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Пункты	6.1	(основанные	на	риске	взгляды)	и	9.3	(обзор	управления)	стандарта	качества	ISO9001:2015	и	программы	
«Промышленность	 4.0»	 скоро	 станут	 одним	 из	 самых	 важных	 факторов,	 чтобы	 вызвать	 необходимые	 изменения	
в	культуре	деятельности	литейных	заводов	для	их	перспективного	развития.

В	данной	статье	рассматривается	практическое	тематическое	исследование	о	том,	как	литейные	заводы	могут	
включить	основанные	на	риске	взгляды	и	улучшить	аналитику	получаемых	данных,	чтобы	обнаружить	возможности	
для	улучшения	деятельности	завода.	Статья	вводит	такие	понятия,	как	«риски»,	«неуверенность»	и	«дефицит	дан-
ных»,	которые	используется	в	стандарте	качества	ISO9001:2015	и	связаны	с	анализом	данных	в	стандарте	качества	
VDA6.3.	Вводятся	элементы	7Epsilon,	которые	создают	системный	подход	для	незавершенного	анализа	данных	и	орга-
низационного	управления	знаниями	в	контексте	ISO9001:2015.	Разъясняется	новая	матрица	потерь	основанная	на	ме-
тоде	визуализации	данных	и	ассоциация	ценностей	штрафа	с	основанными	на	риске	данными.

Приводится	пример	действий	по	уменьшению	эффекта	влияния	дефектов	при	изготовлении	стального	литья.	Ста-
тья	также	вводит	простую,	но	полезную	технику	для	определения	качественных	факторов,	таких	как	качество	литей-
ного	потока,	непрерывная/прерванная	заливка	и	т.	д.	Возможности	экономии	на	литье	приводятся	по	данным,	которые	
ведут	к	методам	принятия	решения,	и	объясняет,	почему	у	предложенной	методологии	есть	возможность	произвести	
новые	гипотезы	для	достижения	непрерывного	совершенствования	процесса	и	инноваций.	

The	clauses	6.1	(risk	based	thinking)	and	9.3	(management	review)	of	the	quality	standard	ISO9001:2015	and	Industry	4.0	
expectations	 are	 set	 to	 become	 one	 of	 the	most	 important	 driving	 factors	 to	 trigger	 a	 necessary	 cultural	 change	 in	making	
foundries	as	data	driven	companies.	

The	paper	discusses	a	practical	case	study	on	how	foundries	can	embed	risk	based	thinking	and	advanced	in-process	data	
analytics	to	discover	opportunities	for	improvement	across	foundry	operations.	The	paper	introduces	concepts	such	as	‘risks’,	
‘uncertainty’	and	‘deficiency	of	knowledge’	as	used	in	the	ISO9001:2015	quality	standard	and	relates	it	to	the	expectations	on	
data	analysis	in	the	VDA6.3	quality	standard.	It	introduces	7Epsilon	steps	that	take	a	system	approach	for	in-process	data	analysis	
and	organizational	knowledge	management	in	ISO9001:2015	context.	A	novel	penalty	matrix	based	data	visualization	technique	
has	been	explained	and	the	association	of	penalty	values	with	risk	based	thinking	highlighted.

An	example	of	reducing	the	rework	effort	to	minimize	the	effect	of	inclusion	defects	in	the	manufacture	of	steel	castings	is	
discussed.	The	paper	also	introduces	a	simple	but	useful	technique	for	quantifying	qualitative	factors	such	as	quality	of	pouring	
stream,	continuous/interrupted	pouring	etc.	The	paper	focuses	on	the	saving	opportunities	foundries	can	realise	with	data	driven	
decision	making	methods	 and	 explains	 how	 the	 proposed	methodology	 has	 ability	 to	 generate	 new	hypotheses	 for	 achieving	
continual	process	improvement	and	innovation.	
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DATA DRIVEN DECISION MAKING
Many foundries are either investing in, or already using, continuous process monitoring technologies using 

internet of things (IoT) style connected devices. However, the savings will not be realized by just monitoring 
process inputs and outputs for specified control limits with conventional statistical process control techniques. 
The next step is to use advanced machine learning and data visualization algorithms along with clever organiza-
tional knowledge management techniques to gain real-time insights, take necessary action(s) for improvement, 
monitor the effectiveness of actions and record insights gained, as organizational knowledge, for reuse. 

The traditional six sigma process improvement techniques rely on improving a ‘subset of the process’ rather 
than taking the factory wide optimization approach. Low cost sensors coupled with affordable data storage and 
communication technologies is enabling IoT based devices to connect foundry in a way not seen before. It is pos-
sible to capture variability in the process at every stage in the foundry. The 7Epsilon steps (www.7epsilon.org) 
give process engineer a template to connect data sets in meaningful ways that may exist within numerous data 
silo’s in a foundry. In Industry 4.0 and ISO9001:2015 quality standard context, the in-process data from multiple 
sources across the connected foundry needs to be analysed as a whole rather than in parts.

ISO 9001:2015 quality standard gives explicit definitions of all concepts. It defines risk as ‘an effect of un-
certainty’. Uncertainty is the state, even partial, of deficiency of information related to understanding or knowl-
edge of an event, its consequences or likelihood. In short, this is deficiency of knowledge. Knowledge is (ac-
tionable) information being a justified belief and having a high certainty to be true. Information is defined as 
‘meaningful data’ whereas data is ‘facts about an object’. Hence, the ISO 9001:2015 definition of risk can be 
reworded as ‘deviation from the expected result or desired outcome caused by the deficiency of knowledge (un-
certainty). If the deviation from the expected result is quantified by a penalty value, then a data transformation 
technique based on bubble diagrams and penalty matrices1 can help to quantify the deficiency of knowledge. 

In the context of foundry processes, the product specific process knowledge is defined as the actionable in-
formation in the form optimal list of measurable factors and their ranges (e. g. C: 0.28–0.33; Mn: 0.60–0.90;  
S: 0.020 max, P: 0.020 max; Ni: 0.40–0.70; Cr: 0.40–0.70; Mo: 0.15–0.25; Al: 0.03–0.06;) in order to meet de-
sired business goals (process responses or expected results) e. g. minimize defect rates, porosity scores or re-
work time etc and/or maximize mechanical properties1. 

The clause 6.1 of the ISO9001:2015 quality standard requires organizations to analyze in-process data to 
discover risks and opportunities. The objective is to minimize undesired effects in the process and enhance, or 
repeat, the process conditions when expected results occur. Risk is interpreted as the negative effect of uncer-
tainty and an opportunity is the positive effect of uncertainty. In other words, it gives guidance on how to repeat 
‘good days’ and avoid ‘bad days’.

The German automotive standard VDA6.3 has prepared an auditable process analysis questionnaire. In addition 
to the usual process control requirements, the latest version requires auditors to ask following sample questions: 

(a) Is quality and process data collected in a way that allows analysis? 
(b) Are process specific targets for effectiveness, efficiency and elimination of waste defined, monitored and 

communicated? 
(c) In the case of deviations from product and process requirements, are the causes analysed and the correc-

tive action checked for effectiveness? 
(d) Are changes to the product or process in the course of serial production tracked and documented?
(e) Are processes and products audited regularly?
This paper illustrates how penalty matrix approach1,4 was employed to embed risk based thinking in 

a foundry. Both risks and opportunities, as required by the clause 6.1 of the ISO9001:2015 quality standard, 
were discovered which led to enhanced operator training and improved tolerance specification for one process 
factor. The novelty, and the usefulness of this work for foundry industry, is identified as follows: 

•	Demonstration of an example of the risk based thinking, as defined by clause 6.1 of the ISO9001:2015 
quality standard, using a foundry scenario,

•	Improved transparency by publishing the original in-process data set used in this case study along with 
factor names and responses,

•	Identification of new process factors by innovatively quantifying pouring operations as bad (1), tolerable 
(2) and good (3) and use them in the analysis. 
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The next Section describes a foundry scenario for the in-process quality improvement project and explains 
how to embed risk based thinking for in-process data analysis. Even though the foundry scenario is specific to 
melt chemistry and pouring operations in a steel foundry, the methodology is transferable to other foundry sce-
narios. This discussion is followed by conclusion. 

IN-PROCESS QUALITY IMPROVEMENT PROJECT: AN EXAMPLE FOUNDRY SCENARIO
Inclusions, bi-film defects, oxides, distributed and/or subsurface porosity are among the internal defects that 

have always challenged process engineers and metallurgists. With the advancement of industrial computed to-
mography (CT) or industrial radiography techniques and its increasing use by casting users, the pressure on 
foundrymen to address the challenge of internal defects can only increase. Whether the scrap rate is measured in 
percentages, or parts per million, there is increasing trend of casting users tightening up product specifications 
and process control and pass on the liability of field failures to foundries who control the manufacturing process. 

Melt preparation, melting process, filling and feeding process are designed with principles, guidelines and 
various casting rules given by foundry experts. Gating systems are optimised using simulation software. The 
designs minimize the velocities at the time of entry of molten metal into the mold cavity and also make sure that 
there is a minimal surface area contact with air in the mold cavity. First article castings are produced using an 
optimal gating design. However, during production castings, inclusions and internal defects still occur on, or in, 
the castings. This observation is true for almost all precision ferrous and non-ferrous foundries. 

Steel, for example, is a very highly oxidizable metal. In this context, inclusions are: reoxidation inclusions, 
sand inclusions, slag inclusions and de-oxidation inclusions. It has been established that 90% inclusions in 
foundries are due to re-oxidation. It means good metal leaving the bottom pour ladle can still end up getting 
re-oxidised in mold cavity giving rise to inclusions that require welding for salvage. Average cost of welding for 
steel foundries is US$ 60 per hour per operator. The average welding hours per ton of steel casting for a particu-
lar type of casting was 3.5 hours with a minimum value 0.3 hours/ton to a maximum of 13 hours/ton. With an 
example of 1000 tons per month production, the average welding costs are US$210,000 per month with a max-
imum exposure of US$780,000 per month. Once the pain point is identified and the financial opportunity quan-
tified, the goal of analysis is defined as discovering opportunities for minimising welding hours per ton of steel 
castings. A pareto analysis identified a casting part which was chosen for further analysis. Most of the data used 
in this sample case study was manually observed and entered. 

It was decided to use risk based thinking approach, as described by clause 6.1 of ISO9001:2015 quality 
standard, for exploring additional ways of minimising these costs. The following 7Epsilon steps briefly describe 
how to satisfy requirements of ISO 9001:2015’s clauses 4.4 (a-h), 6.1, 7.1.6, 7.2, 7.5, 9.3.1 d & e, 9.3.2, 10.2 & 
10.3 in easy to understand way. These steps build onto the 10 step approach defined earlier2. 

The generalized 7Steps of 7Epsilon to ERADICATE Non-conformities go beyond the DMAIC (Define, 
Measure, Analyze, Implement and Control) steps of Six Sigma in that they are designed for computers to inter-
pret in-process data to gain product specific organizational knowledge and reuse it. 

Step 1: Establish process knowledge [x’s], [y’s]
Step 2: Refine process knowledge [y = f(x’s)]
Step 3: Analyse data using penalty matrices
Step 4: Develop hypotheses (potential solutions) 
Step 5: Innovate using rootcause analysis and conducting confirmation trials
Step 6: Corrective actions and update process knowledge
Step 7: Build Aspiring Teams and Environments by monitoring performance
Step 1: Establish process knowledge [x’s], [y’s] 
The objective of this step is to define process inputs [x’s], and outputs [y’s] by acquiring team members’ 

knowledge about processes, factors (process inputs) and responses (process outputs). Also, develop the corre-
sponding cause and effect relationships by studying process maps, SIPOC diagrams, fish bone diagrams etc. 

Organizations keep electronic record of the knowledge generated in this step. The records may include pho-
tographs of flip charts used in brain storming sessions, electronic files, word/excel files, scanned copies of pa-
pers (if used), photographs of defects, and any references to external sources of knowledge including any copies 
that are in organizations possession. It is suggested that this information is stored with meta tags and relevant 
file descriptions so that they become reusable and can be found easily. 

During the brainstorming session for the proposed example of reducing weld hours, pouring practice was 
identified as a key process variable in addition to the melt chemistry (Table 1). In-process data was collected for 
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59 heats. The process inputs from Ladle leaks to Riser Powdered in Table 1 quantify pouring practice. An in-
spector evaluated each pour and ranked the corresponding process input as bad (1), tolerable (2) and good (3). 
This categorization is subjective and based on experts’ opinion. The chemistry values are shown as percentages. 

The tasks undertaken in this step satisfy the requirements of clause 4.4 a.
Step 2: Refine process knowledge [y = f(x’s)]
The objective of this step is to understand how [x’s] influence [y’s] by using internal and external sources of 

knowledge (clause 7.1.6 a, b). The output from this step is a systematic research on process inputs (factors), 
how they affect each response with a written description, proposed tolerance limits and a plan with, how [x’s] 
and [y’s] are measured and at what sampling frequency. All relevant best practice guidelines should also be doc-
umented and included. This needs to be done for every process input [x] and output [y] combination. 

Table 1. Process inputs (factors, [x’s]) chosen to analyze process output ‘weld hours’ [y]. 

C Mn Cr P Si Ni S B Cu

Fe Mo V Ti Al Ca Nitrogen 
Content, PPM Carbon Drop

Pouring Time 
(sec)

Ladle  
leaks

Tap Temp  
(F)

Nozzle 
Alignment

Pouring Cup 
Flash

Pouring 
Stream

Pouring 
Continuous

Nozzle 
Distance

Powder level 
of Risers

For example external sources of knowledge, or peer reviewed journal papers, are studied to highlight trends 
in the variation of process inputs near the operating conditions. E. g. Aluminum is an important chemical ele-
ment when it comes to formation of oxides. It has higher attraction for oxygen as compared to other elements. 
Lino et al.3 plot two binary aluminum vs calcium phase diagrams for 0.02%Si and 0.2%Si. Carbon and Sulphur 
composition was maintained at 0.2% and 0.05% respectively. The%Aluminum was increased from 0.01% until 
0.06% and Calcium was varied from 0.0005% to 0.005%. The binary phase diagram shows the presence of pre-
dominant aluminum oxide at the simulation temperature used (1550 deg C or 2822 deg F). The study highlight-
ed that aluminum, sulphur, silicon, carbon and calcium influence the equilibrium between the oxides and sulphi-
des phases present in steel. However, it also showed that the aluminum variation from 0.01% to 0.03% had little 
influence on the equilibrium of the system. Authors explained an example of castability window to minimize the 
occurrence of inclusions in a continuous steel casting operation. An increase in carbon, aluminium and sulphur 
content reduced the castability window due to formation of oxides other than the slag whereas the increase in 
silicon content was preferred. 

Every foundry has different operating conditions and may have a completely different set of chemical com-
positions. However, it is important to underline the qualitative trends among variations in process inputs that 
can potentially explain the correlations discovered in the in-process data. The explanation given above is an 
example of how external source of knowledge (clause 7.1.6 b) is compiled in order to interpret a potential cor-
relation related to the operating range of aluminum. 

One of the novelties of this paper is the quantification of manual pouring operations to develop new process 
inputs e. g. Pouring Cup Splash, Nozzle Alignment, Pouring Continuous etc. These inputs are explained below. 
The pouring basin used in this example is shown in Figure 1a. Figure 1b illustrates the pouring basin mounted 
on the mold.

 Pouring Cup Splash: The pourer needs to ensure that the nozzle of the bottom pour ladle is straight above 
the pouring basin. If the pourer does not control the bottom pour ladle properly, the metal leaving the ladle can 
hit the sides of the pouring cup and cause splash. Splash breaks the metal stream and steel gets oxidized at the 
time of entering the mold cavity causing reoxidation inclusions. These inclusions are removed initially by grind-
ing and filling them by welding. The welding hours are indicative of the time spent on repairing the defects due 
to inclusions.

																																																																											(a)																																										(b)
Fig. 1. Pouring basin used in the production of castings (a): Pouring basin kept on a table; (b): Pouring basin mounted on a mold
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Nozzle Alignment: When the ladle is brought to the pouring station the pourer needs to adjust the nozzle to 
be aligned exactly above the sprue cavity in the pouring basin. Untrained pourer can shake the ladle and cause 
misalignment resulting pouring cup splash.

Pouring Continuous: In general, the pourer is trained to open and close the nozzle without any need for in-
terruptions during pouring. Any interruptions in pouring will result in breakage of metal stream resulting reoxi-
dation of steel and the incidents of inclusions needing weld repair for salvaging the casting.

The information encoded in Step2 was already made available within the foundry and is being kept up to 
date. This is an essential step but is rarely done systematically. It is important again to store this information 
with meta tags and relevant file descriptors so that the information is easily accessible and can be reused. 

The tasks undertaken in this step satisfy the requirements of clauses 4.4 b, c & g and also clause 7.1.6 on 
organizational knowledge. The outputs from this step can be used to enhance the competence of relevant per-
sons by creating an organization specific training material and also satisfy requirements of clauses 7.2 b & c. 

Step 3: Analyse data using penalty matrices
The objective of this step is to discover correlations and trends in the data to highlight new opportunities for 

continual process improvement. A specific cast component was chosen and in-process data on weld hours as 
well as associated factors was collected for 59 heats.

The risk based thinking as described in Section 1 focuses on developing an ability to repeat the performance 
for ‘good days’ and to avoid ‘bad days’. Good and bad days are defined with respect to whether expected results 
were achieved or not. The deviation from expected results is quantified by a penalty value. 

The in-process data is analysed using following 4 sub-steps. 
(i) Plot response scatter to define acceptable and unacceptable response values (Figures 2).
(ii) Plot scatter diagram for each process input (Figure 3).
(iii) Penalise deviation from acceptable response using 0 to 100 penalty values represented as small and 

large bubbles respectively (Figure 4).
(iv) Transfer response penalty values onto corresponding process inputs. This converts the process input 

scatter diagram into a bubble diagram (Figure 5).
(v) Transfer bubble diagram into Main Effects penalty matrix to discover correlations (Figure 6).

     
Fig. 2. Heat wise variation for process output 
‘weld hours’ is shown as a scatter diagram 
with acceptable and unacceptable response 

categorization

Fig. 3. Scatter diagram of Aluminium data 
points

     
Fig. 4. The deviation from expected results (i. e. desired 
or acceptable response values) is penalized and shown 

as a bubble diameter

Fig. 5. The penalty values are transferred onto 
factor scatter diagrams
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(i) Plot response scatter to define acceptable and unacceptable response values.
The risk based approach requires organizations to quantify process outputs as acceptable and unacceptable 

outputs. Acceptable process outputs are expected results and the deviation from expected results is defined by 
studying scatter diagram of process output for each process observation. In this example, response values from 
0 to 1 are acceptable response and above 2 are unacceptable Weld hours (Figure 2).

(ii) Plot scatter diagram for each process input.
The deviation from expected results is interpreted as an effect of the possible deficiency of process knowl-

edge (or uncertainty). The deficiency in the process knowledge is linked to process oriented tolerancing ap-
proach where the hypothesis is that optimal regions exist within the tolerance range (or minimum and maximum 
values observed for process inputs for all values of process outputs). This is further illustrated by plotting scatter 
diagrams for all process inputs. In this example, we consider scatter for Aluminum as shown in Figure 3. 

Here, the uncertainty or the deficiency of knowledge is the hypothesis of existence of optimal regions within 
the tolerance limits of process inputs. Few examples of uncertainty are:

a. Should the target value of% aluminum be 0.04, 0.05 or 0.06?1 
b. Is the range robust? Or should it be changed? 
c. Should the lower or upper limit be changed simultaneously or individually?
d. In terms of quartiles, is the top 25%, top 50%, bottom 50%, bottom 25% or middle 50% quartile any better 

than the current range? 
The effect of this uncertainty is the deviation from the expected results. However, if the process engineer 

has the knowledge (justified belief with high certainty to be true) that the proposed aluminum range for his or 
her foundry is correct then it is easily inferred that there should not be any correlation between aluminum range 
and occurrence of high or low weld hours. In this situation, the tolerance limit for aluminum will be considered 
as ‘robust’. 

The discovery of correlations in in-process data is not a straightforward task. Sometimes, it may not be pos-
sible to combine categorical and continuous process inputs. A penalty matrix approach has been suggested that 
undertakes various transformations on raw process input and output data. Refer to Ransing et al.1 and Ransing 
et al.4 for details and discussions on how to combine both types of process inputs that take continuous and dis-
crete values. 

(iii) Penalise deviation from acceptable response using 0 to 100 penalty values represented as small and 
large bubbles respectively.

The deviation from the expected results is quantified by a penalty value. A penalty value of zero is assigned 
to a region of acceptable process output values (E. g. weld hours less than one). The process response values in 
the unacceptable process output region are given a hundred penalty value (E. g. weld hours greater than two.). 
Remaining process outputs are given a penalty value between zero and hundred (Figure 4). 

1 Note that such small adjustments to various process inputs are outside the scope of traditional design of experiments.  A typical 
design of experiment study is more likely to choose a much wider range of %aluminum values e.g. 0.01%, 0.05% and 0.1%. 

																																																																											(a)																																										(b)
Fig. 6. (a) Transforming bubble diagrams (Fig. 5) into a Main Effects penalty matrix. Green rectangle shows bottom 50 percentile  
as optimal region as it has more number of points with lower penalty value, (b) Pivot chart showing variation in Green Weld Hours  

w. r. t. %Aluminum input values
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(iv) Transfer response penalty values onto corresponding process inputs. This converts the process input 
scatter diagram into a bubble diagram.

Each process output value (response value) has a corresponding factor value. The response penalty values 
are transferred onto factor (process input) scatter diagram of Figure 3 in order to convert it into a bubble dia-
gram (Figure 5). Small bubbles represent process inputs corresponding to acceptable output whereas large bub-
bles represent those inputs corresponding to unacceptable output. The region with more number of small bub-
bles is the optimal region for Aluminum as highlighted in Figure 5. 

(v) Transfer bubble diagram into Main Effects penalty matrix to discover correlations. 
However, it is not always practical to visualize in-process data using bubble diagrams as shown in Figures 4 

and 5. The visualization becomes difficult when the number of observations increase and/or when two or more 
observations have same value i. e. if they overlap. Hence, the information is transferred into a penalty matrix. 

Penalty matrices discretize the data in terms of quartiles for continuous inputs and levels for discrete inputs 
and align it with five bins of response penalty values viz: 0–20, 20–40, 40–60, 60–80 and 80–100. The numbers 
in the corresponding cells of a penalty matrix are the number of observations that correspond to the response 
penalty value bin and the quartile or level of the process input (Figure 7). Blue colour represents number of data 
points related to acceptable response and red colour represents number of data points related to unacceptable 
response. It is clear that the bottom 50 percentile of aluminum is optimal.

The correlation discovered from penalty matrices are cross validated using pivot tables and charts as shown 
in Figure 6b. The%Aluminum input values are grouped at the interval of 0.003% and the corresponding average 
green weld hour values are plotted in Figure 6.2(b). The variation of%Aluminum in bottom 50% region, shown 
as green rectangle, can be seen to be associated with lower Green weld hours. 

The tasks undertaken in Step3 satisfy requirements of clauses 4.4 f, h & 6.1.1 b.
The visualization of in-process data in this way uncovers underlying correlations that may convert into new 

opportunities for continual process improvements. This process helps to quantify the uncertainty in knowledge 
and creates hypotheses (or potential solutions) that process experts need to answer by referring to internal 
(clause 7.1.6 a) as well as external (clause 7.1.6 b) sources of knowledge. In simple terms, the qualitative trends 
discovered in step 2 are applied to correlations discovered in the step 3 to create hypotheses for step 4.

Wherever necessary, this methodology may also be used in conjunction with, or in addition to, the existing 
process improvements tools based on design of experiments, statistical process control or Six Sigma could also 
be employed. For manufacturing processes, including foundry processes, data analysis may also involve the use 
of process simulation software tools to discover opportunities. 

Step 4: Develop hypotheses (potential solutions) 
The objective of Step4 is to determine optimal process settings or opportunities for corrective actions that 

are likely to minimize instance of producing undesired process outcomes or effects. This step is normally imple-
mented during a 7Epsilon quality control meeting. Prior to the meeting, every team member interprets the re-
sults of Step 3 as per his/her competence and by accessing the knowledge stored in Step 2 and turns insights into 
actionable information and electronically passes on all suggestions to the chair of the meeting. The chair re-
views and compiles ALL suggestions and calls for a meeting. 

The team members may review both internal and external sources of knowledge and give their own expla-
nations on why the suggested correlations be chosen or not chosen. The team member requests the chair of the 
quality control meeting to review the source of information. The chair discusses the findings in the meeting, and 
if necessary, seeks external professional help from domain experts to refine the knowledge and update the pro-
cess knowledge description on factors selected so that it can be reused. 

The meeting discusses the suggestions and takes one or more of the following decisions: 
1. Agree to a corrective action plan for a confirmation trial
2. Decide to collect more in-process data for the same or additional factors
3. Decide to conduct one or more design of experiments or further process simulations
4. Recommend a fundamental review of the process with help from external consultants with or without 

additional Six Sigma projects. 
5. Close the project with justified and documented reasons. 
6. Update process knowledge documented in Step 2. 
These tasks satisfy requirements of clauses 4.4 f, 6.1.2 a, 7.1.6 and 10.3. The clauses 9.3.1 c1 & e and 9.3.2 

require the decisions of 7Epsilon quality control meeting on the potential opportunities for continual improve-
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ment be discussed in the management review which is also required to authorize actions/decisions including any 
resource needs. Note that clause 10.3 requires organizations to address all opportunities and areas of underperfor-
mance as part of continual improvement and clause 7.1 commits top management to provide resources needed. 

The data analysis in Step 3 highlighted the following correlations. 
1. The bottom 50 percentile of Aluminum (>= 0.033 and <= 0.044) was chosen as an optimal range. 
2. Nozzle Alignment, Pouring Cup Splash, Pouring Stream, Pouring Continuous, Nozzle distance and Pow-

der level of Risers were classified into three categories bad (1), tolerable (2) and good (3). 
It was discovered that the classification value of 3 for Pouring Cup Splash, Pouring Continuous and Nozzle 

Alignment was optimal. In other words, these parameters must be closely monitored to achieve a perfect pour. 
Whereas, Pouring Stream, Nozzle distance and Powder level of Risers will require less monitoring.

3. Correlations were also discovered for top 25 percentiles of Titanium and Chromium but they were weak 
and hence, not selected for confirmation trial. A detailed mathematical formulation for discovering these cor-
relations and interactions is given by Ransing et al.4 and Batbooti et al5. 

Step 5: Innovate using rootcause analysis and conducting confirmation trials
The objective of this step is to create new product specific process knowledge based on the hypotheses (po-

tential solutions) outlined in Step 4. The tasks may involve conducting one or more confirmation trials, design 
of experiments, new Six Sigma projects etc. 

These tasks satisfy the requirements of clauses 4.4 f & g, 6.1.2 b2 and 10.2.1 b2 & d. The clause 9.3.1d re-
quires the effectiveness of the actions taken be reported back to the management review. This process may iter-
atively continue as the management review may suggest new actions. 

Step 6: Corrective actions and update process knowledge
If the additional knowledge is gained then all changes are reflected in the organizational knowledge as doc-

umented in Step 2 along with the necessary justification so that the experience is reusable in the future.
After a successful confirmation trial, it was decided to provide operator training and monitoring to ensure 

a good score for Pouring Cup Splash, Nozzle Alignment and Pouring Continuous factors and the target value for 
percentage aluminum was lowered. The process knowledge was updated and the foundry being a jobbing found-
ry, it was decided to use this knowledge for repeat or similar orders in the future. 

These tasks satisfy the requirements for clauses 4.4 f & g; 6.1.2 b1 & 6.1.1 c, 7.1.6, 10.2.1 c & e.
Step 7: Build Aspiring Teams and Environments by monitoring performance
The objective of this step is to build aspiring teams to achieve the following:
•	Continually monitor performance and maintain accountability (4.4 e).
•	Ensure sustainability of this initiative with adequate resources (4.4 d).
•	The foundry specific process knowledge repository can also be used to train operators and process engi-

neers (7.2).
•	Store knowledge in computer repositories so that they are easily accessible (7.5, 10.2.2, 10.3).
•	Determine the knowledge necessary for the operation of its processes and to achieve conformity of prod-

ucts and services and make it available to the extent necessary.

CONCLUSIONS
ISO 9001:2015 has explicitly made creation of risk based thinking environment and enhancing organiza-

tion’s ability to reuse, retain and continually discover and update organizational knowledge as a requirement. 
However it has not specified how organizations can implement these solutions. With the advent of Industry 4.0 
and connected enterprise initiatives, foundries will record more in-process data in future. Converting in-process 
data into actionable information is a challenge that has been addressed in this paper. 

A seven step approach based on penalty matrices has been illustrated with the help of an actual foundry 
based in-process quality improvement project. The paper explained the methodology and demonstrated how to 
embed the risk based thinking as required by the clause 6.1 of the ISO9001:2015 quality standard. It was also 
discussed how every step of the seven steps satisfied one or more ISO9001:2015 requirements. The foundry was 
able to discover process improvement opportunities. Opportunities were discovered for operator training based 
on the correlations discovered in the in-process data. New tolerance limits for one of the process input was also 
suggested. 

The methodology described in this paper is generic and applicable to many other foundry scenarios. It is ex-
pected that this paper becomes a useful template for future foundry based risk based thinking in-process quality 
improvement projects. 
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