содержанием титана, преимущественно в местах дефектов исходной поверхности.

Исходя из вышесказанного, направлением дальнейших исследований будет совершенствование режимов нанесения покрытий с целью исключения непокрытых участков, а также выбор метода подготовки исходной поверхности для уменьшения влияния дефектов на качество покрытия.

Литература

1. Муслов С.А., Шумилина О.А. Медицинский нитинол: друг или враг? Ещё раз о биосовместимости никелида титана // Фундаментальные исследования. – 2007. – № 10. – С. 87-89.

2. Гнеденков С.В., Хрисанфова О.А., Синебрюхов С.Л., Пузь А. В. Способ получения защитных покрытий на изделиях из нитинола. Пат. 2319797 РФ, МПК С25D 1/26; заявитель Институт химии ДВО РАН – № 2006129478/02; заявл. 14.06.2006; опубл. 20.03.2008 //Бюл. №8.

3. Способ модифицирования поверхности титана и его сплавов. Пат. 2496924 РФ, МПК С25D 9/06, С25D 11/26; заявители Попова О.В., Марьева Е.А., Клиндухов В.Г., Сербиновский М.Ю. – № 2012126723/02; заявл. 26.06.2012; опубл. 27.10.2013 //Бюл. №30.

4. Вакуумно-дуговые нанокристаллические покрытия на основе нитрида титана / Латушкина С.Д. .[и др.]. – Перспективные материалы. – 2014. – № 6. –С. 49–55.

УДК 539.2.669.(6-8)

СТРУКТУРА И МЕХАНИЧЕСКИЕ СВОЙСТВА БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВА Sn-14 AT. % In-6,5 AT. % Zn

Шепелевич В.Г., Метто Е.С., Гусакова С.В., Гусакова О.В.

Белорусский государственный университет, Минск, Республика Беларусь

Решение Европейского союза и ряда других стран о защите поставки и продажи бытовой В электроники, которых использованы свинцовосодержащие припои, вызвала потребность в разработке материалов для бессвинцовойпайки. В настоящее время эту проблему решают использованием припоев на основе эвтектических сплавов (Sn-Bi, Sn-Ag, Sn-Ад-Си и др.), а также сплавов, близких по составу к эвтектическим. К числу легкоплавких сплавов, используемых в качестве припоя, относится сплав Sn-8,8 мас. % Zn. Однако он склонен к окислению из-за высокой концентрации цинка. В данной работе рассматривается сплав, содержащий не только цинк, но и индий при определенной концентрации, благодаря которого основной фазой является не β-олово, а γ-фаза (Sn₄In). [1] Из-за высокой стоимости индия целесообразно для получения припоя использовать ресурсо- и технологии, к которым энергосберегающие относится высокоскоростные затвердевания [2-4]. Но при сверхвысоких скоростях охлаждения (более 10⁵ К/с) при затвердевании формируется структура, которую невозможно получить обычными технологиями. В связи с этим актуальным является исследование структуры и физических свойств фольг сплава Sn-14 ат. % In-6,5 ат. % Zn, полученными высокоскоростным затвердеванием.

Сплав Sn-14 ат. % In-6,5 ат. % Zn (в дальнейшем Sn-14In-6,5Zn) сплавлен из компонентов в кварцевой ампуле. Кусочек сплава массой 0.1....0.2 г расплавляли, а затем инжектировали на внутреннюю полированную поверхность быстровращающегося медного цилиндра диаметром 20 см, Капля растекалась по поверхности кристаллизатора и затвердевала в виде фольги длиной до 15 см, шириной до 10 мм. Для исследования использовались фольги толщиной 40–80 мкм. Скорость охлаждения расплава, достигаемая при сверхбыстрой закалке из жидкого состояния, как показал расчет [3], не ниже 10⁵ К/с.

Исследование микроструктуры фольг осуществлялось методом растровой электронной микроскопии на микроскопе LEO1455 VP. Фазовый состав и текстура фольг определялся рентгеновской микроскопии методом С использованием дифрактометра ДРОН-3. Текстура фольг изучалась с помощью обратным полюсных фигур. Полюсная плотность дифракционных линий рассчитывалась по методу Харриса [5]. Микротвердость Н_µ фольг измерена на приборе ПМТ-3 г. Погрешность измерения Н_µ равна 4%. Испытания на растяжение проводились с помощью разрывной машины Testometric M350-10ST при комнатной температуре.

Поверхность фольг *A* в сплаве Sn–14In–6,5Zn, прилегающая к кристаллизатору, имеет блестящий вид. На ней наблюдались раковины микронных размеров. Противоположная сторона фольги *B* имеет выступы и впадины.

На дифрактограмме фольги сплава наблюдаются дифракционные отражения γ-фазы, имеющей простую гексагональную кристаллическую решетку, 0001, 1010, 1011, 0002 и др. Кроме того, обнаружены слабые дифракционные отражения цинка 0002, 1010, 1012, 1122 и др.

Изображение микроструктуры фольги сплава через 5, 25 и 50 ч выдержки при комнатной температуре после изготовления представлены на рисунке 1. Серый цвет соответствует гамма γ-фазе, а дисперсные черные выделения – цинку. Средний размер частиц и их количество на поверхности фольги увеличиваются со временем выдержки.. Их появление и рост вызван распадом пересыщенного твердого раствора цинка в γ-фазе.

Рисунок 1 – Микроструктура поверхности фольги сплава Sn-14In-6,5Zn, после 5 (a), 25 (δ), 50 ч (e) при комнатной температуре

Фольга длиной 9 см разрезана на 8 равных кусков (длиной 1 см) и исследована их текстура. Дифракционные линии 0002 и $10\overline{11}$, имеют наибольшие значения полюсных плотностей, т.е. в фольге образуется двойная текстура и (0001)+($10\overline{11}$). Зависимости полюсных плотностей дифракционных линий от расстояния вдоль фольги представлены на рисунке 2. Текстура ($10\overline{11}$) преобладает только в начале фольги, а в остальных частях фольги преобладает компоненты текстуры (0001). При этом текстура 0001 наиболее сильно проявляется в центральной ее части.

Зависимость микротвердости фольги сплава вдоль ее длины приведена на рисунке 3. Зависимость H_{μ} характеризуется максимумом, ее максимальное значение 110 МПа достигается в средней части фольги.

Кривая растяжения фольги сплава представлена на рисунке 4. Предел прочности фольги $\sigma_{\beta}=31$ МПа, а относительное удлинение $\delta=13$ %, то есть сплав является достаточно пластичным.

Таким образом, фольга сплава Sn-14In-6,5Zn, полученная высокоскоростным затвердеванием из расплава, состоит из γ -фазы (Sn₄In) и дисперсных частиц цинка, распределенных однородно в γ -фазе. В фольге образуется двойная текстура (0001)+(1011) γ -фаза. Определены механические свойства быстрозатвердевших фольг: $H_{\mu} = 110$ МПа, $\delta = 13$ %, $\sigma_{\beta} = 31$ МПа. Фольги могут быть использованы в качестве легкоплавких припоев.

Рисунок 2 – Схема расположения участков фольги (а) и зависимость полюсной плотности дифракционных линий 0002 и 1011 от расстояния вдоль фольги (б)

Рисунок 3. Зависимость *H*_µ от расстояния вдоль фольги сплава Sn-14In-6,5Zn.

Рисунок 4. Кривая растяжения фольги сплава Sn-14In - 6,5Zn

Литература

1. Диаграммы состояния двойных металлических систем: справочник: в 3 т. / под ред. Н.П. Лякишева. – М.: Машиностроение, 2001. – Т.3, Кн.1. – 872 с.

2. Васильев В. А., Митин Б. С., Пашков И.Н., Серов Н.М., Скуридин А.А., Лукин А.А., Яковлев В.Б. Высокоскоростное затвердевание расплавов (теория, технология и материалы) / под ред. В.С. Митина. – М.: СП «Интермет инжиниринг», 1998. – 400 с. Мирошниченко И. С. Закалка из жидкого состояния. – М.: Металлургия, 1982. – 168 с.
Шепелевич В. Г. Быстрозатвердевшие легкоплавкие сплавы. – Минск: БГУ, 2015. – 192 с.
Русаков А.А. Рентгенография металлов. – М.: Атомиздат, 1977. – 480 с.

УДК 669.65.538.911.539.25-26

ВЛИЯНИЕ КОНЦЕНТРАЦИИ ИНДИЯ НА МИКРОСТРУКТУРУ И МЕХАНИЧЕСКИЕ СВОЙСТВА БЫСТРОЗАТВЕРДЕВШИХ ФОЛЬГ СПЛАВОВ Sn-Zn-Bi-In

Гусакова О.В.¹, Шепелевич В.Г.²

¹Международный государственный экологический институт имени А.Д. Сахарова БГУ ²Белорусский государственный университет Минск, Республика Беларусь

Разработка материалов для бессвинцовой пайки стала актуальной с 2006 года, после вступления в силу запрета использования свинца и его сплавов, в том числе в электронной промышленности [1]. К настоящему времени разработаны и предлагаются на рынке ряд припоев на основе сплавов олова с серебром, медью, висмутом и др. Однако работы в этом направлении продолжаются, поскольку современные технологии изготовления материалов, такие как метод сверхбыстрого охлаждения расплава позволяют улучшить свойства известных припоев и разработать новые [2]. Поэтому настоящая работа посвящена получению, исследованию микроструктуры и механических свойств быстрозатвердевших фольг сплава Sn-Zn-Bi-In.

Для изготовления фольг использовались сплава Sn-8 мас.%Zn - 3 мас.% Bi-X мас.% In (X= 1,5; 2,5; 4,5; 9,0). Фольги формировались при кристаллизации тонкого слоя расплава, полученного в результате его растекания по поверхности вращающегося медного цилиндра – кристаллизатора.

Микроструктура и распределение компонент исследовалась с помощью растрового электронного микроскопа LEO 1455 VP оснащенного рентгеновским микроанализатором AztecEnergyAdvancedX-Max 80. Фазовый состав определялся использованием фольг с рентгеновского дифрактометра RigacuUltima 4. Микротвердость измерялась на 402MVD при нагрузке 10 г. Испытания на разрыв проводились на установке TestometricM350-10СТ при скорости растяжения 5 мм/мин.

Фазовый состав фольг зависит от концентрации индия в сплаве. При содержании индия до 4,5 мас.% фольги затвердевают с образованием пересыщенного твердого раствора на основе β -Sn. Поскольку при комнатной температуре равновесное содержание цинка в олове не превышает 0,25 мас.%, то пересыщенный твердый раствор распадается по непрерывному механизму

с выделением дисперсных включений цинка на высокоугловых и малоугловых границах зерен, а также в объеме зерна (рисунок 1а). Висмут и индий не образуют включений и равномерно распределены в фольге (рисунок 1 б).

Рисунок 1 – Микроструктура (а) и распределение компонент вдоль линии сканирования L-L1фольгсплава: a- Sn – 8 мас.% Zn – 3 мас.%Bi – 4,5 мас.% In

В фольгах, содержащих 9 мас.% In формируются две фазы: пересыщенные твердые растворы на основе олова и на основе γ -фазы (InSn₄), имеющей простую гексагональную решетку. В зернах β -Sn концентрация In составляет