

Министерство образования Республики Беларусь

БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Теория механизмов и машин»

ДИНАМИКА МАШИН И МЕХАНИЗМОВ В УСТАНОВИВШЕМСЯ РЕЖИМЕ ДВИЖЕНИЯ

Минск БНТУ 2011

Министерство образования Республики Беларусь БЕЛОРУССКИЙ НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Теория механизмов и машин»

ДИНАМИКА МАШИН И МЕХАНИЗМОВ В УСТАНОВИВШЕМСЯ РЕЖИМЕ ДВИЖЕНИЯ

Учебно-методическое пособие по курсовому проектированию по дисциплине «Теория механизмов, машин и манипуляторов»

7-е издание

Минск БНТУ 2011 УДК 621.01(075.8) ББК 34.41я7 Д 46

Издается с 2002 года.

Авторы:

П.П. Анципорович, В.К. Акулич, Е.М. Дубовская, А.Б. Дворянчикова

Рецензенты: А.Т. Скойбеда, А.В. Чигарев

Д 46 Динамика машин и механизмов в установившемся режиме движения: учебно-методическое пособие по курсовому проектированию по дисциплине «Теория механизмов, машин и манипуляторов» / П.П. Анципорович [и др.]. – 7-е изд. – Минск: БНТУ, 2011. – 42 с.

ISBN 978-985-525-665-7.

В пособии рассматриваются основные задачи динамического исследования машин и механизмов в установившемся режиме движения, решаемые при выполнении курсового проекта по теории механизмов, машин и манипуляторов студентами инженерно-технических специальностей вузов. Методика основана на использовании аналитических методов. Большое внимание уделяется математической алгоритмизации решаемых задач с целью их последующего программирования.

Шестое издание вышло в БНТУ в 2010 г.

УДК 621.01(075.8) ББК 34.41я7

ISBN 978-985-525-665-7

© БНТУ, 2011

Содержание

	Введение.	4
1.	Исследование динамики машинного агрегата.	5
1.1.	Задачи исследования. Динамическая модель	
	машинного агрегата и ее характеристики. Блок-схема	
	исследования динамики машинного агрегата	5
1.2.	Определение динамических характеристик	
	и закона вращения звена приведения	9
1.2.1.	Определение кинематических характеристик	
	рычажных механизмов	9
1.2.2.	Определение приведенных моментов сил	
	сопротивления и движущих сил	18
1.2.3.	Определение переменной составляющей	
	приведенного момента инерции I_{II}^{II}	22
1.2.4.	Определение постоянной составляющей приведенного	
:	момента инерции I_{II}^{I} и момента инерции	
	маховика I_M	23
1.2.5.	Определение закона вращения звена приведения	25
1.2.6.	Схема алгоритма программы исследования	
	динамической нагруженности машинного агрегата	26
2.	Динамический анализ рычажных механизмов	31
2.1.	Задачи динамического анализа рычажных	
	механизмов	31
2,2.	Кинематический анализ	31
2.3.	Силовой расчет	33
	Литература	41

3

Современная инженерная практика требует решения задач, связанных с оценкой материалоемкости и энергопотребления проектируемых машин, технологического оборудования и средств автоматизации, с расчетом их деталей на прочность. В связи с этим интенсификация учебного процесса в вузе нацеливает на развитие у студентов навыков использования полученных знаний для решения указанных задач в процессе самостоятельной работы, в частности при выполнении курсового проекта по теории механизмов и машин.

Решение задач по оценке материалоемкости и энергопотребления машин, их динамической нагруженности особенно важно на стадии выбора и обоснования той или иной схемы машины. Оценка динамических свойств включает в себя обоснование и составление динамической модели (расчетной схемы) машины с учетом механических характеристик двигателя и выполняемого ею процесса, математическое моделирование и проведение численного исследования с помощью ЭВМ.

На начальном этапе проектирования динамическую нагруженность мащины в целом оценивают неравномерностью вращения главного приводного вала (звена приведения) и коэффициентом динамичности. Динамическая же нагруженность передаточных и исполнительных механизмов машины, определяемая величиной и направлением реакций в кинематических парах, может быть установлена только после определения действительных скоростей и ускорений их звеньев, зависящих от закона движения звена приведения (обобщенных скоростей и ускорений). Использование ЭВМ в данном случае не только значительно повышает производительность счетных работ, но и позволяет на основе численной информации выявить и оценить взаимосвязь параметров технологического процесса (его механических характеристик) с типом исполнительного механизма, используемого в конкретной машине, с длиной кинематической цепи привода, величиной и распределением масс подвижных звеньев.

Наиболее эффективно используются ЭВМ в диалоговом режиме с выводом на экран дисплея промежуточных и конечных результатов в виде графической информации. При этом пользователю будет необходимо творчески осмысливать свои решения и действия. Графическая и численная информация, получаемая с помощью ЭВМ, может быть использована как в учебных целях для освоения методов теории механизмов и машин, так и в решении инженерных задач по совершенствованию схем механизмов и машин. В частности, к числу таких задач можно отнести следующие:

1) освоение методики количественной оценки динамических характеристик и динамической нагруженности машины, методов ее снижения;

2) установление количественной взаимосвязи динамических характеристик и динамической нагруженности с материалоемкостью и энергопотреблением машины, с износом в кинематических парах, с погрешностью позиционирования рабочего органа, с кинематическими и динамическими ошибками;

3) количественная и качественная оценка влияния характеристик приводного двигателя, масс звеньев и длины кинематической цепи привода на выходные параметры процесса, выполняемого машиной.

Данное пособие посвящено исследованию динамики машинного агрегата в установившемся режиме движения, который является основным режимом работы для большинства технологических машин.

1. ИССЛЕДОВАНИЕ ДИНАМИКИ МАШИННОГО АГРЕГАТА

1.1. Задачи исследования. Динамическая модель машинного агрегата и ее характеристики. Блок-схема исследования динамики машинного агрегата

Задачами исследования динамики машинного агрегата являются:

1) оценка динамической нагруженности машины в целом;

2) оценка динамической нагруженности отдельных механизмов, входящих в состав машины.

Оценка динамической нагруженности машины включает определение уровня неравномерности вращения главного вала проектируемой машины и приведение его в соответствие с заданным коэффициентом неравномерности вращения (динамический синтез машины по заданному коэффициенту неравномерности движения), а также определение закона вращения главного вала машины после достижения заданной неравномерности вращения (динамический анализ машины). Параметром, характеризующим динамическую нагруженность машины, является коэффициент динамичности.

Динамическая нагруженность отдельных механизмов машины оценивается величиной и направлением реактивных сил и моментов сил в кинематических парах (динамический анализ механизмов). Поскольку при определении реактивных нагрузок используется кинетостатический метод расчета, то динамический анализ механизмов включает последовательное выполнение кинематического анализа, а затем кинетостатического силового расчета.

Блок-схема машинного агрегата показана на рис. 1.1.

В движении входного звена исполнительного рычажного механизма имеют место колебания угловой скорости, основными причинами которых являются:

1) несовпадение законов изменения сил сопротивления и движущих сил в каждый момент времени;

2) непостоянство приведенного момента инерции звеньев исполнительного и некоторых вспомогательных механизмов.

Рис. 1.1

Чтобы учесть влияние названных причин на закон движения входного звена исполнительного механизма, составляется упрощенная динамическая модель машинного агрегата и на ее основе – математическая модель, устанавливающая функциональную взаимосвязь исследуемых параметров.

Наиболее простой динамической моделью машинного агрегата может быть одномассовая модель, представленная на рис. 1.2.

6

Рис. 1.2

В качестве такой модели рассматривается условное вращающееся звено – звено приведения, которое имеет момент инерции I_{Π} относительно оси вращения (приведенный момент инерции) и находится под действием момента сил M_{Π} (приведенного момента сил). В свою очередь $M_{\Pi} = M_{\Pi}^{\Pi} + M_{\Pi}^{C}$, где M_{Π}^{Π} – приведенный момент движущих сил; M_{Π}^{C} – приведенный момент сил сопротивления. Кроме того, $I_{\Pi} = I_{\Pi}^{I} + I_{\Pi}^{II}$, где I_{Π}^{I} – постоянная составляющая приведенного момента инерции; I_{Π}^{II} – переменная составляющая приведенного момента инерции В величину I_{Π}^{I} входят собственный момент инерции кривошипа (I_{O}), приведенные моменты инерции ротора электродвигателя и передаточного механизма ($I_{P,\Pi B}^{II}$, $I_{\Pi EPM}^{II}$), а также момент инерции I_{M} добавочной массы (маховика), причем необходимость установки маховика определяется на основании заданной степени неравномерности движения звена приведения.

Динамические характеристики M_{Π} и I_{Π} должны быть такими, чтобы закон вращения звена приведения был таким же, как и у главного вала машины (кривошипа 1 основного исполнительного рычажного механизма), т.е. $\varphi_{\Pi} = \varphi_1$, $\omega_{\Pi} = \omega_1$, $\varepsilon_{\Pi} = \varepsilon_1$.

Блок-схема исследования динамики машинного агрегата показана на рис. 1.3.

Из схемы видно, что в исследовании можно выделить следующие этапы:

1. Исследование динамики машины:

1.1. Определение кинематических характеристик исполнительного механизма, которое включает нахождение крайних положений рабочего органа и соответствующих ему значений обобщенных координат, вычисление функций положений, аналогов скоростей и ускорений для ряда последовательных положений за цикл движения.

1.2. Определение динамических характеристик звена приведения:

а) приведенных моментов сил полезного сопротивления и движущих сил;

б) приведенного момента инсрции ($I_{II} = I_{II}^{I} + I_{II}^{II}$) и его производной.

1.3. Определение закона вращения звена приведения и оценка динамической нагруженности по коэффициенту динамичности.

2. Динамический анализ исполнительного механизма:

2.1. Кинематический анализ, включающий определение скоростей и ускорений точек и звеньев с учетом полученного закона вращения звена приведения.

2.2. Силовой расчет, целью которого является определение реакций в кинематических парах и уравновешивающего момента.

1.2. Определение динамических характеристик и закона вращения звена приведения

1.2.1. Определение кинематических характеристик рычажных механизмов

При решении задач динамики машины необходимо знать кинематические характеристики механизмов машины, зависящие от обобщенной координаты φ_1 . Такими характеристиками являются функции положений точек и звеньев, передаточные функции (аналоги скоростей) и их производные (аналоги ускорений). Определить их можно либо графически (построением планов положений, аналогов скоростей и ускорений), либо аналитически. Во втором случае целесообразно использовать метод замкнутых векторных контуров [3]. Ниже рассмотрены примеры аналитического решения указанных задач для простейших рычажных механизмов.

Шарнирный четырехзвенник (рис. 1.4).

Рис. 1.4

$$\begin{split} &l_1 = l_{OA}, \quad l_2 = l_{AB}, \quad l_3 = l_{CB}, \quad l_4 = l_{CD}, \\ &l_5 = l_{AS_2}, \quad l_6 = l_{CS_3}, \quad l_7 = l_{BD}, \quad l_0 = l_{OC}. \end{split}$$

За положительное направление отсчета углов примем направление против часовой стрелки.

Звенья механизма представляются как замкнутый векторный контур. Для него составляется уравнение замкнутости в виде проекций на оси координат:

$$l_1 \cos \varphi_1 + l_2 \cos \varphi_2 - l_3 \cos \varphi_3 = x_C; \qquad (1.1)$$

$$l_1 \sin \varphi_1 + l_2 \sin \varphi_2 - l_3 \sin \varphi_3 = y_C.$$
 (1.2)

Решив систему уравнений (1.1) и (1.2), можно было бы определить углы φ_2 и φ_3 . Однако решение можно получить проще, введя

в рассмотрение дополнительный вектор $\bar{l} = \bar{l}_{CA}$, равный

$$l = \sqrt{(x_A - x_C)^2} + (y_A - y_C)^2,$$

где $x_A = l_1 \cos \varphi_1$, $y_A = l_1 \sin \varphi_1$.

Угол ϕ наклона вектора \overline{l} определяется из выражений

$$\cos\varphi = \frac{x_A - x_C}{l}; \quad \sin\varphi = \frac{y_A - y_C}{l}.$$

Угол β между векторами \tilde{l} и \tilde{l}_3 на основании теоремы косинусов определяется как

$$\cos\beta = \frac{l_{3}^{2} + l^{2} - l_{2}^{2}}{2l_{3}l}; \quad \sin\beta = a\sqrt{1 - \cos^{2}\beta},$$

где а – признак сборки шарнирного четырехзвенника:

a = +1, если обход контура *ABC* совершается по часовой стрелке; a = -1, если обход контура *ABC* происходит против часовой стрелки.

Тогда

$$\phi_3 = \phi - \beta.$$

Координаты точки В

$$x_B = x_C + l_3 \cos \varphi_3; \quad y_B = y_C + l_3 \sin \varphi_3.$$

Угол ф₂ определяется из выражений

$$\cos \varphi_2 = \frac{x_B - x_A}{l_2}; \quad \sin \varphi_2 = \frac{y_B - y_A}{l_2}.$$

Координаты точки S₂

$$x_{S2} = l_1 \cos \varphi_1 + l_5 \cos \varphi_2; \quad y_{S2} = l_1 \sin \varphi_1 + l_5 \sin \varphi_2.$$
 (1.3)

Аналогично определяются координаты точек S₃ и D.

После дифференцирования уравнения (1.1) по обобщенной координате φ_1 получим

$$-l_1 \sin \varphi_1 - l_2 i_{21} \sin \varphi_2 + l_3 i_{31} \sin \varphi_3 = 0, \qquad (1.4)$$

где $i_{21} = \frac{d \varphi_2}{d \varphi_1}$, $i_{31} = \frac{d \varphi_3}{d \varphi_1}$ – аналоги угловых скоростей (переда-

точные функции) звеньев 2 и 3. После поворота осей координат на угол ϕ_3 из (1.4) находим

$$i_{21} = -\frac{l_1 \sin(\varphi_1 - \varphi_3)}{l_2 \sin(\varphi_2 - \varphi_3)},$$

а после поворота осей координат на угол ф 2 получим

$$i_{31} = \frac{l_1 \sin(\varphi_1 - \varphi_2)}{l_3 \sin(\varphi_3 - \varphi_2)}.$$

Дифференцируя уравнения (1.3) по ϕ_1 , получим проекции аналога скорости точки S_2 :

$$x'_{S_2} = -l_1 \sin \varphi_1 - i_{21} l_5 \sin \varphi_2; \qquad (1.5)$$

$$y'_{S_2} = l_1 \cos \varphi_1 + i_{21} l_5 \cos \varphi_2. \tag{1.6}$$

Подобным образом определяются аналоги скоростей точек S₃ и D. Для получения аналогов ускорений (производных передаточных

функций) $i'_{21} = \frac{d^2 \varphi_2}{d \varphi_1^2}$ и $i'_{31} = \frac{d^2 \varphi_3}{d \varphi_1^2}$ выражение (1.4) продиф-

ференцируем по φ_1 и последовательно повернем оси координат на углы φ_3 и φ_2 . Тогда

$$i'_{21} = \frac{-l_1 \cos (\varphi_1 - \varphi_3) - l_2 i_{21}^2 \cos (\varphi_2 - \varphi_3) + l_3 i_{31}^2}{l_2 \sin (\varphi_2 - \varphi_3)};$$

$$i'_{31} = \frac{l_1 \cos (\varphi_1 - \varphi_2) + l_2 i_{21}^2 - l_3 i_{31}^2 \cos (\varphi_3 - \varphi_2)}{l_3 \sin (\varphi_3 - \varphi_2)}.$$

Проекции аналога ускорения точки S₂ получим после дифференцирования (1.5) и (1.6) по φ_1 :

$$x_{S2}^{\prime\prime} = -l_1 \cos \varphi_1 - i_{21}^2 l_5 \cos \varphi_2 - i_{21}^{\prime} l_5 \sin \varphi_2;$$

$$y_{S2}^{\prime\prime} = -l_1 \sin \varphi_1 - i_{21}^2 l_5 \sin \varphi_2 + i_{21}^{\prime} l_5 \cos \varphi_2.$$

Подобным образом определяются аналоги ускорений точек S₃ и D.

Кривошипно-ползунные механизмы

Рассмотрим схемы механизмов с горизонтальным (рис. 1.5, а, б) и с вертикальным (рис. 1.5, в, г) движением ползуна.

Рис. 1.5

$$l_1 = l_{OA}, \ l_2 = l_{AB}, \ l_3 = l_{AS_2}.$$

Для горизонтальных механизмов выражения кинематических характеристик получаем следующим образом.

Координаты точки А

$$x_A = l_1 \cos \varphi_1; \quad y_A = l_1 \sin \varphi_1.$$

Тогда координата точки В

$$x_B = x_A + a \sqrt{l_2^2 - (y_B - y_A)^2},$$

где *а* – признак сборки механизма:

a = +1, если ползун расположен справа от начала координат;

a = -1, если ползун расположен слева от начала координат.

Перемещение ползуна, отсчитываемое от крайнего положения, равно

$$S_B = \left| x_{BMAX} \right| - \left| x_B \right|.$$

Координата х_{В МАХ} точки В равна

$$x_{BMAX} = \sqrt{(l_1 + l_2)^2 - y_B^2}.$$

Угол ϕ_2 определяется из выражений

$$\cos \varphi_2 = \frac{x_B - x_A}{l_2}; \quad \sin \varphi_2 = \frac{y_B - y_A}{l_2}.$$

Уравнения замкнутости векторного контура в проекциях имеют вид

$$x_B = l_1 \cos \varphi_1 + l_2 \cos \varphi_2; \qquad (1.7)$$

$$0 = -y_B + l_1 \sin \varphi_1 + l_2 \sin \varphi_2. \tag{1.8}$$

После дифференцирования (1.7) и (1.8) по ϕ_1 и преобразований получим

$$i_{31} = x'_B = -l_1 \sin \varphi_1 - l_2 i_{21} \sin \varphi_2;$$
 (1.9)

$$0 = l_1 \cos \varphi_1 + l_2 i_{21} \cos \varphi_2, \qquad (1.10)$$

откуда

$$i_{21} = -\frac{l_1 \cos \varphi_1}{l_2 \cos \varphi_2}.$$
 (1.11)

Подставив (1.11) в (1.9), определим значение i_{31} . Аналоги ускорений $i'_{31} = \frac{d^2 x_B}{d \varphi_1^2}$ и $i'_{21} = \frac{d^2 \varphi_2}{d \varphi_1^2}$ получим после дифференцирования (1.9) и (1.10) по φ_1 и преобразований:

$$i'_{21} = \frac{l_1 \sin \varphi_1 + l_2 i'_{21}^2 \sin \varphi_2}{l_2 \cos \varphi_2};$$

$$i'_{31} = -l_1 \cos \varphi_1 - l_2 i'_{21} \sin \varphi_2 - l_2 i'_{21}^2 \cos \varphi_2.$$

Кинематические характеристики точки S_2 имеют вид, аналогичный выражениям (1.3) для шарнирного четырехзвенника.

Как правило, требуется определять кинематические характеристики для ряда последовательных положений механизма, например через 30° по углу поворота кривошипа. Предварительно определяется значение начальной обобщенной координаты ϕ_0 , соответствующей наиболее удаленному крайнему положению ползуна. Так, для схемы (рис. 1.6) получим

$$\varphi_0 = \arcsin \frac{y_B}{l_1 + l_2}.$$

Рис. 1.6

Начальное положение считается первым.

Текущее значение обобщенной координаты ϕ_1 для *i*-го положения равно

$$\varphi_{1i} = \varphi_0 + (i-1)\Delta \varphi_1,$$

где $\Delta \phi_1 = \pm \frac{360}{n}$ (град)- шаг изменения обобщенной координаты;

знак "плюс" соответствует вращению кривошипа против часовой стрелки;

знак "минус" - вращению кривошипа по часовой стрелке;

n - число интервалов деления одного оборота кривошипа. При делении через 30°

Алгоритм вычислений, полученный на основании приведенного вывода, для горизонтальных механизмов имеет вид:

1.
$$x_A = l_1 \cos \varphi_1$$
.
2. $y_A = l_1 \sin \varphi_1$.
3. $x_B = x_A + a \sqrt{l_2^2 - (y_B - y_A)^2}$.
4. $\cos \varphi_2 = \frac{x_B - x_A}{l_2}$.
5. $\sin \varphi_2 = \frac{y_B - y_A}{l_2}$.

6.
$$i_{21} = -\frac{l_1 \cos \varphi_1}{l_2 \cos \varphi_2}$$
.
7. $i_{31} = -l_1 \sin \varphi_1 - l_2 i_{21} \sin \varphi_2$.
8. $i'_{21} = \frac{l_1 \sin \varphi_1 + l_2 i_{21}^2 \sin \varphi_2}{l_2 \cos \varphi_2}$.
9. $i'_{31} = -l_1 \cos \varphi_1 - l_2 i'_{21} \sin \varphi_2 - l_2 i_{21}^2 \cos \varphi_2$.
10. $x_{S2} = x_A + l_3 \cos \varphi_2$.
11. $y_{S2} = y_A + l_3 \sin \varphi_2$.
12. $x'_{S2} = -l_1 \sin \varphi_1 - i_{21} l_3 \sin \varphi_2$.
13. $y'_{S2} = l_1 \cos \varphi_1 + i_{21} l_3 \cos \varphi_2$.
14. $x''_{S2} = -l_1 \cos \varphi_1 - l_3 i'_{21} \sin \varphi_2 - l_3 i'_{21} \cos \varphi_2$.
15. $y''_{S2} = -l_1 \sin \varphi_1 - l_3 i'_{21} \sin \varphi_2 + l_3 i'_{21} \cos \varphi_2$.
16. $|x_{BMAX}| = \sqrt{(l_1 + l_2)^2 - y_B^2}$.
17. $S_B = |x_{BMAX}| - |x_B|$.

Примечания: 1. В формуле (3) a = +1, если ползун расположен справа от начала координат, или a = -1, если слева;

2. у_В = е со знаком «плюс» или «минус» в системе координат ХОУ.

Для вертикальных механизмов (см. рис. 1.5, в, г) алгоритм вычислений имеет вид:

1.
$$x_A = l_1 \cos \varphi_1$$
.
2. $y_A = l_1 \sin \varphi_1$.
3. $y_B = y_A + a \sqrt{l_2^2 - (x_B - x_A)^2}$.
4. $\cos \varphi_2 = \frac{x_B - x_A}{l_2}$.

5.
$$\sin \varphi_2 = \frac{y_B - y_A}{l_2}$$
.
6. $i_{21} = -\frac{l_1 \sin \varphi_1}{l_2 \sin \varphi_2}$.
7. $i_{31} = l_1 \cos \varphi_1 + l_2 i_{21} \cos \varphi_2$.
8. $i'_{21} = -\frac{l_1 \cos \varphi_1 + l_2 i_{21}^2 \cos \varphi_2}{l_2 \sin \varphi_2}$.
9. $i'_{31} = -l_1 \sin \varphi_1 - l_2 i_{21}^2 \sin \varphi_2 + l_2 i'_{21} \cos \varphi_2$.
10. $x_{S2} = x_A + l_3 \cos \varphi_2$.
11. $y_{S2} = y_A + l_3 \sin \varphi_2$.
12. $x'_{S2} = -l_1 \sin \varphi_1 - i_{21} l_3 \sin \varphi_2$.
13. $y'_{S2} = l_1 \cos \varphi_1 + i_{21} l_3 \cos \varphi_2$.
14. $x''_{S2} = -l_1 \cos \varphi_1 - l_3 i'_{21} \sin \varphi_2 - l_3 i^2_{21} \cos \varphi_2$.
15. $y''_{S2} = -l_1 \sin \varphi_1 + l_3 i'_{21} \cos \varphi_2 - l_3 i^2_{21} \sin \varphi_2$.
16. $|y_{BMAX}| = \sqrt{(l_1 + l_2)^2 - x_B^2}$.

Примечание: 1. В формуле (3) a = +1, если ползун расположен сверху от начала координат, или a = -1, если снизу;

I. $x_B = e$ со знаком «плюс» или «минус» в системе координат *XOY*.

1.2.2. Определение приведенных моментов сил сопротивления и движущих сил

Для рабочих машин приведенный момент движущих сил $M_{\Pi}^{\mathcal{A}}$ принимается постоянным ($M_{\Pi}^{\mathcal{A}} = const$), а приведенный момент сил сопротивления $M_{\Pi}^{\mathcal{C}}$ определяется в результате приведения си-

Рис. 1.7

Как отмечено ранее, приведенный момент сил M_{Π} представляется в виде алгебраической суммы

$$M_{\Pi} = M_{\Pi}^{\Pi} + M_{\Pi}^C.$$

Определение M_{II}^{C} выполняется из условия равенства мгновенных мощностей

$$M_{\Pi}^{C} \omega_{1} = \Sigma \overline{F}_{i} \overline{V}_{i} + \Sigma M_{i} \omega_{i}.$$

Откуда

$$M_{\Pi}^{C} = \left[\Sigma \left(F_{X} x_{i}^{\prime} + F_{Y} y_{i}^{\prime} \right) + \Sigma M_{i} i_{i1} \right] sign \left(\omega_{1} \right), \quad (1.12)$$

где F_X и F_Y – проекции силы F_i на оси координат;

 x'_i и y'_i – проекции аналога скорости точки приложения силы F_i ;

 i_{i1} – передаточная функция от *i*-го звена, к которому приложен момент M_i , к звену 1;

 $sign(\omega_1) = +1$ при направлении вращения звена 1 против часовой стрелки;

 $sign(\omega_1) = -1$ при направлении вращения звена 1 по часовой стрелке.

В формуле M_{Π}^{C} (1.12) силы F_{X} , F_{Y} и моменты M_{i} берутся со знаками, соответствующими правой системе координат (положительное направление вращения – против часовой стрелки).

Так, для горизонтального механизма (рис. 1.8, а) M_{Π}^{C} определяется из равенства

$$M_{\Pi}^{C} \omega_{1} = \overline{F}_{\Pi C} \overline{V}_{B} + \overline{G}_{2} \overline{V}_{S2} + \overline{G}_{3} \overline{V}_{B},$$

20

$$M_{\Pi}^{C} = \left(F_{\Pi C} x_{B}^{\prime} - G_{2} y_{S2}^{\prime} - G_{3} y_{B}^{\prime}\right) sign(\omega_{1}).$$

Рис. 1.8

Учитывая, что $x'_B = i_{31}$, $y'_B = 0$, $sign(\omega_1) = -1$, получим

 $M_{\Pi}^{C} = - \Big(F_{\Pi C} \, i_{31} - G_2 \, y'_{S2} \Big).$

В рассматриваемом положении сила $F_{\Pi C}$ имеет отрицательное значение, так как она направлена против положительного направления оси X.

Для вертикального механизма (рис. 1.8, б) аналогичным образом можно получить

$$M_{\Pi}^{C} = \left(F_{\Pi C} y_{B}^{\prime} - G_{2} y_{S2}^{\prime} - G_{3} y_{B}^{\prime}\right) sign(\omega_{1}) = -\left(F_{\Pi C} i_{31} - G_{2} y_{S2}^{\prime} - G_{3} i_{31}\right).$$

Сила F_{ПС} в изображенном случае положительна.

Приведенный момент движущих сил $M_{II}^{\mathcal{A}}$ определяется из условия, что при установившемся режиме движения изменение кинетической энергии машины за цикл равно нулю, т.е.

$$\Delta T = A_{\mu\mu} + A_{C\mu} = 0 ,$$

откуда за цикл $A_{\Pi \Pi} = -A_{C \Pi}$.

Работа сил сопротивления вычисляется по формуле

$$A_C = \int_{\varphi_0}^{\varphi_i} M_{\Pi}^C d\varphi_1$$

Интегрирование выполняется численным методом по правилу трапеций:

$$A_{Ci} = A_{C(i-1)} + \frac{M_{\Pi i}^{C} + M_{\Pi (i-1)}^{C}}{2} |\Delta \varphi_{1}|,$$

где $\Delta \phi_1$ - шаг интегрирования в радианах. $\Delta \phi_1 = \pm \frac{2\pi}{n}$,

n - число интервалов деления одного оборота кривошипа. С учетом $A_{\mathcal{J}\mathcal{I}\mathcal{I}} = M_{\Pi}^{\mathcal{I}} \cdot \varphi_{\mathcal{I}}$ при $\varphi_{\mathcal{I}} = 2\pi$

$$M_{\Pi}^{\Pi} = -\frac{A_{C\Pi}}{2\pi}.$$

1.2.3. Определение переменной составляющей приведенного момента инерции I^{II}

Переменная составляющая I_{II}^{II} определяется из условия равенства кинетических энергий, т.е. кинетическая энергия звена приведения, имеющего момент инерции I_{II}^{II} , равна сумме кинетических энергий звеньев, характеризуемых переменными передаточными функциями:

$$\frac{I_{\Pi}^{II}\omega_{1}^{2}}{2} = \Sigma \frac{I_{Si}\omega_{i}^{2}}{2} + \Sigma \frac{m_{i}V_{Si}^{2}}{2}.$$

Разделив это выражение на ω_1^2 , с учетом того что $V_{Si}^2 = \dot{x}_{Si}^2 + \dot{y}_{Si}^2$, получим

$$I_{\Pi}^{II} = \sum I_{Si} i_{i1}^{2} + \sum m_{i} \left[\left(x_{Si}^{\prime} \right)^{2} + \left(y_{Si}^{\prime} \right)^{2} \right]$$

Для звеньев 2, 3 кривошипно-ползунного механизма (см. рис. 1.8)

$$I_{II}^{II} = m_2 \left[\left(x'_{S2} \right)^2 + \left(y'_{S2} \right)^2 \right] + I_{S2} i^2_{21} + m_3 i^2_{31}.$$

Производная $\frac{dI_{\Pi}}{d\phi_1}$, необходимая в последующем для определения закона движения звена приведения, имеет вид

$$\frac{dI_{\Pi}}{d\varphi_1} = 2 \left[m_2 \left(x'_{S2} x''_{S2} + y'_{S2} y''_{S2} \right) + I_{S2} i_{21} i'_{21} + m_3 i_{31} i'_{31} \right] sign(\omega_1).$$

1.2.4. Определение постоянной составляющей приведенного момента инерции I_{II}^{I} и момента инерции маховика I_{M}

В основу расчета положен метод Н.И Мерцалова [5]. Для определения изменения кинетической энергии машины ΔT предварительно определяем работу движущих сил A_{II} . Для *i*-го положения

$$A_{\mathcal{I}_i} = M_{\Pi}^{\mathcal{I}} \varphi_{1i},$$

где

$$\varphi_{1i} = \left| \Delta \varphi_1 \right| (i-1).$$

Тогда

 $\Delta T_i = A_{\mathcal{I}i} + A_{Ci}.$

Изменение кинетической энергии ΔT_I звеньев с постоянным приведенным моментом инерции I^I равно

$$\Delta T_{Ii} = \Delta T_i - T_{IIi},$$

где T_{IIi} – кинетическая энергия звеньев, создающих переменную составляющую I^{II} . По методу Н.И. Мерцалова T_{IIi} определяется приближенно по средней угловой скорости ω_{icp} :

$$T_{IIi} \approx \frac{I_{\Pi i}^{II} \omega_{1cp}^2}{2}$$

Далее из полученного за цикл массива значений ΔT_I (рис. 1.9) находим максимальную ΔT_{Ia} и минимальную ΔT_{Ib} величины, используя которые вычисляем максимальный перепад кинетической энергии:

$$\Delta T_{Iab} = \Delta T_{Ia} - \Delta T_{Ib}.$$

Рис. 1.9

Тогда необходимая величина I_{II}^{I} , при которой имеет место вращение звена приведения с заданным коэффициентом неравномерности δ , равна

$$I_{II}^{I} = \frac{\Delta T_{Iab}}{\delta \omega_{1cp}^{2}}, \qquad \text{где } \omega_{1cp} = \frac{\pi n_{1}}{30}. \qquad (1.13)$$

Момент инерции маховика определяется по формуле

$$I_M = I_\Pi^I - I_\Pi^0 ,$$

где I_{II}^0 – приведенный момент инерции всех вращающихся масс машины (ротора двигателя, зубчатых колес, кривошипа).

Иногда величина I_{II}^0 может оказаться больше полученного значения I_{II}^I . В этом случае не требуется установки маховика. Тогда реальный коэффициент неравномерности вращения из (1.13) равен

$$\delta = \frac{\Delta T_{Iab}}{I_{II}^0 \,\omega_{1cp}^2}$$

1.2.5. Определение закона вращения звена приведения

С помощью зависимости $\Delta T_I(\varphi_1)$, используемой при определении постоянной составляющей приведенного момента инерции I_{II}^I по методу Мерцалова, можно получить зависимость угловой скорости звена приведения $\omega_1(\varphi_1)$.

Из рис. 1.9 видно, что для любого положения кинетическая энергия звеньев, обладающих постоянным приведенным моментом инерции I_{II}^{I} , равна

$$T_{Ii} = T_{Icp} - \Delta T_{Icp} + \Delta T_{Ii},$$

25

где
$$T_{Icp} = \frac{I_{II}^{I} \omega_{1cp}^{2}}{2}, \quad \Delta T_{Icp} = \frac{\Delta T_{Ia} + \Delta T_{Ib}}{2}.$$

Так как $T_{Ii} = \frac{I_{II}^{I} \omega_{1i}^{2}}{2}$, то текущее значение угловой скорости

$$\omega_{1i} = \sqrt{\frac{2T_{1i}}{I_{\Pi}^{I}}} sign(\omega_{1}).$$

Угловое ускорение ε_1 определяется из дифференциального уравнения движения звена приведения:

$$\varepsilon_{1i} = \frac{M_{II}^{II} + M_{IIi}^{C} - \frac{\omega_{1i}^{2}}{2} \frac{dI_{IIi}}{d\varphi_{1}}}{I_{II}^{II} + I_{IIi}^{II}} sign(\omega_{1}).$$

1.2.6. Схема алгоритма программы исследования динамической нагруженности машинного агрегата

Рассмотренные в предыдущих параграфах материалы позволяют разработать программу исследования динамической нагруженности машинного агрегата. В качестве объекта исследования взята технологическая машина, в которой основным исполнительным механизмом является кривошипно-ползунный механизм (например, горизонтально-ковочная машина). Примерная схема алгоритма такой программы приведена на рис. 1.10.

Осуществляется ввод исходных данных (блок 1). Пример подготовки исходных данных показан в табл. 1.1. Следует обратить внимание на соответствие направления вращения кривошипа ω_{1cp} , знака F_{IIC} по отношению к положительному направлению соответствующей оси координат, а также на знак величины эксцентриситета e.

В блоке 2 вычисляются угловой шаг $\Delta \varphi_1$, максимальная координата ползуна x_{BMAX} (или y_{BMAX}) и присваивается начальное значение обобщенной координате $\varphi_1 = \varphi_0$.

Рис. 1.10

Окончание рис. 1.10

Таблица 1.1

N⁰	Парамотр	Условное	Единица	Величина	
цп	Парамстр	обозначение	измерений		
1	2	3	4	5	
1	Схема кривошипно-			Si B	
	ползунного механизма			¥ ***	
2	Размеры звеньев	$l_1 = l_{OA}$	М	0,0742	
		$l_3 = l_{AS2}$	м	0,0741	
		$l_2 = l_{AB}$	м	0,2225	
		е	м	0,01335	
3	Начальная обобщенная	φo	град	2,58	
	Координата		-		
4	Массы и моменты	m		400	
	инерции звеньев		KI'	400	
		<i>m</i> ₃	КГ	500	
		I_{S2}	кг∙м²	8,35	
5	Сила полезного				
	сопротивления $F_{\Pi C}$	$F_{\Pi C1}$	Н	0	
		F _{IIC2}	H	0	
		F _{IIC3}	Н	0	
		F _{IIC4}	Н	0	
		$F_{\Pi C5}$	Н	0	
		F _{IIC6}	· H	0	
		$F_{\Pi C7}$	Н	0	
		$F_{\Pi C 8}$	Н	0	
		F _{ΠC9}	Н	0	
		<i>F_{ПС10}</i>	Н	0	
		$F_{\Pi C^{11}}$	Н	-12321	
		$F_{\Pi C12}$	Н	-27142	
		<i>F_{ПС13}</i>	Н	-125000	

1	2	3	4	5
6	Средняя угловая скорость кривошипа	ω _{1cp}	рад/с	-10,472
7	Коэффициент			
ļ	неравномерности вращения			
	вала кривощипа	δ		0,0556
8	Приведенный к кривошипу			
	момент инерции всех	I_{Π}^0	ĸг∙м²	90,264
	вращающихся звеньев			

Далее в цикле по φ_1 (блоки 4-9) вычисляются кинематические характеристики рычажного механизма (см. п. 1.2.1), динамические характеристики M_{II}^C , I_{II}^{II} , $\frac{dI_{II}}{d\varphi_1}$, кинетическая энергия T_{II} , рабо-

та сил сопротивления A_C .

По окончании цикла определяется приведенный момент движущих сил $M_{\Pi}^{\mathcal{A}}$ (блок 10).

В новом цикле (блоки 11-12) производится вычисление A_{II} , ΔT , ΔT_{I} .

В подпрограмме (блок 13) из массива ΔT_I находятся экстремальные значения ΔT_{Ia} и ΔT_{Ib} , что позволяет в блоке 14 определить величины I_{II}^{I} , I_{M} , а также T_{Icp} и ΔT_{Icp} (см. 1.2.4 и 1.2.5).

После вычисления в цикле (блоки 15,16) T_I , ω_1 , ε_1 производится печать результатов расчета (блок 17).

2. ДИНАМИЧЕСКИЙ АНАЛИЗ РЫЧАЖНЫХ МЕХАНИЗМОВ

2.1. Задачи динамического анализа рычажных механизмов

Конечной целью динамического анализа рычажного механизма является определение реакций в кинематических парах и уравновешивающего (движущего) момента, действующего на кривошипный вал со стороны привода. Указанные задачи решаются методом кинетостатики, основанным на принципе Даламбера. Этот метод предполагает введение в расчет инерционных нагрузок (главных векторов и главных моментов сил инерции), для определения которых требуется знать ускорения центров масс и угловые ускорения звеньев. Поэтому силовому расчету предшествует кинематический анализ механизма по известному уже закону вращения кривошипа (ω_1 , ε_1).

2.2. Кинематический анализ

Кинематический анализ рычажного механизма производится после того, как в результате динамического анализа машинного агрегата установлен закон движения звена приведения ($\omega_1(\varphi_1), \varepsilon_1(\varphi_1)$). Учитывая, что закон движения кривошипа рычажного механизма такой же, как и звена приведения, при кинематическом анализе требуется определить соответствующие этому закону движения линейные скорости и ускорения отдельных точек, а также угловые скорости и ускорения звеньев механизма.

Известно, что угловая скорость к-го звена равна

$$\omega_K = \frac{d\varphi_K}{dt} = \frac{d\varphi_K}{d\varphi_1} \frac{d\varphi_1}{dt} = i_{K1}\omega_1,$$

т.е. угловая скорость к-го звена равна произведению аналога угловой скорости этого звена на угловую скорость звена приведения 1.

Аналогичные выражения можно получить для проекций скорости какой-либо точки звена (например, точки *M*):

$$\dot{x}_{M} = \frac{d x_{M}}{d t} = \frac{d x_{M}}{d \varphi_{1}} \frac{d \varphi_{1}}{d t} = x'_{M} \omega_{1};$$
$$\dot{y}_{M} = y'_{M} \omega_{1}.$$

Угловое ускорение к-го звена

$$\varepsilon_K = \frac{d\,\omega_K}{d\,t} = \frac{d\,(i_{K1}\omega_1)}{d\,t} = \frac{d\,i_{K1}}{d\,t}\,\omega_1 + i_{K1}\,\frac{d\,\omega_1}{d\,t}\,.$$

Так как

$$\frac{d i_{K1}}{d t} = \frac{d i_{K1}}{d \varphi_1} \frac{d \varphi_1}{d t} = i'_{K1} \omega_1,$$

то

$$\varepsilon_K = i_{K1}^{\prime} \omega_1^2 + i_{K1} \varepsilon_1.$$

Аналогично рассуждая, получим проекции ускорения точки М:

$$\ddot{x}_M = x_M^{\prime\prime} \omega_1^2 + x_M^{\prime} \varepsilon_1, \quad \ddot{y}_M = y_M^{\prime\prime} \omega_1^2 + y_M^{\prime} \varepsilon_1.$$

Алгоритм определения скоростей и ускорений для кривошиппоползунных механизмов (см. рис. 1.5) имеет вид:

1.
$$\omega_2 = i_{21}\omega_1$$
.
2. $V_B = i_{31}\omega_1$.
3. $\dot{x}_{S2} = x'_{S2}\omega_1$.
4. $\dot{y}_{S2} = y'_{S2}\omega_1$.
5. $\varepsilon_2 = i'_{21}\omega_1^2 + i_{21}\varepsilon_1$.
6. $a_B = i'_{31}\omega_1^2 + i_{31}\varepsilon_1$.
7. $\ddot{x}_{S2} = x''_{S2}\omega_1^2 + x'_{S2}\varepsilon_1$.
8. $\ddot{y}_{S2} = y''_{S2}\omega_1^2 + y'_{S2}\varepsilon_1$.

Модули и направления векторов абсолютной скорости и ускорения точки S₂ определяются на основании выражений:

9.
$$V_{S2} = \sqrt{\dot{x}_{S2}^2 + \dot{y}_{S2}^2};$$
 $\cos \varphi_{VS2} = \frac{\dot{x}_{S2}}{V_{S2}};$ $\sin \varphi_{VS2} = \frac{\dot{y}_{S2}}{V_{S2}}.$
10. $a_{S2} = \sqrt{\ddot{x}_{S2}^2 + \ddot{y}_{S2}^2};$ $\cos \varphi_{aS2} = \frac{\ddot{x}_{S2}}{a_{S2}};$ $\sin \varphi_{aS2} = \frac{\ddot{y}_{S2}}{a_{S2}}.$

2.3. Силовой расчет

При силовом расчете механизма рассматриваются статически определимые кинематические цепи (группы Accypa), причем расчет начинается с группы, наиболее удаленной от начального звена.

Расчетные схемы группы Ассура 2-го вида показаны на рис 2.1.

Рис. 2.1

К звеньям (2,3) группы приложим внешнюю нагрузку $F_{\Pi C}$, силы тяжести звеньев G_2 , G_3 . Реакцию F_{21} во вращательной кинематической паре A представим в виде проекций F_{21X} и F_{21Y} . Реакция F_{30} в поступательной кинематической паре B перпендикулярна направлению перемещения ползуна и в данном случае проходит через точку B.

В соответствии с принципом Даламбера приложим к звеньям (2,3) инерционные нагрузки.

Проекции главного вектора сил инерции звена 2

$$F_{H2X} = -m_2 \ddot{x}_{S2}, \quad F_{H2Y} = -m_2 \ddot{y}_{S2},$$

главный момент сил инерции звена 2

$$M_{H2} = -I_{S2} \varepsilon_2,$$

главный вектор сил инерции звена 3

$$F_{M3} = -m_3 a_B.$$

Силы тяжести звеньев равны

$$G_2 = 9.81m_2, \quad G_3 = 9.81m_3.$$

Реакции в кинематических парах группы с горизонтально расположенным ползуном вычисляются в следующей очередности (рис. 2.1, а):

1. Из условия, что $\Sigma F_X = 0$, определяется F_{21X}

$$F_{21X} = -F_{U2X} - F_{U3} - F_{\Pi C}.$$

2. Реакция F_{21Y} определяется из уравнения равновесия моментов сил для звена 2 относительно точки *B*:

$$(x_A - x_B)F_{21Y} - (y_A - y_B)F_{21X} + (x_{S2} - x_B)(F_{H2Y} - G_2) - (y_{S2} - y_B)F_{H2X} + M_{H2} = 0,$$

откуда

$$F_{21Y} = [(y_A - y_B) F_{21X} - (x_{S2} - x_B)(F_{H2Y} - G_2) + (y_{S2} - y_B)F_{H2X} - M_{H2}]/(x_A - x_B).$$

34

3. Реакция F_{30} определяется из условия равновесия проекций сил, действующих на группу (2,3), на ось *Y*, т.е.

$$F_{30} = G_3 - F_{21Y} - F_{H2Y} + G_2.$$

Для определения проекций F_{23X} и F_{23Y} реакции во внутренней кинематической паре *В* рассмотрим равновесие звена 2 под действием приложенных сил:

$$\overline{F}_{21X} + \overline{F}_{21Y} + \overline{F}_{H2X} + \overline{F}_{H2Y} + \overline{G}_2 + \overline{F}_{23X} + \overline{F}_{23Y} = 0,$$

откуда, проектируя на оси координат, получим

$$\begin{split} F_{23X} &= -F_{21X} - F_{H2X}; \\ F_{23Y} &= -F_{21Y} - F_{H2Y} + G_2. \end{split}$$

Модули реакций F_{21} и F_{23} определяем по формулам

$$F_{21} = \sqrt{F_{21X}^2 + F_{21Y}^2};$$

$$F_{23} = \sqrt{F_{23X}^2 + F_{23Y}^2}.$$

Направление реакций F_{21} и F_{23} установим, определив углы наклона их к оси X:

$$\cos \varphi_{F21} = \frac{F_{21X}}{F_{21}}; \quad \sin \varphi_{F21} = \frac{F_{21Y}}{F_{21}};$$
$$\cos \varphi_{F23} = \frac{F_{23X}}{F_{23}}; \quad \sin \varphi_{F23} = \frac{F_{23Y}}{F_{23}}.$$

Реакции в кинематических парах группы (2,3) с вертикальным расположением ползуна (рис. 2.1, б) вычисляются в следующей очередности:

1. Из условия, что $\Sigma F_{Y} = 0$, определяется F_{21Y} :

$$F_{21Y} = -F_{H2Y} - F_{H3} - F_{\Pi C} + G_2 + G_3.$$

2. Реакция F_{21X} определяется из уравнения равновесия моментов сил для звена 2 относительно точки *B*:

$$F_{21X} = [(x_A - x_B) F_{21Y} + (x_{S2} - x_B)(F_{H2Y} - G_2) - (y_{S2} - y_B)F_{H2X} + M_{H2}]/(y_A - y_B).$$

3. Реакция F_{30} определяется из условия равновесия проекций сил, действующих на группу (2,3), на ось X:

$$F_{30} = -F_{21X} - F_{H2X}.$$

Определение реакций F_{23X} и F_{23Y} , их модулей и направлений осуществляется по тем же формулам, что и для группы с горизонтальным расположением ползуна.

Далее рассматривается кривошип 1 (рис. 2.2).

Рис. 2.2

В точке *А* приложена известная реакция *F*₁₂, проекции которой равны

$$F_{12X} = -F_{21X},$$

$$F_{12Y} = -F_{21Y}.$$

36

В точке *O* расположена сила тяжести $G_1 = 9,81m_1$ и неизвестная реакция F_{10} . Кроме того, к звену приложен известный главный момент сил инерции

$$M_{H\uparrow} = -I_{\Pi}^{I} \varepsilon_{1}.$$

Для того чтобы звено 1 двигалось по заданному закону, к нему приложен уравновешивающий момент сил M_V , который является реактивным моментом со стороны отсоединенной части машины. Его величина определяется из уравнения моментов сил относительно точки O:

$$M_{y} = -x_{A} F_{12Y} + y_{A} F_{12X} - M_{H1}.$$

Реакция F₁₀ в проекциях имеет вид

$$F_{10X} = -F_{12X},$$

$$F_{10Y} = -F_{12Y} + G_1.$$

Модуль

$$F_{10} = \sqrt{F_{10X}^2 + F_{10Y}^2} \,.$$

Направление F_{10} определяется углом ϕ_{F10} по формулам

$$\cos \varphi_{F10} = \frac{F_{10X}}{F_{10}}$$
 и $\sin \varphi_{F10} = \frac{F_{10Y}}{F_{10}}$.

На основании вышеизложенного можно представить алгоритм силового расчета кривошипно-ползунных механизмов:

1. $G_1 = gm_1$. 2. $G_2 = gm_2$.

3.
$$G_3 = g m_3$$
.
4. $M_{H1} = -I_{II}^I \varepsilon_1$.
5. $F_{H2X} = -m_2 \ddot{x}_{S2}$.
6. $F_{H2Y} = -m_2 \ddot{y}_{S2}$.
7. $F_{H3} = -m_3 a_B$.
8. $M_{H2} = -I_{S2} \varepsilon_2$.

При горизонтальном расположении ползуна:

9.
$$F_{21X} = -(F_{H2X} + F_{H3} + F_{\Pi C}).$$

10. $F_{21Y} = [(y_A - y_B) F_{21X} - (x_{S2} - x_B)(F_{H2Y} - G_2) + (y_{S2} - y_B) \times F_{H2X} - M_{H2}]/(x_A - x_B).$

11. $F_{30} = G_3 - F_{21Y} - F_{H2Y} + G_2$.

При вертикальном расположении ползуна:

9.
$$F_{21Y} = -F_{H2Y} - F_{H3} - F_{HC} + G_2 + G_3.$$

10. $F_{21X} = [(x_A - x_B) F_{21Y} + (x_{S2} - x_B)(F_{H2Y} - G_2) - (y_{S2} - y_B) \times F_{H2X} + M_{H2}]/(y_A - y_B).$

11.
$$F_{30} = -F_{21X} - F_{H2X}$$
.

Далее для обеих схем:

12.
$$F_{12X} = -F_{21X}$$
.
13. $F_{12Y} = -F_{21Y}$.
14. $F_{23X} = -F_{21X} - F_{H2X}$.
15. $F_{23Y} = -F_{21Y} - F_{H2Y} + G_2$.
16. $M_Y = -x_A F_{12Y} + y_A F_{12X} - M_{H1}$.
17. $F_{10X} = -F_{12X}$.

18.
$$F_{10Y} = -F_{12Y} + G_1.$$

19. $F_{10} = \sqrt{F_{10X}^2 + F_{10Y}^2}.$
20. $F_{21} = \sqrt{F_{21X}^2 + F_{21Y}^2}.$
21. $F_{23} = \sqrt{F_{23X}^2 + F_{23Y}^2}.$

Алгоритм динамического анализа реализуется с помощью программы «Динамический анализ кривошипно-ползунных механизмов» [2]. В табл. 2.1 и 2.2 приведены исходные данные, необходимые для работы с программой.

Видно, что параметры I_{II}^{I} , ω_{1} и ε_{1} беругся из результатов исследования динамики машинного агрегата.

Таблица 2.1

N	Параметр	Условное обозначение	Единица измерений	Величина
1	Схема кривошипно- ползунного механизма			a Se B
2	Размеры звеньев	$l_1 = l_{OA}$	м	. 0,0742
		$l_3 = l_{AS2}$	М	0,0741
		$l_2 = l_{AB}$	м	0,2225
		e	M	0,01335
3	Начальная обобщенная координата	φ ₀	град	2,58
4	Массы и моменты инерции			
	звеньев	m_1	КГ	30
		<i>m</i> ₂	кг	400
		<i>m</i> ₃	кг	500
		I _{S2}	кг·м²	8,35
5	Постоянная составляющая			
	приведенного момента инерции	I_{Π}^{I}	кг-м²	84,327

Таблица 2.2

№ положения кривошипа	Угловая скорость ω_1 , рад с ⁻¹	Угловое ускорение ε ₁ , рад.с ⁻²	Сила полезного сопротивления $F_{\Pi C}$, Н	
1	9,1631	1,6165	0	
2	9,2337	0,9562	0	
3	9,2864	1,1061	0	
4	9,3660	1,6733	0	
5	9,4682	1,8654	0	
6	9,5653	1,6277	0	
7	9,6441	1,2586	0	
8	9,7000	0,4781	0	
9	9,7000	-2,4470	0	
10	9,5000	-3,9791	0	
11	9,3000	-3,0910	-12321	
12	9,1000	-0,9313	-27142	
13	9,1631	1,6165	-125000	

Результаты определения реакций в кинематических парах дают возможность выполнять прочностные расчеты звеньев, правильно подходить к конструктивному оформлению подвижных соединений (выбор подшипников, условий смазки и т.д.), количественно оценивать трение и износ, а также коэффициенты полезного действия. 1. Анципорович П.П., Акулич В.К., Дворянчикова А.Б. Методическое пособие по курсовому проектированию по дисциплине «Теория механизмов и машин» для студентов инженерно-технических специальностей. – Мн.: БГПА, 1994. – 86 с.

2. Анципорович П.П., Николаев В.А., Жуков Д.В. Программа «Динамический анализ кривошипно-ползунных механизмов»: Методические указания к курсовому проектированию по курсу «Теория механизмов и машин» для студентов инженерно-технических специальностей. – Мн.: БГПА, 1998. – 18 с.

3. Артоболевский И.И. Теория механизмов и машин. -4-е изд., перераб. и доп. - М.: Наука; Гл. ред. физ.-мат. лит., 1988. - 640 с.

4. Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. – 2-е изд., перераб. и доп. – М.: Высш. школа, 1998. – 351 с.

5. Теория механизмов и механика машин / К.В.Фролов, С.А.Попов, А.К.Мусатов и др. – 2-е изд., перераб. и доп. – М.: Высш. школа, 1998. – 496 с.

6. Филонов И.П., Анципорович П.П., Акулич В.К. Теория механизмов, машин и манипуляторов. – Мн.: Дизайн-ПРО, 1998. – 656 с.

Учебное издание

АНЦИПОРОВИЧ Петр Петрович АКУЛИЧ Валерий Константинович ДУБОВСКАЯ Елена Михайловна ДВОРЯНЧИКОВА Алла Борисовна

ДИНАМИКА МАШИН И МЕХАНИЗМОВ В УСТАНОВИВШЕМСЯ РЕЖИМЕ ДВИЖЕНИЯ

Учебно-методическое пособие по курсовому проектированию по дисциплине «Теория механизмов, машин и манипуляторов»

Подписано в печать 01.06.2011. Формат 60×84 ¹/₁₆. Бумага офсетная. Отпечатано на ризографе. Гарнитура Таймс. Усл. печ. л. 2,44. Уч.-изд. л. 1,91. Тираж 550. Заказ 425. Издатель и полиграфическое исполнение: Белорусский национальный технический университет. ЛИ № 02330/0494349 от 16.03.2009. Проспект Независимости, 65. 220013, Минск.