КОАГУЛЯНТ-ФЛОКУЛЯНТ ДЛЯ ОЧИСТКИ СТОЧНЫХ ВОД НА ОСНОВЕ ПРОИЗВОДСТВЕННЫХ СЕРНОКИСЛОТНЫХ СТОКОВ

В.О. Шабловский, А.В. Тучковская, В.А. Рухля, О.Г. Пап, О.В. Ивашина Учреждение БГУ «НИИ физико-химических проблем» e-mail: shablovski@bsu.by

В настоящее время одним из методов очистки сточных вод является реагентный, основанный на использование коагулянтов неорганической или органической природы. Коагулянты применяются для очистки сточных и природных вод от истинно растворенных и коллоидно-дисперсных веществ. При этом одновременно снижаются цветность, бактериальная загрязненность, а в отдельных случаях запахи и привкусы воды. В качестве коагулянтов для очистки сточных вод на промышленных предприятиях используют сульфат алюминия, сульфаты железа, алюминат натрия, гидроксохлорид алюминия, алюмокалиевые и алюмоаммониевые квасцы, хлорное железо и др.

Для интенсификации процессов коагуляции и осветления применяют флокулянты. Гидролиз коагулянтов является одним из наиболее важных процессов коагуляции, и полнота его протекания влияет как на качество и эффективность очистки, так и на расход коагулянта. Поэтому процесс хлопьеобразования и последующей седиментации хлопьев может быть ускорен добавлением флокулянтов. Наибольшее распространение получили такие флокулянты как активная кремнекислота, крахмал, производные целлюлозы, полиакриламид и т.п. При этом минерализация очищаемой воды не изменяется, что имеет большое значение при сбросе очищенных сточных вод в водоемы. Совместное использование коагулянтов и флокулянтов позволяет в ряде случаев достичь установленных нормативов качества очистки воды.

Потребности РБ в коагулянтах и флокулянтах оцениваются в десятки тысяч тонн. Основную массу солей алюминия, использующихся в качестве коагулянтов, производят в мире на основе кислотного растворения дефицитного и дорогостоящего гидроксида алюминия. В РБ такое сырье практически отсутствует. В то же время, на ряде промышленных предприятий (машиностроительных, приборостроительных) В процессе образуется большое количество сернокислотных стоков. Авторами работы предложено использовать их для получения коагулянта-флокулянта.

Предлагаемый технологический процесс получения коагулянтафлокулянта включает следующие технологические стадии: 1) разложение алюминийсодержащего природного сырья растворами сернокислотных стоков; 2) отделение нерастворимого осадка от раствора коагулянта фильтрованием либо декантацией.

Полученный раствор, наряду с сульфатом алюминия, содержит растворенную кремнекислоту (44,73-46,0%), которая в процессе очистки воды выполняет роль флокулянта. В продуктах переработки содержится также сульфат железа, в присутствии которого достигается лучший результат

коагулирования, чем при использовании только сульфата алюминия. В результате получается высокоэффективный коагулянт-флокулянт, имеющий ряд преимуществ перед представленными на рынке РБ товарными продуктами: более широкий интервал температур процесса 6-30 °C, более широкую область оптимальных значений рН среды — 3,5-8,5, большую прочность и гидравлическую крупность хлопьев, возможность использования для вод с более широким диапазоном солевого состава, способность устранять вредные запахи и привкусы, обусловленные присутствием сероводорода. Кроме того, для достижения желаемого эффекта требуется в 1,5 — 2,0 раза меньшая доза разработанного коагулянта-флокулянта, чем при использовании коагулянта на основе чистого сульфата алюминия.

По разработанной технологии был изготовлен коагулянт-флокулянт на основе природного алюмосиликата нефелина и отходов сернокислотного травления, образующихся при поверхностной очистке деталей из стали на РУП «МТЗ». На очистных сооружениях этого же предприятия были проведены испытания полученного коагулянта-флокулянта для очистки сточных вод производства. Результаты испытаний представлены в таблице.

1 coysibiaidi nelibitainin cio ilibix bod 1 5 11 (1111 5//	Результаты	испытаний	сточных	вод	ΡУΠ	«MT3»
--	------------	-----------	---------	-----	-----	-------

No	№ пробы	рН	Взвеш.	Сухой	Нефте-	ХПК	Хром	Железо	Цинк	Никель	Сви-
			вещ-ва	оста-	продук						нец
				ток	-ТЫ						
		Ед.	мг/дм ³	мг/дм ³	мг/дм ³	$M\Gamma O_2/дм^3$	$M\Gamma/дM^3$	$M\Gamma/дM^3$	$M\Gamma/дM^3$	мг/дм ³	$M\Gamma/дM^3$
1	2	3	4	5	6	7	8	9	10	11	12
1	Проба до	7,36	123	666	7,188	228	<0,1	6,731	0,345	< 0,1	< 0,1
	очистки										
2	Проба № 1	6,85	10	854	1,19	185	<0,1	3,686	0,177	<0,1	<0,1
3	Проба № 2	6,03	8	942	1,03	188	<0,1	4,570	0,315	<0,1	<0,1
4	Проба № 3	7,0	14	678	0,83	212	<0,1	0,553	<0,1	<0,1	< 0,1
5	Проба № 4	6,43	16	830	0,88	224	<0,1	6,110	0,205	<0,1	< 0,1
6	Проба № 5	7,18	12	684	1/02	221	<0,1	0,861	<0,1	<0,1	< 0,1
7	Проба № 6	6,56	18	768	0,95	212	<0,1	5,333	0,243	<0,1	< 0,1
8	Проба № 7	6,97	8	646	1,01	221	<0,1	1,821	<0,1	<0,1	< 0,1
9	Проба № 8	6,60	4	786	0,86	190	<0,1	3,446	0,181	<0,1	<0,1
10	Проба № 9	7,06	10	700	0,82	160	<0,1	3,494	0,109	<0,1	<0,1
11	Проба №10	6,28	14	1038	0,78	170	<0,1	3,641	0,319	<0,1	<0,1

Результаты испытаний показали, что содержание взвешенных веществ после обработки коагулянтом-флокулянтом в сравнении с исходной (до очистки) водой снижается в 6-20 раз, содержание нефтепродуктов в 7-9 раз, содержание цинка и железа в 1,5-3 раза.

Коагулянт-флокулянт, полученный на основе сернокислотных стоков и природного алюминийсодержащего сырья, эффективно очищает сточную воду от всех основных примесей, в том числе от нефтепродуктов, взвешенных веществ, тяжелых металлов, делая ее пригодной для слива в коммунальную канализацию г. Минска.