modeling, stimulated-emission cross-sections and non-radiative relaxation in Er: K_2YF_5 crystals // J. Lumin. – 2016. – Vol. 180. – P. 103-110.

3. P.A. Loiko, N.M. Khaidukov, J. Méndez-Ramos, E.V. Vilejshikova, N.A. Skoptsov, K.V. Yumashev. Up- and down-conversion

УДК 535.34, 535.37

ЛЮМИНЕСЦЕНЦИЯ РОМБИЧЕСКИХ КРИСТАЛЛОВ Eu:Li₂Mg₂(MoO₄)₃

Вилейшикова Е.В.¹, Лойко П.А.², Юмашев К.В.¹, Кулешов Н.В.¹, Павлюк А.А.³

¹Белорусский национальный технический университет Минск, Республика Беларусь ²KTH – Royal Institute of Technology Stockholm, Sweden ³Институт неорганической химии СО РАН Новосибирск, Россия

Кристаллы двойных и тройных вольфраматов и молибдатов привлекательны для активации трехвалентными ионами редких земель RE^{3+} = Yb^{3+} , Tm^{3+} , Ho^{3+} и др., для создания на их основе лазеров, излучающих в ближнем ИК диапазоне спектра. Недавно было показано, что кристаллы двойных вольфраматов, допированные ионами европия Eu³⁺, например, Eu:KY(WO₄)₂, обладают набором привлекательных спектроскопических свойств (высокими сечениями переходов в поглощении и испускании, высоким квантовым выходом люминесценции и стабильностью к изменению валентности ионов $Eu^{3+} \rightarrow Eu^{2+}$), что позволяет получать лазерную генерацию на данных кристаллах в красной области спектра [1, 2]. Нанокристаллы вольфраматов и молибдатов с ионами Eu³⁺ также находят применение как красные люминофоры.

В настоящей работе представлены результаты исследования спектрально-люминесцентных свойств нового кристалла литий-магниевого молибдата $Li_2Mg_2(MoO_4)_3$, активированного ионами Eu^{3+} (Eu:LiMgMo).

Рост кристаллов производился в ИНХ СО PAH. Кристаллы Eu:LiMgMo плавятся инконгруэнтно при температуре 1130 °C, что препятствует их синтезу традиционным методом Чохральского из стехиометрического расплава. В данной работе кристалл Eu:LiMgMo был выращен из высокотемпературного раствора в расплаве Li₂MoO₄ (метод TSSG). В качестве шихты использовались спеки, полученные из реагентов Li₂CO₃, MgO и MoO₃. Затравка была ориентирована вдоль кристаллографической оси [010]. Скорость вытягивания составляла 1-5 мм/сут, скорость вращения – 20–30 об/мин. Полученная буля показана рис. 1. на Выращенные кристаллы являются прозрачными с розоватым оттенком.

emissions from Er³⁺ doped K₂YF₅ and K₂YbF₅ crystals // J. Lumin. – 2016. - Vol. 170. - P. 1-7. 4. A.S. Yasyukevich, V.G. Shcherbitskii, V.É. Kisel', A.V. Mandrik, N.V. Kuleshov. Integral method of reciprocity in the

spectroscopy of laser crystals with impurity centers // J. Appl. Spectr. – 2004. – Vol. 71, No. 2. – P. 202-208.

Рисунок 1 - Кристалл 0.4 at.% Eu:LiMgMo

По данным рентгеноструктурного анализа, структура кристалла Eu:LiMgMo соответствует ромбической сингонии (структурный тип лионсита, пр. гр. *Рпта*, параметры решетки: a = 5.085 Å, b = 10.482 Å, c = 17.614 Å, Z = 4, V = 938.799 Å³), см. рис. 2. Поперечное сечение кристалической були имеет прямоугольную форму, вытянутую вдоль оси [100].

Рисунок 2 – Рентгенограмма порошка кристалла 0.4 at.% Eu:LiMgMo

Концентрация Еи в шихте составила 10 at.%. По данным метода Energy Dispersive X-ray (EDX) Spectroscopy, концентрация Еи в кристалле составила 0.4 at.% (по отношению к ионам Mg^{2+} , которые преимущественно замещаются ионами Eu³⁺). Низкий коэффициент сегрегации для

ионов Eu³⁺ $K_{Eu} \sim 0.04$ связан с тем, что их ионный радиус (0.947 Å для к.ч. = VI, соответствующего октаэдрам (Eu/Mg)O₆ в структуре LiMgMo), существенно больше, чем соответствующий ионный радиус Mg²⁺ (0.72 Å).

Рисунок 3 – Спектр пропускания кристалла 0.4 at.% Eu:LiMgMo (толщина 4 мм)

Для исследования оптических свойств кристаллов Eu:LiMgMo были приготовлены полированные пластинки, вырезанные перпендикулярно оси [010], толщиной 4 мм. Спектры поглощения и люминесценции измерялись в неполяризованном свете, при комнатной температуре.

спектре пропускания В оптического Eu:LiMgMo, рис. 3, кристалла области В прозрачности кристаллической матрицы наблюдается слабых полос несколько Eu^{3+} , поглощения, характерных для ионов наиболее интенсивная из которых с максимумом при 397.8 нм (вставка на рис. 3) соответствует переходу ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$. Данная полоса поглощения позволяет возбуждать люминесценцию ионов Eu³⁺ излучением синих GaN лазерных диодов. УФ край оптического поглощения матрицы LiMgMo соответствует длине волны $\lambda_{\rm g} = 320$ нм $(E_g = 3.9 \text{ eV}).$

Спектр люминесценции ионов Eu^{3+} в кристалле LiMgMo при возбуждении на длине волны люминесценции 400 нм показан на рис. 4. Люминесценция Eu^{3+} связана с излучательными переходами из долгоживущего состояния ⁵D₀ в более низколежащие состояния ⁷F_J (J = 0-6). В спектре отсутствуют полосы в синей области спектра, относящиеся к ионам Eu^{2+} .

Рисунок 4 – Спектр люминесценции кристалла Eu:LiMgMo, длина волны возбуждения 400 нм

Для иона Eu³⁺ переход ⁵D₀ \rightarrow ⁷F₂ является электрическим дипольным (ED) и он гипер-чувствителен к симметрии локального окружения иона. Преобладание по интенсивности данного перехода над магнитным дипольным (MD) переходом ⁵D₀ \rightarrow ⁷F₁ говорит о преимущественно нецентральной симметрии ближайшего окружения иона Eu³⁺. Параметр асимметрии люминесценции:

$$R = \frac{I_{\rm ED}({}^{5}{\rm D}_{0} \to {}^{7}{\rm F}_{2})}{I_{\rm MD}({}^{5}{\rm D}_{0} \to {}^{7}{\rm F}_{1})},$$
(1)

характеризующий степень искажения ближайшего окружения иона Eu^{3+} от центросимметричного, для кристалла Eu:LiMgMo равен R = 7.8. Данное значение несколько ниже, чем для ионов Eu^{3+} в моноклинных кристаллах двойных вольфраматов (R = 10-13).

Исследованы кинетические характеристики люминесценции ионов Eu^{3+} в кристалле LiMgMo при импульсном возбуждении на длине волны 532 нм в состояние ${}^{5}\mathrm{D}_{1}$ (при этом ионы Eu^{3+} быстро безызлучательно релаксируют в более низколежащее состояние ${}^{5}\mathrm{D}_{0}$), и регистрации люминесценции на длине волны 612 нм, см. рис. 5.

Кривая затухания люминесценции имеет типичный моноэкспоненциальный характер, время жизни уровня ⁵D₀ составляет τ (⁵D₀) = 0.537 мс. Полученное время жизни близко к значениям τ (⁵D₀) для ионов Eu³⁺ в моноклинных кристаллах двойных вольфраматов (0.4–0.6 мс) [1,2].

Рисунок 5 – Кинетика затухания люминесценции ионов Eu³⁺ для кристалла 0.4 at.% Eu:LiMgMo

Согласно стандарту СІЕ 1931 (*Commission internationale de l'eclairage*), наблюдаемая люминесценция характеризуется цветовыми координатами (x = 0.672; y = 0.328) – красный цвет – с доминантной длиной волны $\lambda_d = 610$ нм и параметром чистоты цвета p > 99%.

Перспективны исследования кристаллов LiMgMo с другими лазерными активными ионами, например Yb^{3+} или Tm^{3+} , для которых более вероятно получение лазерной генерации. Соединения же Eu:LiMgMo и Eu:LiMgW,

синтезированные в форме нанокристаллов, представляют интерес как красные люминофоры [4].

- P.A. Loiko, et al. Spectroscopic characterization and pulsed laser operation of Eu³⁺: KGd(WO₄)₂ crystal // Laser Phys. – 2013. – Vol. 23. No. 10. – P. 105811.
- V.I. Dashkevich, et al. Red Eu,Yb:KY(WO₄)₂ laser at ~702 nm // Laser Phys. Lett. – 2015. – Vol. 12. No. 8. – P. 085001.
- V.A. Trifonov, et al. Growth and spectroscopic characteristics of Li₂Mg₂(MoO₄)₃ and Li₂Mg₂(MoO₄)₃:Co²⁺ crystals // Inorg. Mater. – 2013. – Vol. 49. No. 5. – P. 517–519.
- Z. Mu, et al. Red phosphor Li₂Mg₂(WO₄)₃:Eu³⁺ with lyonsite structure for near ultraviolet lightemitting diodes // Displays. – 2016. – Vol. 43. – P. 18–22.

УДК 535.34, 535.37

СИНТЕЗ И СПЕКТРОСКОПИЯ НАНОКРИСТАЛЛИЧЕСКИХ ПОРОШКОВ Eu:Lu₃Al₅O₁₂ Для красных люминофоров

Вилейшикова Е.В.¹, Хорт А.А.², Подболотов К.Б.², Лойко П.А.⁴, Шиманский В.И.³, Юмашев К.В.¹

¹Белорусский национальный технический университет ²Белорусский государственный технологический университет ³Белорусский государственный университет Минск, Республика Беларусь ⁴KTH – Royal Institute of Technology Stockholm, Sweden

Кристаллы гранатов $RE_3Al_5O_{12}$, где RE = Y, Gd или Lu, широко используются в качестве лазерных кристаллических материалов, а также как основа для порошковых и керамических люминофоров. Они обладают высокой механической и радиационной устойчивостью и привлекательными люминесцентными свойствами различных ионов-активаторов, например, Eu^{3+} , для применения в красных люминофорах [1]. В настоящей работе представлены результаты исследования спектрально-люминесцентных свойств и структуры керамических люминофоров на основе нанопорошков Lu₃Al₅O₁₂, легированных ионами Eu³⁺.

Образцы Eu:Lu₃Al₅O₁₂ были синтезированы методом экзотермического горения в растворах (SCS) стехиометрических смесей нитратов соответствующих металлов и восстановителей. В качестве восстановителей использовалась смесь карбамида (U) и глицина (G) в мольном отношении U:G = 2.778:1. Стехиометрические количества нитратов лютеция, алюминия, европия и восстановители в количествах, необходимых для соблюдения соотношения восстановитель / окислитель $\phi = 1.25$ были растворены в малом количестве горячей бидистиллированной воды. В полученный раствор при постоянном перемешивании медленно приливался раствор аммиака до получения значения pH = 6.5-7. После этого образовавшийся гель быстро обезвоживался в микроволновой печи до получения пены. Затем прекурсор материала в термостойком стакане помещался в предварительно разогретую до 600 °С муфельную печь, где в течении 10-15 сек начиналась экзотермическая реакция горения, сопровождающаяся выделением большого объема газообразных продуктов реакции. В результате горения образовывался легкий рыхлый порошок. Синтезированный порошок измельчался и для дальнейшего исследования делился на три равные порции, две из которых прокаливались на воздухе при температурах 800 °C и 1150 °C, соответственно.

Синтез порошков осуществлялся для соотношения реагентов, обеспечивающих стехиометрическую формулу ($Lu_{0.7}Eu_{0.3}$)₃Al₅O₁₂, т.е. активацию материала 30 at.% Eu³⁺.

С целью исследования структурно-фазовых превращений, протекающих во время синтеза Eu:Lu₃Al₅O₁₂, были проанализированы рентгенограммы, зарегистрированные для исходного порошка и для прокаленных образцов. Согласно полученным результатам, рис. 1, образцы кристаллизовались в кубическую структуру (пр. гр. Ia-3d) с близкими параметрами кристаллической решетки *a*.

Рисунок 1 – Рентгенограммы нанопорошков $Eu:Lu_3Al_5O_{12}$ до и после термической обработки