УДК 669: 620.197

Практическое применение гидроабразивной очистки металлических поверхностей в машиностроительном производстве

¹Качанов И.В., ¹Филипчик А.В., ²Бабич В.Е., ¹Жук А.Н. ¹Белорусский национальный технический университет ²Университет Гражданской Защиты МЧС Беларуси

Современный этап развития машиностроения характеризуется применением на стадии заготовительного производства операций лазерной резки листового материала на высокотехнологичных комплексах типа TRUMAT-IC (рис. 1).

Для процесса лазерной резки металлов можно выделить основные факторы, определяющие производительность и качественные показатели процесса. Среди них основными являются скорость лазерной резки V_{np} , светопоглотительная способность поверхности материала, отсутствие (наличие) грата на вырезанных деталях.

Для оценки влияния режимов ГАО на подготовку поверхности под лазерную резку на машиностроительном предприятии ОАО «Агат — электромеханический завод» были проведены производственные испытания по ЛР для четырех сравнительных групп стальных образцов из стали 08кп с линейными размерами $100x100\,$ мм и толщиной $S=1-20\,$ мм, покрытые продуктами коррозии с двух сторон. Предварительно образцы были очищены с одной стороны по различным технологиям.

Первую группу составили образцы, очистка которых производилась по новой разработанной технологии с применением запатентованных составов, содержащих в качестве основного компонента бентонитовую глину ($K_6 = 2{\text -}3$ %). Подача рабочей жидкости осуществлялась в конфузор новой конструкции с углом конусности $\alpha_{onm}{=}45{\text -}50^\circ$, под давлением на входе $p_{\text{вх}} = 30 \text{ МПа}, d_{\text{к}} = 1 \text{ мм}, L = 50 \text{ мм}, V_{\text{стр}} = 250 \text{ м/c}.$

После очистки время сушки составляло 15–20 часов, что обеспечивало формирование на очищенной до Ra = 0,25–0,5 мкм поверхности защитного пленочного покрытия (ЗПП) толщиной $\delta=3$ –5 мкм. При обработке поверхности составом отмечается низкий уровень упрочнения очищенной поверхности. Так, например, величина микротвердости $H_{\mu}=2000$ –2400 МПа превышает исходное значение $H_{\mu0}=1900$ –2000 МПа всего лишь в 1,1–1,3 раза. Полученное незначительное упрочнение поверхности перед осуществлением процесса ЛР в полной мере отвечает правилам эксплуатации лазерного комплекса TRUMATIC L2530, приведенным в работе.

Вторую группу для сравнительных испытаний составили образцы, очищенные по заводской технологии (дробеструйная очистка) до шероховатости Ra = 0.25-0.5мкм и микротвердости $H_{\mu} = 3100-3200$ МПа.

Третью группу составили образцы, изготовленные из листового металла (сталь 08кп) в состоянии поставки (Ra = 12–14 мкм и микротвердост $H_{\mu\theta}$ = 1900–2000 МПа).

Четвертую группу составили образцы, не очищенные от коррозии с величиной Ra = 70-80 мкм и микротвердостью $H_{\mu\theta} = 1900-2000$ МПа.

Указанные образцы разрезались на комплексе TRUMATIC L2530. Результаты резки образцов приведены на рис. 2.

1 – задвижная крышка;2 –панель управления;3 – паллета;4 – устройство подачи листов

Рис.1 – Внешний вид комплекса лазерной резки TRUMATIC

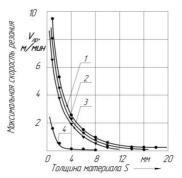


Рис.2 – Зависимость максимальной скорости лазерной резки от толщины материала

На рис.2 обозначены: 1-Ra=0.25-0.5 мкм, образец после ГАО ($K_6=3$ %, $K_{\Pi}=10^{-5}$ %, $K_{\text{к.c}}=2$ %, остальное вода), $p_{\text{вх}}=30$ МПа; $d_{\text{к}}=1$ мм; L=50мм; 2-материал в состоянии поставки, Ra=12-14 мкм; 3-дробеструйная обработка образца по заводской технологии, Ra=0.25-0.5 мкм; 4- отсутствие очистки образца от продуктов коррозии, 1-4- сталь 08кп.

Из анализа проведенных испытаний было установлено, что для исследованных образцов, в частности, с толщиной S=2 мм отмечалось увеличение скорости лазерной резки с 0,4 м/мин (резка образца № 4), до 5,0 м/мин (резка образца № 1). Отмеченные скорости были получены из условия отсутствия грата на боковой поверхности реза. При равной скорости резки (5,0 м/мин) на 1-м образце грат отсутствует, в результате чего технологическая операция по зачистке грата нецелесообразна, а например на 4-м образце длина грата составляет 2 мм.