T(a) и lnæ от $T^{-1}(b)$ для образцов ферритов $\mathrm{Sr}_{1-x}\mathrm{Sm}_x\mathrm{Fe}_{12-x}\mathrm{Zn}_x\mathrm{O}_{19}$ показывают, что электропроводность всех исследованных образцов ферритов с повышением температуры увеличивается и является полупроводниковой. Для однофазных образцов повышение степени замещения x от 0 до 0.2 приводит

при одинаковых температурах к уменьшению удельной электропроводности. Так, например, удельная электропроводность при 900 К (a_{900}) для образцов ферритов с x = 0, 0.1, 0.2 равна $17.0 \cdot 10^{-3}, 12.2 \cdot 10^{-3}, 3.7 \cdot 10^{-3}$ См·см⁻¹. В области составов с x = 0.3, 0.4 удельная электропроводность изменяется незначительно и при 900 К она равна $4.5 \cdot 10^{-3}, 3.1 \cdot 10^{-3}$ См·см⁻¹ соотвествено. Для всех исследованных ферритов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ на прямолинейных зависимостях lnæ от T^{-1} (рис. 3, δ) наблюдается излом при температуре $T_{изл}$, как и в системе Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ [5].

Таблица 2. Энергия активации электропроводности ниже (E_{A1}) и выше (E_{A2}) температуры $T_{u_{33}}$, величина $\Delta E = E_{A2} - E_{A1}$ для ферритов $Sr_{1-x}Sm_xFe_{12-x}Zn_xO_{19}$

х	Т _{изл} , К	Е _{А1} , эВ	Е _{А2} , эВ	ΔΕ, эΒ
0	860	0.54	0.59	0.05
0.1	920	0.60	0.74	0.14
0.2	860	0.86	0.93	0.07
0.3	750	0.90	0.99	0.09
0.4	840	0.99	1.04	0.05

Полученные результаты (табл. 2) показывают, что увеличение степени замещения *x* ионов Sr²⁺ в феррите SrFe₁₂O₁₉ ионами Sm³⁺ и ионов Fe³⁺ ионами Zn²⁺ от 0 до 0.4 приводит к повышению энергии активации электропроводности E_{A1} , E_{A2} от значений 0.54, 0.59 эВ соответственно для феррита SrFe₁₂O₁₉ до величин 0.99, 1.04 эВ для твердого раствора Sr_{0.6}Sm_{0.4}Fe_{11.6}Zn_{0.4}O₁₉. Разница между E_{A2} и E_{A1} ($\Delta E = E_{A2} - E_{A1}$) при увеличении *x* изменяется незначительно: от 0.05 эВ для SrFe₁₂O₁₉ до 0.14, 0.07 эВ для твердых растворов Sr_{1-x}Sm_xFe_{12-x}Zn_xO₁₉ с *x* = 0.1, 0.2 соответственно.

Литература

- 1. Смит Я., Вейн Х. Ферриты. Физические свойства и практическое применение. М.: ИЛ, 1962. 504 с.
- 2. Летюк Л.М., Балбашов А.М., Круточин Д.Г. и др. Технология производства материалов магнитоэлектроники. М.: Металлургия, 1994. 415 с.
- 3. Крупичка С. Физика ферритов и родственных им магнитных окислов. М.: Мир, 1976. Т. 2. 504 с.
- 4. Taguchi H., Takeishi T., Suwa K. et al. High Energy Ferrite Magnets // J. Physique IV: JP. 1997. V. 7. № 1. P. C1-311–C1-312.
- 5. Башкиров Л. А., Дудчик Г.П., Крисько Л.Я. и др. Кристаллическая структура. магнитные и электрические свойства ферритов Sr_{0,75-3x/4}Ca_{0,25-x/4}La_xFe_{12-x}Co_xO₁₉, Sr_{1-x}La_xFe_{12-x}Co_xO₁₉ // Свиридовские чтения. Минск: БГУ. 2008. С. 100–106.