Е.С. ГОЛУБЦОВА, д-р техн. наук (БНТУ), Н.Б. БАЗЫЛЕВ, канд. физ.-мат. наук (ИТМО НАН Б), Н.Б. КАЛЕДИНА (БГТУ), Л.В. ТРИБУШЕВСКИЙ (БНТУ)

ВЛИЯНИЕ ТЕХНОЛОГИЧЕСКИХ ФАКТОРОВ ЛАЗЕРНОЙ СВАРКИ И ЕЕ КОМБИНАЦИИ СО СВАРКОЙ ТИГ ПРИ ФОРМИРОВАНИИ СТЫКОВЫХ СОЕДИНЕНИЙ СРЕДНЕУГЛЕРОДИСТОЙ СТАЛИ СИСТЕМЫ Fe-Cr-Mn-Si. Сообщение 3. ВЛИЯНИЕ ИСПОЛЬЗУЕМОЙ МОЩНОСТИ, СОСТАВА ЗАЩИТНОЙ СРЕДЫ НА ШИРИНУ СВАРНЫХ ШВОВ

В следующем эксперименте исследовали влияние толщины металла ($x_1 = -1$ (3 мм); $x_1 = +1$ (6 мм)), используемой мощности *P* ($x_2 = -1$ (3 кВт); $x_2 = +1$ (4,4 кВт)) и защитной среды ($x_3 = -1$ (CO₂); $x_3 = 0$ (Ar); $x_3 = +1$ (Ar + 17 % CO₂ +1 % O₂)) на $y_1 = v_{cB}$; $y_2 = q/v_{cB}$; y_3 – ширина лицевого шва; y_4 – ширина шва с обратной стороны.

Для проведения эксперимента был использован план $2 \times 2 \times 3$, где 2 – два уровня толщины металла и мощности *P* кВт, и 3 – три уровня среды газа.

Матрицы плана 2×2×3 и результаты эксперимента приведены в таблице 1.

N⁰	x_1	x_2	<i>x</i> ₃	$x_1 x_2$	$x_1 x_3$	$x_2 x_3$	\tilde{o}_3^2	\mathcal{Y}_1	<i>Y</i> 2	<i>y</i> ₃	\mathcal{Y}_4
1	2	3	4	5	6	7	8	9	10	11	12
1	_	_	_	+	+	+	+	30	360	3,0	2,5
2	—	—	0	+	0	0	0	30	360	2,6	2,8
3	—	_	+	+	_	_	+	30	360	2,5	3,0
4	_	+	_	-	+	_	+	150	105,6	1,1	1,3
5	—	+	0	-	0	0	0	150	105,6	1,1	1,3
6	—	+	+	—	-	+	+	150	105,6	1,4	1,1

Таблица 1 – Матрица плана 2×2×3 и результаты эксперимента

Окончание таблицы 1

1	2	3	4	5	6	7	8	9	10	11	12
7	+	_	_	_	_	+	+	15	392	2,9	3,0
8	+	-	0	-	0	0	0	12	398	2,94	3,15
9	+	_	+	-	+	_	+	12	398	2,94	3,20
10	+	+	_	+	-	-	+	60	264	2,8	1,0
11	+	+	0	+	0	0	0	48	330	3,6	3,3
12	+	+	+	+	+	+	+	48	330	4,1	3,7
Σ_1	-345	477	-15	-243	-15	-9	495	735	_	-	-
Σ_2	714	-966	12	538	72	60	2370		3510	_	-
Σ_3	7,6	-2,8	1,14	6,22	1,54	2,1	20,7	_	_	31	_
Σ_4	5,33	-5,93	3,2	3,27	2,5	1,8	18,78	_	_	_	29,33

Ошибки опытов соответственно составили: $S_1 = 3,06$ ($S_1^2 = 9,38$); $S_2 = 14,6$ ($S_2^2 = 213,16$); $S_3 = 0,13$ ($S_3^2 = 0,0169$); $S_4 = 0,244$ ($S_4^2 = 0,015$); t = 1,782.

Для этого плана $A_0 = 0,25$; $A_{01} = A_{02} = 0$; $A_{03} = 0,25$; $A_1 = A_2 = 0,08333$; $A_3 = 0,125$; $A_{11} = 0$; $A_{22} = 0$; $A_{33} = 0,75$; $A_{12} = 0,08333$; $A_{13} = A_{23} = 0,125$.

После статистической обработки результатов эксперимента получили следующее уравнение регрессии:

$$y_1 = 60 - 29x_1 + 40x_2 - 2x_3 - 20x_1x_2 - 2x_1x_3 - 1,13 x_2x_3 + 1,9 \tilde{o}_3^2.$$
(1)

Расчет коэффициентов этого уравнения проводили по формулам

$$\boldsymbol{\varepsilon}_0 = A_0(0y) - A_{01}(11y) - A_{02}(22y) - A_{03}(33y); \tag{2}$$

$$e_1 = A_1(1y); \ e_2 = A_2(2y); \ e_3 = A_3(3y);$$
 (3)

$$e_{12} = A_{12}(12y); \ e_{13} = A_{13}(13y); \ e_{23} = A_{23}(23y);$$
 (4)

Значимость коэффициентов уравнения (1) проверяли путем сравнения их абсолютных величин с доверительными интервалами:

 $\Delta \hat{a}_0 = t \cdot S_1 \sqrt{A_0} = 2,73; \ \Delta \hat{a}_1 = \Delta \hat{a}_2 = t \cdot S_1 \sqrt{A_{01}} = 1,574; \ \Delta e_3 = 1,93; \ \Delta e_{12} = 1,574; \ \Delta e_{13} = \Delta e_{23} = 1,9; \ \Delta e_{33} = 3,4.$

Следовательно, коэффициенты *в*₂₃ и *в*₃₃ незначимы (равны нулю). Уравнение (1) примет вид:

$$y_1 = V_{\rm cB} = 60 - 29x_1 + 40x_2 - 2x_3 - 20x_1x_2 - 2x_1x_3.$$
(6)

Графическое представление полученной зависимости (6) представлено на рисунке 1.

Рисунок 1 – Графическое представление зависимости (6)

Это уравнение адекватно, т.к. $S_{a\ddot{a}}^2 = \frac{67}{12-6} = 11,67$, а $F = \frac{11,67}{9,32} = 1,19 < F_{\kappa p} = 3,1$ при $\alpha = 0,05$; $f_1 = 6$ и $f_2 = 12$.

Из (6) видно, что наибольшее влияние на скорость сварки y_1 оказывает x_2 (P, кВт), но и влияние x_1 (толщины пластины) тоже велико: $y_{1max} = 150$ при $x_1 = -1$ (3 мм) и $x_2 = +1$; P = 4,4 кВт.

Для второго параметра ($y_2 = q/v_{cB}$) получено адекватное уравнение, т.к. F = 2,3 < 3,1:

$$y_2 = q/v_{\rm cB} = 299 + 60x_1 - 81x_2 + 45x_1x_2. \tag{7}$$

Рисунок 2 дает наглядное представление полученной зависимости (7).

Рисунок 2 – Графическое представление зависимости (7)

Здесь наибольшее влияние на q/v_{cB} также оказывает x_2 (P, кВт), но максимальная величина $y_{max} = q/v_{cB} = 398$ будет при $x_1 = +1$ и $x_2 = -1$ (толщина 6 мм; P = 3 кВт).

Для ширины наружного шва y_3 получено адекватное уравнение, т.к. $F = 5, 7 < F_{\kappa p} = 9,6$ при $\alpha = 0,001; f_1 = 5; f_2 = 11:$

$$y_3 = 2,6 + 0,63x_1 - 0,23x_2 + 0,14x_3 + 0,52x_1x_2 + 0,19x_1x_3 + 0,26x_2x_3.$$
 (8)

На рисунке 3 дана графическая интерпретация зависимости (8).

Здесь наибольшее влияние оказывает x_1 (толщина свариваемой пластины). $y_{3max} = 4,1$ мм при $x_1 = +1; x_2 = +1$ и $x_3 = +1$.

Для y_4 (ширина шва с обратной стороны) получено адекватное уравнение при $S_4 = 0,244$, где

$$y_4 = 2,625 + 0,44x_1 - 0,494x_2 + 0,4x_3 + 0,27x_1x_2 + 0,33x_1x_3 + 0,23x_2x_3 - 0,275\delta_3^2.$$
(9)

Рисунок 4 дает графическое представление полученной модели (9).

Рисунок 3 – Графическая интерпретация зависимости (8)

Рисунок 4 – Графическое представление модели (9)

Здесь все коэффициенты уравнения оказались значимыми. Это уравнение адекватно, т.к. $S_{\dot{a}\ddot{a}}^2 = 0.418$, а $F = \frac{0.418}{0.059536} = 7$, $F_{\kappa p} = 9.6$,

при $\alpha = 0,001, f_1 = 4$ и $f_2 = 11.$

Анализ таблицы 1 показывает также, что между y_1 ; y_2 ; y_3 и y_4 существует корреляционная связь, т.к. коэффициенты парной корреляции r_{ij} соответственно равны: $r_{1,2} = 0,999$; $r_{1,3} = -0,982$; $r_{1,4} = 0,745$; $r_{2,3} = 0,972$; $r_{2,4} = 0,904$ при $r_{\kappa p} = 0,457$ ($\alpha = 0,1$; f = 12).

Эту связь можно выразить в виде уравнений:

$$y_2 = 423, 5 - 2, 12y_1; \tag{10}$$

$$y_3 = 3, 1 - 0,0133y_1; \tag{11}$$

$$y_4 = 3,313 - 0,014y_1; \tag{12}$$

$$y_3 = 0,578 + 0,006y_2; \tag{13}$$

$$y_4 = 0,211 - 0,917y_3. \tag{14}$$

Наличие таких уравнений позволяет, зная один из этих параметров, рассчитать значения остальных при самых разных уровнях.

Если толщина свариваемого металла больше 6 мм, например, 10,4 мм, то можно найти связь между исследуемыми параметрами, толщиной металла (x_1), мощностью $P(x_2)$, используя план эксперимента 2×2, где 2 – два уровня толщины металла (3 и 10,4 мм) и два уровня мощности P (3 и 4,4 кВт). Матрица такого плана и результаты испытаний приведены в таблице 2.

N⁰	x_1	x_2	$x_1 x_2$	<i>y</i> 1	<i>y</i> ₂	<i>y</i> ₃	<i>Y</i> 4	Примечание
1	_	_	+	30	360	3,0	2,5	
2	_	+	-	150	105,6	1,1	1,3	Сварка
3	+	_	-	10,5	1267,2	5,64	4,6	велась в СО2
4	+	+	+	12,5	1508,5	9,63	7,54	
Σ_1	-157	122	-118	203	-	-	-	
Σ_2	2310	-12	436	-	3242	-	-	
Σ_3	11,17	2,09	5,89	_	_	19,37	_	
Σ_4	8,34	1,74	4,14	_	_	_	15,94	

Таблица 2 – Матрица плана 2×3

Сварка производилась в СО₂.

Для плана 2×2: $A_0 = 0,25$; $A_{01} = A_{02} = 0$; $A_{11} = A_{22} = 0$; $A_1 = A_{12} = 0,25$. Ошибки опытов для y_1 составили $S_1 = 2,54$ ($S_1^2 = 6,44$): t = 2.132.

Доверительные интервалы: $\Delta e_0 = \Delta e_1 = \Delta e_2 = \Delta e_{12} = 2,705$; $e = 0,25 \cdot 203 = 50,8$; $e_1 = 0,25 \times (-157) = -39,3$; $e_2 = 0,25 \cdot 122 = 30,9$; $e_{12} = 0,25 \times (-118) = -29,9$, т.е. все коэффициенты e_i значимы.

$$y_1 = 51 - 39x_1 + 31x_2 - 30 x_1x_2. \tag{15}$$

Это уравнение адекватно, т.к. $S_{a\bar{a}}^2 = \frac{2.5}{4-1}$, $F = \frac{2.5}{6,44} < 1$. Оба фак-

тора оказывают примерно одинаковое влияние, но характер влияния разный:

 $y_{1\text{max}} = 150$ при $x_1 = -1$ (толщина 3 мм) и $x_2 = +1$ (P = 4,4 кВт).

Для второго параметра $y_2 = q/v_{cb}$ получено адекватное уравнение ($g_2 = 0$), т.к. F < 1

$$y_2 = 811 - 578x_1 + 124 x_1 x_2. \tag{16}$$

Для ширины наружного шва уз:

$$y_3 = 4,84 + 2,79x_1 + 0,52x_2 + 1,47x_1x_2.$$
(17)

Все коэффициенты значимы, а уравнение (17) адекватно, т.к. F < 1.

Для ширины шва с обратной стороны у4 уравнение имеет вид:

$$y_4 = 4 - 2, 1x_1 + 0, 44x_2 + 1, 1x_1x_2.$$
⁽¹⁸⁾

Таким образом, наибольшее влияние на все эти параметры $(y_1; y_2; y_3)$ оказывает толщина металла (x_1) .

Следует отметить, что данные таблицы 2 еще раз подтверждают, что между исследуемыми параметрами существует тесная корреляционная связь. Это видно из приведенных ниже значений коэффициентов парной корреляции ($r_{\rm kp} = 0,729$ при $\alpha = 0,1, n = 4$).

$$r_{1,2} = -0,174 \quad y_2 = 1211,7 - 7,91y_1; \tag{19}$$

$$r_{1,3} = -0,74 \quad y_3 = 6,92 - 0,041y_1; \tag{20}$$

$$r_{1,4} = -0,724 \quad y_4 = 5,49 - 0,03y_1; \tag{21}$$

$$r_{2,3} = 0.95 \quad y_3 = 677 + 0.00514y_1;$$
 (22)

$$r_{2,4} = 0,952 \quad y_4 = 0,894 + 0,0038y_1;$$
 (23)

$$r_{3,4} = 0.999 \quad y_4 = -0.414 + 0.735y_3.$$
 (24)

Металл соединения легированной стали, сваренной лазером, имеет повышенную твердость по сравнению с основным металлом.

Зависимость этой твердости шва, выполненного из стали 30ХГСА толщиной 3 мм, от скорости лазерной сварки можно выразить уравнением:

$$y = HV 0.2 = 345 + 0.7x, \tag{25}$$

где *х* – скорость лазерной сварки, м/ч.

УДК 621.771.67

В.М. КОНСТАНТИНОВ, д-р техн.наук (БНТУ), Д.Е. ЕПИФАНОВ (ОАО МТЗ), Н.В. БАРИСКОВ (БНТУ)

ИССЛЕДОВАНИЕ СТРУКТУРЫ ЦЕМЕНТУЕМЫХ ЛЕГИРОВАННЫХ СТАЛЕЙ ПРИ СФЕРОДВИЖНОЙ ШТАМПОВКЕ

Одним из радикальных путей интенсификации процессов зубообработки является применение в промышленности технологий объемного формообразования периодических профилей наружного зацепления. Это обеспечивает повышение производительности процесса, экономию стали, повышение качества. Наиболее эффективными являются процессы холодного накатывания периодических профилей, в частности, сферодвижная штамповка (СФШ). Типичными преимуществами процесса сферодвижной штамповки являются уменьшение усилий деформации, снижение нагрузок на штамп, повышение стойкости штампов, снижение шума и вибраций, а также возможность полной автоматизации процесса [1]. Су-