систем имитаторами позволяет использовать способ диагностирования исключением. Таким образом, предлагаемая модернизация имеющегося стенда для диагностирования коробок передач DSG значительно расширит область его применения.

Литература

- 1. Гришкевич, А.И. Проектирование трансмиссий автомобилей: справочник / А.И. Гришкевич М.: Машиностроение, 1984. 272 с.
- 2. Volkswagen Technical Site (VWTS) [Electronic resource] / Volkswagen Technical Site (VWTS). $P\Phi$, 2016. Mode of access: http://vwts.ru. Date of access: 12.01.2016.
- 3. Способ диагностирования электронных систем распределенного впрыска бензиновых двигателей: пат. 7222 Респ. Беларусь, 7 G 01M 15/00 / А.С. Гурский, Е.Л. Савич; заявитель Белор. национ. техн. ун-т. № а 20020437; заявл. 22.05.02; опубл. 30.09.05 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2005. № 2. С. 174.
- 4. Гурский, А.С. Совершенствование метода и средств диагностирования электронных систем впрыска топлива бензиновых двигателей: дис. ... канд. техн. наук: 05.22.10 / А.С. Гурский Минск, 2004. 120 л.

УДК 656

УПРОЧНЕНИЕ И ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ АВТОМОБИЛЕЙ ПРИ ИХ ИЗГОТОВЛЕНИИ И ВОССТАНОВЛЕНИИ УЗЛОВ ПРИ РЕГЛАМЕНТИРОВАННОМ РЕМОНТЕ

HARDENING AND RESTORATION OF VEHICLES DETAILS IN ITS PRODUCTION AND RESTORATION OF UNITS AT SCHEDULED REPAIR

Ивашко В.С., доктор технических наук, профессор; **Буйкус К.В.,** кандидат технических наук, доцент (Белорусский национальный технический университет)

Ivashko V., Doctor of Technical Science, Professor; Buikus K., Candidate of Technical Sciences, Associate Professor (Belorussian National Technical University)

Аннотация. Проанализировано применение основных способов упрочнения и восстановления деталей автомобилей при регламентированном ремонте.

Abstract. The application of the main ways hardening and restoration of vehicles details at scheduled repair are analyzed.

Ввеление

Ресурс быстроизнашивающихся деталей зависит, главным образом, от износостойкости рабочих поверхностей деталей в конкретных условиях работы. Наиболее эффективным методом повышения износостойкости является локальное упрочнение поверхностей деталей, которое позволяет экономить дорогостоящие легирующие элементы и обеспечивает возможность рециклинга деталей.

Регламентированный ремонт автомобилей выполняется с периодичностью и в объеме, установленными в технической документации производителя, независимо от технического состояния автомобиля в момент начала ремонта. Достоинством регламентации ремонта является возможность его планирования, то есть заранее известны время выхода на ремонт, его содержание и трудоемкость операций. Однако планируемые для каждого вида ремонта единая периодичность и одинаковый объем восстановительных работ не всегда согласуются с фактическими потребностями в них и это увеличивает затраты.

Основная часть

Регламентированный ремонт, как правило, проводится при исчерпании 80 % ресурса автомобиля. Следовательно, если капитальный ремонт автомобиля не производится, то замененный и восстановленный узел должен отработать всего 20 % ресурса машины.

Все методы восстановления посадки деталей соединений можно разделить на следующие:

- 1) без изменения размеров деталей:
- применением ремонтно-восстановительных составов;
- с помощью имеющихся регулировок;
- перестановок детали;
- заменой на запасную часть;
- 2) применение деталей, восстановленных до номинальных размеров;
- применение деталей ремонтных размеров и восстановленных способом дополнительных деталей.

При втором методе посадку восстанавливают наращиванием поверхностей, увеличивая размер вала и (или) уменьшая размер отверстия. При этом методе сохраняются номинальные удельные давления в узле трения.

При третьем методе посадка может быть восстановлена уменьшением или увеличением размеров вала и отверстия. В случае восстановления посадки за счет увеличения размеров деталей на вал наносят ремонтный слой или используют старый, увеличенный на необходимую величину, а отверстие растачивают. Удельное давление в соединении при этом уменьшаются, что в большинстве случаев приводит к уменьшению износа.

При использовании метода ремонтных размеров одну из деталей изношенного соединения наиболее дорогую подвергают механической обработке до ближайшего ремонтного размера, а другую – заменяют.

Сущность метода восстановления дополнительными деталями состоит в том, что изношенная поверхность обрабатывается под больший (отверстие) или меньший (вал) размер и на нее устанавливается специально изготовленная дополнительная деталь (ввертыш, втулка, насадка, компенсирующая шайба или планка), фиксируемая напрессовкой с гарантированным натягом, приваркой, стопорными винтами, клеевыми композициями, на резьбе.

Для ремонта соединений по первому методу широкое применение получил метод безразборного сервиса (восстановления), основанный на теории самоорганизации И. Пригожина. К нему относится эффект пластифицирования в присутствии поверхностно-активных веществ (ПАВ), открытый П.А. Ребиндером, явление избирательного переноса при трении (эффект безызносности), а также эффект аномально низкого трения [2].

Под безразборным сервисом подразумевается техническое обслуживание и ремонт узлов без проведения разборочно-сборочных операций с помощью ремонтно-восстановительных препаратов (РВП).

Современные РВП – это реметаллизанты, полимерсодержащие препараты, геомодификаторы, кондиционеры поверхности, слоистые добавкимодификаторы и нанопрепараты (алмазы, фулерены, рекондиционеры). Большинство составов вводят в моторные и трансмиссионные масла, топливо или пластичные смазки. Ряд препаратов подается непосредственно в зону трения.

Применяемые способы восстановления [1] не должны оказывать воздействие на внутренние напряжения детали. С этой точки зрения восстановление деталей металлополимерными материалами наиболее целесообразно.

Эффективное использование физико-механических и химических свойств полимерных материалов позволяет значительно снизить трудоемкость ремонта автомобиля, что обусловлено следующими особенностями их использования:

- технологии с использованием полимерных материалов не требуют сложного оборудования и высокой квалификации работающих;
- при использовании полимерных материалов появляется возможность производить ремонт без разборки узлов и агрегатов;
- использование полимерных материалов во многих случаях позволяет не только заменить сварку или наплавку, но и производить ремонт таких деталей, которые другими известными способами отремонтировать невозможно или опасно с точки зрения безопасности труда;
- применение полимерных материалов позволяет восстанавливать детали, минуя сложные технологические процессы нанесения материала и его обработку.

Наиболее широко при ремонте автомобилей используют анаэробные полимеры и композиционные материалы. Однако антифрикционными и износостойкими являются лишь часть из них, например, ароматические полиамиды, фторопласты и некоторые другие.

В таблице 1 приведены способы восстановления посадки деталей сопряжений [1,3].

Таблица 1 – Способы восстановления посадки деталей сопряжений

Способ	Область применения	
1	2	
Ремонтно-восстановительные составы		
Реметаллизаторы		
Полимерсодержащие добавки		
Геомодификаторы	Восстановление подвижных узлов введением добавок в смазки	
Кондиционеры поверхности		
Слоистые добавки-модификаторы		
Нанопрепараты		
Сварка/Наплавка		
Ручная дуговая		
Автоматическая	Нанесение износостойких покрытий,	
и механизированная дуговая	приварка ДРД и накладок	
Газовая		
Аргонодуговая	Нанесение покрытий из цветных сплавов	
1 10	и коррозионно-стойкой стали	
Электроконтактная приварка ме-	Восстановление цилиндрических и плоских	
таллического слоя (ленты, проволо-	поверхностей	
ки, порошковых материалов)		
Газотермическое напыление покрытий		
Электродуговое напыление	Нанесение покрытий на наружные	
Газопламенное напыление	поверхности с низкими требованиями	
Пломочное напилание	к пористости и адгезии Нанесение покрытий на наружные	
Плазменное напыление	поверхности с высокими требованиями	
Детонационное напыление	к пористости и адгезии	
Вакуумное напыление		
Газофазное осаждение покрытий из	Восстановление и упрочнение точных дета-	
тугоплавких соединений и оксидов	лей покрытиями толщиной до 0,003–0,01 мм	
Вакуумное конденсационное	Восстановление и упрочнение покрытиями	
напыление покрытии	толщиной до 0,01 мм	
Холодное пластическое деформирование		
Раздача, осадка, обжим	Восстановление наружных и (или)	
	внутренних размеров деталей	

Продолжение таблицы 1

1	2	
Раскатка	Закрепление ДРД в отверстиях. Упрочнение	
Дорнование и калибровка	Восстановление размеров отверстий после	
	осадки или термического воздействия.	
	Упрочнение	
Накатка	Восстановление размеров	
	неответственных деталей	
Горячее пластическое деформирование		
В закрытом штампе	Восстановление формы и элементов деталей	
Гидротермическая раздача	Восстановление наружных поверхностей	
	полых деталей с нежесткими	
	требованиями к внутреннему размеру	
Термоциклирование	Восстановление преимущественно	
	внутренних поверхностей полых деталей	
Термопластический обжим	Восстановление внутренних поверхностей	
	полых деталей	
Накатка	Восстановление зубчатых и шлицевых	
Ротационное деформирование	поверхностей	
Обучим познана осанка	Восстановление внутренних	
Обжим, раздача, осадка	и (или) наружных размеров деталей	
Винарацирания	Восстановления профиля и размеров	
Выдавливание	рабочих поверхностей	
Оттяжка	Восстановление формы рабочих поверхно-	
Оттяжка	стей и режущих кромок рабочих органов	
Термомеханическая обработка	Восстановление физико-механических	
	характеристик. Упрочнение	
Гальваническое осаждение покрытий		
Железнение	Восстановление наружных и внутренних по-	
железнение	верхностей деталей с износом не более 0,5 мм	
	Восстановление наружных и внутренних	
Хромирование	поверхностей деталей с износом не более 0,2	
	мм и высокими требованиями по износо-	
	стойкости	
Нанесением полимерных материалов		
Напылением: газопламенным,	Восстановление антифрикционных	
плазменным, в электростатическом,		
в псевдоожиженном поле; кистью	неподвижных соединений, фиксация ДРД	
Применение	м ремонтных размеров	
Индивидуальных	Обработка основной детали сопряжения	
	до выведения следов износа и подгонка вто-	
	рой детали по ее размерам	
Категорийных	Обработка детали под заданный	
Tear of Spirithin	ремонтный размер сопрягаемой детали	

Окончание таблицы 1

1	2	
Применение дополнительных деталей		
Обрезка и приварка	Восстановление рабочих органов	
быстроизнашивающихся	почвообрабатывающих, землеройных	
элементов	и мелиоративных машин	
Постановка свертных колец, втулок	Восстановление отверстий	
Химико-термическая обработка		
Повторное азотирование	Восстановление поверхностей деталей	
	с износом не более 0,02 мм, упрочнение	
Диффузионное хромирование	Восстановление поверхностей деталей	
	с износом не более 0,05 мм, упрочнение	
Cyry daymanymanayyya	Восстановление поверхностей деталей	
Сульфохромирование	с износом не более 0,01 мм, упрочнение	
Электромеханическая обработка:	Восстановление поверхностей неподвижных	
высаживание и выгладживание	сопряжений с износом до 0,2 мм	
Термическая обработка		
Отпуск, нормализация, отжиг, закалка, улучшение	Восстановление физико-механических	
	характеристик и структуры материала,	
	упрочнение	
Электроискровое легирование	Наращивание и упрочнение поверхностей	
	с износом до 0,3 мм при невысоких	
	требованиях к сплошности покрытия	
Применение металлополимерных материалов		
Пластик-металл	Восстановление поверхностей неподвижных	
	сопряжений	
Мультиметалл	Восстановление поверхностей деталей	

Главным критерием применения способа восстановления является экономическая целесообразность. Себестоимость восстановления не должна превышать 50 % стоимости новой детали при соблюдении всех технических требований. Применять тепловые способы восстановления необходимо только тогда, когда другими способами восстановление детали невозможно.

В связи с этим технологии восстановления следует применять в следующей последовательности перехода от «холодных» способов к «горячим»: ремонтно-восстановительные составы для восстановления работоспособности узла без его разборки; ремонтные размеры и дополнительные ремонтные детали; холодное пластическое деформирование с последующей механической обработкой; нанесение полимерных материалов; гальваническое осаждение покрытий; нанесение металлополимерных материалов; термическая и химико-термическая обработка; горячее пластическое деформирование с последующей механической обработкой; газотермическое напыление; наплавка и сварка.

Заключение

Одним из источников снижения стоимости дорогостоящего регламентированного ремонта является использование экономически высокоэффективных технологий восстановления деталей, не снижающих их усталостной прочности. Выбор технологии восстановления необходимо осуществлять, двигаясь в направлении от «холодных» (РВС, ремонтные размеры, нанесение полимерных материалов) к «горячим» (газотермическое напыление; наплавка и сварка).

Литература

- 1. Харламов, Ю.А. Основы технологии восстановления и упрочнения деталей машин. / Ю.А. Харламов, Н.А. Будагьянц. Луганск: Изд-во Восточно-украинский национальный университет им. В. Даля, 2003. Т. 1. 496 с.
- 2. Балабанов, В.И. Все о присадках и добавках / В.И. Балабанов. М.: Эксмо, 2008. 240 c.
- 3. Теория и практика нанесения плазменных покрытий / П.А. Витязь [др.]. Минск: Белорусская наука, 1998. 583 с.
- 4. Ивашко, В.С. Прогрессивные технологии при восстановлении и упрочнении деталей / Сб. мат. V Меж. НТК «Современные методы и технологии и создания и обработки материалов», в 3 книгах, книга 3. Минск: ФТИ НАН Беларуси, 2010. С.321–338.

УДК 623.437.4: 681.518.5 (083.72)

АНАЛИЗ МОДЕЛЬНОГО СОСТАВА АВТОБУСОВ МАЗ, ЭКСПЛУАТИРУЕМЫХ АВТОБУСНЫМИ ПАРКАМИ Г. МИНСКА ANALYSIS MODEL OF MAZ BUSES OPERATED BUS DEPOTS IN MINSK

Иванис П.В., старший преподаватель; **Савич Е.Л.,** профессор; **Гаравский А.В.,** магистрант (Белорусский национальный технический университет, г. Минск)

Ivanis P.V., Senior Lecturer; Savich E.L., Professor; Garavsky A.V., Undergraduate (Belarusian National Technical University, Minsk)

Аннотация. Статья посвящена анализу модельного состава автобусов МАЗ, находящихся в эксплуатации в автобусных парках г. Минска, задействованных в регулярном городском сообщении. В статье представлено распределение автобусов по автобусным паркам, по модельному ряду, по году выпуска и пробегу с начала эксплуатации.