ОБ ОДНОЙ РЕАЛИЗАЦИИ АЛГОРИТМА ГАУССА С ВЫБОРОМ ГЛАВНОГО ЭЛЕМЕНТА В MS EXCEL

ГрГУимени Янки Купалы, Гродно

Приведем реализацию вычислительной схемы Гаусса с выбором главного элемента для решения системы линейных алгебраических уравнений размерности 2≤n≤10 в электронных таблицах MS EXCEL в соответствии со схемой, предложенной в [1]. Это дает возможность преподавателю подготовить достаточно много вариантов заданий для самостоятельной работы студентов, имея полностью решенные задачи с промежуточными вычислениями. В [2] предложен вариант решения задачи для матрицы постоянного размера.

Порядок матрицы расположен в ячейке B1 (рисунок 1). Матрица может располагаться в диапазоне C2:M11. В ячейки D1 и B2 помещены 1.

Нумерация столбцов осуществляется формулой (1). Для нумерации строк используется аналогичная формула. В ячейку Q2 помещена 1.

_	Ι			-) -					T Tri	,	11 101111	K		
	В	С	D	E	F	G	Н	1	J KLN	I N Q	R S V	WIX Y Z AJABAGAGAB	AF AG AHAILAJAHALAIJAIJA(A	AP AQ
1	7	m	1	2	3	4	5	6	7	11		строка	столбец	
2	1	0,000000	1	-4	9	0	3	3	3	14 1	9 4	1 1	3	3
3	2	0,000000	-5	2	4	0	-2	-1	-3	-11	9	2		0
4	3	0,111111	-2	0	1	1	9۔	2	-2	-3		3 3	5	5
5	4	1,000000	-2	3	-1	9	4	-5	-1	-3	4	4 4	4	4
8	5	0,444444	1	-2	0	4	1	5	-3	11		5		0
7	6	-0,444444	1	-5	2	-4	-2	2	-2	17	(5		0
8	7	-0,555556	2	4	3	-5	4	-4	1	-18		7		0

Рисунок 1- Исходные данные и подготовка первой итерации

Максимальный по модулю разрешающий элемент определяется в ячейке R2 по формуле (2). Положение разрешающего элемента в матрице A определяется формулами (3) и (4), введенными в ячейки W2 и AG2 соответственно. Эти формулы распространяются поочередно на диапазоны W2:AF11 и AG2:AP11 (рисунок 1).

$${=\mathsf{MAKC}(\mathsf{ABS}(\mathsf{CMEII}(\mathsf{D2};0;0;\mathsf{B1};\mathsf{B1})))} \tag{2}$$

Для однозначного определения разрешающего элемента в матрице А используются формулы (4)-(7). Формула (4) вводится в ячейку AQ2 и распространяется на диапазон AQ3:AQ11.Формулы (5) и (6) вводятся в ячейки A2 и S2 (рисунок 2). Формула (7) вводится в ячейку R3. Она определяет разрешающий элемент.

$$=CMEIII(D2;A2-1;S2-1;1;1) (7)$$

Множитель m_1 вычисляется в ячейке C2 по формуле (8), которая распространяется на диапазон C3:C11 (рис. 1).

Формула (9) используется для пересчета исходной матрицы. Она вводится в ячейку D13 и распространяется на диапазон D13:N22 (рисунок 2).

Для нумерации строк и столбцов, определения положения разрешающего элемента и вычисления множителей диапазона C13:C22 используются формулы, аналогичные приведенным выше.

_	212	6	·	-cenu	(M/čn12-o	IIII nét ol		(épézién:	1.061.1	4.41	CMEUITÉDÉ	2,64	ća tinčti	1.1.	4186	C2.!!!\		
	013	- (0	fx	=EC/IVI	(N(\$RT3⇔	;D\$T<>.	");СМЕЩ	((\$D\$2;\$B.		_	СМЕЩ(\$D\$	2;\$A	\$2-1;0\$1-		_			
	В	С	D	E	F	G	Н	- 1	J	KLN		Q	R	S	V	V X Y Z AAABAGAGAB	af ag ahailajahailailai	AP AQ
1	7	m	- 1	2	3	4	5	6	7		11					строка	столбец	
2	1	0,000000	1	-4	9	0	3	3	3		14	1	9	4	-1	1	3	3
3	2	0,000000	-5	2	4	0	-2	-1	-3		-11		9		2			0
4	3	0,111111	-2	0	1	1	-9	2	-2		-3				3	3	5	5
5	4	1,000000	-2	3	-1	9	4	-5	-1		-3				4	4	4	4
6	5	0,444444	1	-2	0	4	1	5	-3		11				5			0
7	6	-0,444444	1	-5	2	-4	-2	2	-2		17				6			0
8	7	-0,555556	2	4	3	-5	4	-4	1		-18				7			0
9																		
10																		
11																		
12	7	m	- 1	2	3	4	5	6	7	_	- 11				-			
13	1	-0,317647	1,000000	-4,000000	9,000000	0,000000	3,000000	3,000000	3,000000		14,000000	2	9,444444	5	1			0
14	2	0.211765	-5,000000	2,000000	4,000000	0,000000	-2,000000	-1,000000	-3,000000		-11,000000		-9,444444	-	2			0
15	3	1,000000	-1,777778	-0.333333	1,111111	0.000000	-9.444444	2,555556	-1.888889		-2,666667				3	3	5	5
16	4	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0.000000	0,000000		0,000000				4			0
17	5	0.082353	1.888889	-3,333333	0.444444	0.000000	-0.777778		-2,555556		12,333333				5			0
18	6	0.023529	0.111111	-3,666667	1,555556	0.000000	-0.222222				15,666667				6			0
19	7	-0.658824	0.888889	5,666667	2,444444	0.000000	6.222222				-19.666667				7			0

Рисунок 2 – Первая итерация

			_								_						_	=
d	Α	В	С	D	E	F	G	Н	1	J	K	L	M	N	Q	R	S	T
67		7	m	1	2	3	4	5	6	7				11				Т
68	7	1	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000			П	0,000000	7	5,89	1	
69		2	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000				0,000000		5,89		П
70		3	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000				0,000000				Т
71		4	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000				0,000000				Т
72		5	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000				0,000000				Π
73		6	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000				0,000000				Т
74		7	1,000000	5,891138	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000				2,781611				Т

Рисунок 3 – Последняя итерация для n=7

	Α	В	С	D	E	F	G	Н	1	J	К	L	M	N
116	1	3	5	0,435294	-4,105882	9,352941	0,000000	0,000000	3,811765	2,400000				13,152941
117	2	5	3	-3,894689	2,312271	0,000000	0,000000	0,000000	0,000000	-4,681319				-10,330586
118	3	2	6	-1,777778	-0,333333	1.111111	0,000000	-9,444444	2,555556	-1.888889				-2,666667
119	4	1	7	-2,000000	3,000000	-1,000000	9,000000	4,000000	-5,000000	-1,000000				-3,000000
120	5	4	4	2,018868	-3,150943	0,000000	0,000000	0,000000	6,867925	-2,490566				12,056604
121	6	6	2	2,944444	-4,944444	0.000000	0,000000	0,000000	0,000000	0,000000				22,055556
122	7	7	1	5,891138	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000				2,781611
123														
124														
125														
126							Перестанов	ка строк и ст	олбцов					
127				1	2	3	4	5	6	7				11
128				4	5	3	6	7	2	1				11
129			1	9,000000	4,000000	-1,000000	-5,000000	-1,000000	3,000000	-2,000000				-3,000000
130			2	0,000000	-9,444444	1,111111	2,555556	-1,888889	-0,333333	-1,777778				-2,666667
131			3	0,000000	0,000000	9,352941	3,811765	2,400000	-4,105882	0,435294				13,152941
132			4	0,000000	0,000000	0,000000	6,867925	-2,490566	-3,150943	2,018868				12,056604
133			5	0,000000	0,000000	0,000000	0,000000	-4,681319	2,312271	-3,894689				-10,330586
134			6	0,000000	0,000000	0,000000	0,000000	0,000000	-4,944444	2,944444				22,055556
135			7	0,000000	0,000000	0,000000	0,000000	0,000000	0,000000	5,891138				2,781611
136														
137														
138														
139							7	6	5	4	3	2	1	
140							0,779308	0.258448	-0.226575	-0.391645	-0.250461	-4.179495	0.472169	
141							,	,	,	,	,	,	,	
142														
143				1	2	3	4	5	6	7				
144				0,779308	0,258448	-0.226575	-0,391645	-0,250461	-4,179495	0,472169				
145							Обратная пе							
146			решение	0,472169	-4,179495	-0.226575	0,779308	0.258448	-0.391645	-0.250461				
147				.,	42.2.20	.,==:::	4	.,		.,				

Рисунок 4 – Приведение полученной системы к треугольному виду и окончательное решение системы

Удаляем знаки «\$» из диапазона A12:AQ22, копируем его и вставляем в диапазоны A23:AQ33, A34:AQ44, A45:AQ55, A56:AQ66, A67:AQ77, A78:AQ88, A89:AQ99, A100:AQ110. На рисунке 3 приведена последняя для заданной размерности итерация.

Формирование треугольной системы осуществляется формулами (10)-(12). Для решения системы используются формулы (13) (вводится в ячейку М140) и (14) (вводится в ячейку L140 и распространяется влево на диапазон К140:D140). Перестановка столбцов решения производится в диапазоне D143:M146 в соответствии с формулами (15) и (16).

=ЕСЛИ(А116<>"";\$В\$1-В116+1;"") (11){=ECЛИ(\$A116<>"";СМЕЩ(СМЕЩ(\$D\$2;11*(\$B116-(12)1);0;1;1);\$A116-1;0;1;11);"")} =CMEЩ(\$N\$138;-(10-\$B\$1);0;1;1)/СМЕЩ(\$N\$138; (13)-(10-\$B\$1);-(10-\$B\$1)-1;1;1) =ECЛИ(L139<>"";(СМЕЩ(\$N\$138;-(10-\$В\$1)-М139;0;1;1)-СУММПРОИЗВ(СМЕЩ(\$N\$138; -(10-\$B\$1)-M139;-(10-\$B\$1)-M139;1;L139-(14)1);M140:\$M140))/СМЕЩ(\$N\$138;-(10-\$В\$1)-М139; -(10-\$B\$1)-M139-1;1;1);"") =ECЛИ(D143<>"";ГПР(\$B\$1-(15)D143+1;\$D\$139:\$M\$140;2;ЛОЖЬ);"") =EСЛИ(D143<>"";ГПР(D143;\$D\$128:\$M\$144;17; (16)ЛОЖЬ);"")

ЛИТЕРАТУРА

- 1. Демидович, Б.П. Основы вычислительной математики / Б.П. Демидович, И.А. Марон М.: Наука, 1966. 664 с.
- 2. Пчельник, В.К. Реализация метода Гаусса с выбором главного элемента в электронных таблицах MS EXCEL / В.К. Пчельник, И.Н. Ревчук //Актуальные вопросы современной информатики: материалы V-й Всероссийской научно-практической конференции, Коломна, 1–15 апреля 2015 года. / Московский государственный областной социально-гуманитарный институт; редкол.: С.Ю. Знатнов [и др.]. Коломна: 2015. С.144–147.

УДК 37.091.64:004

Ражнова А.В.

ИСПОЛЬЗОВАНИЕ ИНФОРМАЦИОННЫХ ОБРАЗОВАТЕЛЬНЫХ РЕСУРСОВ В ПРОЦЕССЕ ОРГАНИЗАЦИИ ПРОФОРИЕНТАЦИОННОЙ РАБОТЫ В УЧРЕЖДЕНИЯХ ОБРАЗОВАНИЯ

БНТУ, Минск

Одна из задач современного образования – развитие индивидуальных культурных и образовательных потребностей