УДК 621.3

РАСЧЕТ РЕЖИМОВ СЕТЕЙ 35-220 КВ В ПРОГРАММЕ RASTRWIN

Касперович А.А.

Научный руководитель – старший преподаватель Мышковец Е.В.

Нельзя отрицать необходимость использования электронно-вычислительных машин для расчетов режимов сетей, так как расчет довольно объемен, что увеличивает вероятность субъективной ошибки, к тому же крайне важно максимально автоматизировать расчеты электрических сетей, потому что электрическая сеть – динамическая система и проведенный расчет для одного режима может быть не актуален через час. Сейчас существует огромное количество программного обеспечения для расчетов: Mustang, Electronic Workbench и многие другие. В данной работе я рассмотрю программный комплекс RastrWin 3 v1.80.0.1485.

Программный комплекс RastrWin предназначен для решения задач по расчету, анализу и оптимизации режимов электрических сетей и систем. RastrWin используется более чем в 260 организациях на территории России, Казахстана, Киргизии, Узбекистана, Беларуси, Молдовы, Монголии.

Основные особенности программного комплекса:

- Расчет установившихся режимов электрических сетей произвольного размера и сложности, любого напряжения (от 0.4 до 1150 кВ).
- Визуализация электрической сети с возможностью экспорта в AtoCAD.
- Расчет установившихся режимов с учетом отклонения частоты (без балансирующего узла).
- Моделирование отключения линии электропередач, в том числе одностороннего, и определение напряжения на открытом конце.
- Возможность экспорта и импорта данных из таблиц Microsoft Office Excel.

Программа имеет довольно простой в освоении интерфейс табличного процессора, где строка – элемент, а столбцы – его параметры (рис. 1).

Рисунок 1.

Для примера расчета была взята замкнутая электрическая сеть с шунтирующим реактором в узле 3 и батареей синхронных компенсаторов в узле 4(рис 2).

2)

3)

4)

5)

6)

7)

8)

Рисунок 2.

Для задания данной схемы в программный комплекс необходимо было рассчитать активное и индуктивное сопротивление линии, коэффициент трансформации, а также активные и реактивные проводимости реактора и батареи компенсатора:

$$R_{12} = r_{01} \times L_{12} = 0.249 \times 15 = 3.73 \text{ (OM)},$$
(1)

$$R_{34} = r_{01} \times L_{34} = 0.249 \times 7 = 1.74 \text{ (OM)},$$

$$R_{13} = r_{02} \times L_{13} = 0.198 \times 20 = 3.96 \text{ (OM)},$$

$$R_{24} = r_{02} \times L_{24} = 0.198 \times 10 = 1.98 \,(\text{Om}),$$

Где R – активное сопротивление линии, Ом;

*r*₀₁ – удельное активное сопротивление линии АС 120/19, Ом/км;

*r*₀₂ – удельное активное сопротивление линии AC 150/24, Ом/км;

 L_i – длина линии, км;

$$X_{12} = x_{01} \times L_{12} = 0.414 \times 15 = 6.21$$
(OM),

$$X_{34} = x_{01} \times L_{34} = 0.414 \times 7 = 2.90$$
 (OM),

$$X_{13} = x_{02} \times L_{13} = 0.406 \times 20 = 8.12$$
 (OM),

$$X_{24} = x_{02} \times L_{24} = 0.406 \times 10 = 4.06 \text{ (OM)},$$

Где Х – индуктивное сопротивление линии, Ом;

 x_{01} – удельное индуктивное сопротивление линии AC 120/19, Ом/км;

 x_{02} – удельное индуктивное сопротивление линии AC 150/24, Ом/км;

$$k_{\rm T} = \frac{U_{\rm HH}}{U_{\rm RH}} = \frac{6.3}{36} = 0.189$$

Где $k_{\rm T}$ – коэффициент трансформации;

 $U_{\rm HH}$ – напряжение на стороне низшей обмотки, кВ;

 $U_{\rm BH}$ – напряжение на стороне высшей обмотки, кВ.

Полученные данные были введены в таблицу «Ветви» RastrWin (Рисунок 3).

		0	S	Тип	N_нач	N_кон	N	I	Название	R	Х 🔺	В	Кт/r
	1			лэп	3	4			-	1,74	2,90		
	2			лэп	2	4			-	1,98	4,06		
	3			лэп	1	3			-	3,96	6,21		
	4			лэп	1	2			-	3,73	8,12		
	5			Тр-р	4	5			-	2,60	23,00		0,189
ľ													

Рисунок 3.

Узлы в RastrWin задаются также в таблице, для задания узлов необходимы: *Uном* – номинальное напряжение линии, кВ;

Рн – мощность активной нагрузки, МВт;

Qн – мощность реактивной нагрузки, MBap;

$$B = -\frac{Q_6}{U_{HOM}^2} = -\frac{4}{35^2} = -3265(_{MK}C_{M});$$
(10)

Где Q_{δ} – мощность батареи синхронного компенсатора, MBT;

U_{ном} – номинальное напряжение батареи синхронного компенсатора, кВ;

$$G = -\frac{P}{U_{\text{HOM}}^2} = -\frac{0.112}{35^2} = 81(\text{MKCM});$$
11)

$$Y = -\frac{s}{u_{\text{HOM}}^2} = -\frac{20}{35^2} = 13500(\text{MKCM});$$
(12)

$$B = \sqrt{Y^2 - G^2} = \sqrt{13500^2 - 81^2} = 13500(\text{MKCM});$$
(13)

Где *G* – активная проводимость шунтирующего реактора, мкСм;

Y – полная проводимость шунтирующего реактора, мкСм;

В – реактивная проводимость шунтирующего реактора, мкСм;

S – полная мощность батареи шунтирующего реактора, MBap;

Р – активная мощность шунтирующего реактора, MBA;

*U*_{ном} – номинальное напряжение батареи синхронного компенсатора, кВ.

Также необходимо было выставить типы узлов, а именно узел 1 – база, узлы 2,3,4,5 – нагрузка (рис 4).

-I		0 9	і Тип	Номер	Название	U_ном	N	Рай	Р_н	Q_H	P_r	Q_r	∨_зд	Q_min	Q_max	G_Ш	В_ш	V
	1		База	1		35												35,00
	2		Нагр	2		35			9,0	4,0								35,00
	3		Нагр	3		35			4,0	1,0						81,0	13 500,0	35,00
	4		Нагр	4		35											-3 265,0	35,00
	5		Нагр	5		6			6,0	4,0								6,00
								-										

Рисунок 4.

После задания исходных данных выполним расчет. Результаты расчета (рис 5).

	0	٩.	Тип	Номер		Названи	e	U_ном	N	Рай	Р_н	Q	н	P_r	Q_	√_з	A Q	min	Q_max	G_ш	В_ш	V	Delta
1			База	1				35					2	20,6	23,2							35,00	
2			Harp	2				35			9,0	4,0										31,78	-2,27
3			Harp	3				35			4,0	1,0								81,0	13 500,0	31,35	-0,66
4			Нагр	4				35													-3 265,0	31,19	-1,85
5			Нагр	5				6			6,0	4,0										5,07	-10,6
	0	S	Т	ип N	_нач	N_кон	N	I	Has	вание		R	X		в	Кт/r	N_a	БД	Р_нач	Q_Har	i Na	I max	1
1			лэ	п 3		4		-				1,74	2,90	5					-6	2		115	
2			лэ	7 2		4		-				1,98	4,06	5					0	-4		82	
3			лэ	1 ٦		3		-				3,96	6,2:	1					-11	-14		288	
4			лэг	1 ٦		2		-				3,73	8,12	2					-10	-9		225	
5			Тр-	р 4		5		-				2,60	23,0	00		0,189			-6	-6		155	

Рисунок 5.

Программа рассчитала активную и реактивную мощность в узле 1, также она рассчитала падение напряжения на линии. Задача по расчету потерь мощности и падению напряжения решена.

С помощью средств программного пакета была построена схема сети с нанесёнными на неё расчётными данными (рис 6).

Рисунок 6.

Для отображения схемы необходимо указать на каком месте находится определенный узел через вкладку «Ввод». На схему нанесены потоки мощности, падения напряжений в узлах, так же мощности нагрузок и компенсирующих устройств.

Кроме продемонстрированного расчета, в этом пакете можно изменять точность отображения данных, районирование (упрощает построение схем с большим количеством элементов), утяжеление режима и так далее.

Программа RastrWin автоматизирует и ускоряет расчет режимов сети, имея при этом огромные возможности начиная от использования баз данных и заканчивая построением схем. Учитывая большое количество элементов в схемах и в целом больших схем этот процесс значительно облегчается. Более подробное описание всех возможностей программы перечислено в документации программы.

Литература

- 1. Официальный сайт http://www.rastrwin.ru/rastr/anno/index.php, аннотация.
- 2. Документация программы RastrWin.