УДК 535.34, 535.37

СПЕКТРАЛЬНО-ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА ЛАЗЕРНОГО КРИСТАЛЛА Er:LiKYF5

Вилейшикова Е.В.¹, Лойко П.А.², Хайдуков Н.М.³, Юмашев К.В.¹

Белорусский национальный технический университет

Минск, Республика Беларусь

²KTH – Royal Institute of Technology

Stockholm, Sweden

³Институт общей и неорганической химии им. Н.С. Курнакова РАН

Москва, Россия

Кристаллы сложных фторидов K₂YF₅ и LiKYF5, активированных ионами редкоземельных элементов $RE^{3+} = Er^{3+}$, Nd^{3+} и др., известны как перспективные лазерные среды, характеризующиеся относительно большими временами жизни редкоземельных ионов в возбужденных состояниях и высоким квантовым выходом люминесценции [1,2]. Структурные особенности этих фторидных соединений позволяют достигать высоких концентраций оптически активных ионов RE³⁺, вплоть до получения стехиометрических составов, например K2ErF5 и LiKErF5 [3], без значительного концентрационного тушения люминесценции. В совокупности с относительно невысокими максимальными энергиями в фононном спектре (~440 см⁻¹), и, следовательно, низкими вероятностями безызлучательных переходов для ионов RE³⁺, возникают благоприятные условия для разработки лазерных материалов на их основе.

Кристаллическая структура LiKYF₅ относится к моноклинной сингонии (пр. гр. $P2_1/c$) и обеспечивает низкосимметричную координацию ионов Y³⁺/RE³⁺ (симметрия локального окружения C₁). В таких кристаллографических позициях ионы RE³⁺ характеризуются широкими спектральными полосами и высокими пиковыми значениями поперечных сечений в спектрах поглощения и вынужденного испускания [1].

В настоящей работе исследованы спектроскопические свойства лазерных кристаллов LiKYF₅, активированных ионами Er³⁺. Концентрационный ряд кристаллов LiKY_{1-x}Er_xF₅ синтезирован в гидротермальных условиях методом прямого температурного градиента в результате реакции водного раствора, содержащего 20-30 мол. % KF и 5 мол. % LiF, с оксидами (1-x)Y₂O₃-xEr₂O₃, где x = 0.02, 0.05, 0.1, 1.0. Синтез осуществлялся при температуре в зоне синтеза $T \sim 750$ K, при давлении ~100-150 МПа в течение ~200 ч. В результате были получены кристаллы объемом которых были изготовлены ~0.5 см³, из экспериментальные образцы в виде произвольно ориентированных кристаллических пластин толщиной ~1-2 мм.

На рис. 1 приведен спектр поперечного сечения поглощения σ_{abs} в области длин волн 690 – 990 нм, соответствующей переходу ${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$

ионов Er^{3+} , зарегистрированный для образца LiKY_{0.9}Er_{0.1}F₅. Данная полоса использовалась для возбуждения люминесценции в образцах излучением лазерного InGaAs диода. Отметим, что максимум значения $\sigma_{abs} = 0.47 \times 10^{-20}$ см³ достигается на длине волны 970.5 нм с FWHM = 1.8 нм. В области длин волн 1450–1650 нм расположена еще одна интенсивная полоса поглощения ионов Er^{3+} (рис. 2) с максимумом на длине волны 1524.0 нм ($\sigma_{abs} = 0.55 \times 10^{-20}$ см³), которая может быть использована для осуществления резонансного возбуждения ионов Er^{3+} на переходе ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$).

Рисунок 1 – Спектр поглощения кристалла 10 at.% Er³⁺:LiKYF₅ в области 950-1025 нм

Спектральная зависимость поперечных сечений вынужденного испускания σ_{SE} для перехода ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$, соответствующего излучению в области длин волн ~1.47-1.65 мкм, были получены при помощи метода соответствия [4]:

$$\sigma_{\rm SE}(\lambda) = \sigma_{\rm abs}(\lambda) \frac{Z_1}{Z_2} \exp\left(-\frac{hc/\lambda - E_{\rm ZL}}{kT}\right),$$
$$Z_m \approx \sum_k \exp(-E_k^m/kT), \tag{1}$$

где E_{k}^{m} – энергии Штарковских подуровней для основного (m = 1, ⁴I_{15/2}) и возбужденного (m = 2, ⁴I_{13/2}) состояний [1], E_{ZL} – различие энергий между нижними подуровнями обоих мультиплетов, Z_{m} – статистические коэффициенты заселенности мультиплетов, k – постоянная Больцмана, T – температура (293 K), c – скорость света, λ – длина волны излучения.

Рисунок 2 – Спектры поперечных сечений поглощения σ_{abs} и вынужденного испускания σ_{SE} , соответствующих переходам ${}^{4}I_{15/2} \leftrightarrow {}^{4}I_{11/2}$ ионов Er^{3+} в кристалле LiKYF₅

Результаты, полученные для кристалла LiKY_{0.9}Er_{0.1}F₅, приведены на рис. 2. Максимальное значение поперечного сечения вынужденного испускания $\sigma_{SE} = 0.61 \times 10^{-20}$ см² достигается на длине волны 1537.1 нм.

С целью определения времен жизни возбужденных состояний ионов ${\rm Er}^{3+}$ в кристаллах LiKYF₅ были зарегистрированы кинетические характеристики затухания люминесценции в ближней ИК области. Измерения проводились для кристаллов LiKY_{0.98}Er_{0.02}F₅ на длине волны возбуждения в 960 нм (рис. 3). Время затухания люминесценции из состояния ⁴I_{11/2}, измеренное на длине волны ~1020 нм, составляет $\tau_{\rm exp} = 1.56$ мс. Затухание люминесценции из состояния ⁴I_{13/2} регистрировалось на длине волны ~1540 нм, $\tau_{\rm exp}$ = 7.1 мс.

Рисунок 3 – Кинетика затухания люминесценции ионов Er^{3+} из состояний ${}^{4}\mathrm{I}_{13/2}$ и ${}^{4}\mathrm{I}_{11/2}$ для кристалла 2 at.% Er^{3+} :LiKYF₅

Радиационное время жизни τ_{rad} состояния ${}^{4}I_{13/2}$ было оценено при помощи модифицированного метода соответствия [4]:

$$\tau_{\rm rad} = \frac{1}{8\pi n^2 c} \frac{Z_2}{Z_1} \frac{e^{-hc/(kT\lambda_{\rm ZL})}}{\int \lambda^{-4} \sigma_{\rm abs}(\lambda) e^{-hc/(kT\lambda_{\rm ZL})} d\lambda},$$
 (2)

где n – показатель преломления кристалла, λ_{ZL} – длина волны, соответствующая переходу между нижними Штарковскими подуровнями основ-

ного (${}^{4}I_{15/2}$) и возбужденного (${}^{4}I_{13/2}$) состояний. Радиационное время жизни составляет 10.5 \pm 0.5 мс.

Для лазерного перехода ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ были определены спектральные зависимости поперечных сечений усиления:

$$\sigma_{g}(\lambda) = \beta \sigma_{SE}(\lambda) - (1 - \beta) \sigma_{abs}(\lambda).$$
⁽³⁾

Здесь $\beta = N_2/N_0$ – параметр, характеризующий инверсию населенностей, где N_2 и N_0 – объемная концентрация ионов Er^{3+} в возбужденном состоянии (${}^{4}\mathrm{I}_{13/2}$) и полная объемная концентрация ионов Er^{3+} в кристалле, соответственно. Результаты, полученные при различных значениях β , приведены на рис. 4.

В условиях низкой инверсии населенностей ($\beta < 0.1$) в спектре усиления наблюдается максимум в области длины волны 1623 нм. С увеличением параметра β вплоть до значения 0.5, спектр усиления распространяется в коротковолновую область спектра, в котором появляется несколько локальных максимумов при ~1614 нм, 1579 нм и 1565 нм.

Таким образом, кристаллы ${\rm Er}^{3+}$:LiKYF₅ обладают относительно большим временем жизни ионов ${\rm Er}^{3+}$ на верхнем лазерном уровне и высокими значениями поперечных сечений поглощения и вынужденного испускания для перехода ${}^{4}{\rm I}_{15/2} \leftrightarrow {}^{4}{\rm I}_{11/2}$, что делает их перспективными для разработки лазеров с резонансной накачкой, генерирующих в условно безопасной для глаз спектральной области 1.5–1.6 мкм. Соактивация кристаллов LiKYF₅ ионами Yb³⁺ и Er³⁺ перспективна для получения up- и down-конверсионных материалов [3].

- A. Smith, J.P. Martin, M.J. Sellars, N.B. Manson, A.J. Silversmith, B. Henderson. Site selective excitation, upconversion and laser operation in Er³⁺: LiKYF₅ // Opt. Commun. – 2001. – Vol. 188, No. 1. – P. 219-232.
- P.A. Loiko, E.V. Vilejshikova, N.M. Khaidukov, M.N. Brekhovskikh, X. Mateos, M. Aguiló, K.V. Yumashev. Judd–Ofelt

modeling, stimulated-emission cross-sections and non-radiative relaxation in Er: K_2YF_5 crystals // J. Lumin. – 2016. – Vol. 180. – P. 103-110.

3. P.A. Loiko, N.M. Khaidukov, J. Méndez-Ramos, E.V. Vilejshikova, N.A. Skoptsov, K.V. Yumashev. Up- and down-conversion

УДК 535.34, 535.37

ЛЮМИНЕСЦЕНЦИЯ РОМБИЧЕСКИХ КРИСТАЛЛОВ Eu:Li₂Mg₂(MoO₄)₃

Вилейшикова Е.В.¹, Лойко П.А.², Юмашев К.В.¹, Кулешов Н.В.¹, Павлюк А.А.³

¹Белорусский национальный технический университет Минск, Республика Беларусь ²KTH – Royal Institute of Technology Stockholm, Sweden ³Институт неорганической химии СО РАН Новосибирск, Россия

Кристаллы двойных и тройных вольфраматов и молибдатов привлекательны для активации трехвалентными ионами редких земель RE^{3+} = Yb^{3+} , Tm^{3+} , Ho^{3+} и др., для создания на их основе лазеров, излучающих в ближнем ИК диапазоне спектра. Недавно было показано, что кристаллы двойных вольфраматов, допированные ионами европия Eu³⁺, например, Eu:KY(WO₄)₂, обладают набором привлекательных спектроскопических свойств (высокими сечениями переходов в поглощении и испускании, высоким квантовым выходом люминесценции и стабильностью к изменению валентности ионов $Eu^{3+} \rightarrow Eu^{2+}$), что позволяет получать лазерную генерацию на данных кристаллах в красной области спектра [1, 2]. Нанокристаллы вольфраматов и молибдатов с ионами Eu³⁺ также находят применение как красные люминофоры.

В настоящей работе представлены результаты исследования спектрально-люминесцентных свойств нового кристалла литий-магниевого молибдата $Li_2Mg_2(MoO_4)_3$, активированного ионами Eu^{3+} (Eu:LiMgMo).

Рост кристаллов производился в ИНХ СО PAH. Кристаллы Eu:LiMgMo плавятся инконгруэнтно при температуре 1130 °C, что препятствует их синтезу традиционным методом Чохральского из стехиометрического расплава. В данной работе кристалл Eu:LiMgMo был выращен из высокотемпературного раствора в расплаве Li₂MoO₄ (метод TSSG). В качестве шихты использовались спеки, полученные из реагентов Li₂CO₃, MgO и MoO₃. Затравка была ориентирована вдоль кристаллографической оси [010]. Скорость вытягивания составляла 1-5 мм/сут, скорость вращения – 20–30 об/мин. Полученная буля показана рис. 1. на Выращенные кристаллы являются прозрачными с розоватым оттенком.

emissions from Er³⁺ doped K₂YF₅ and K₂YbF₅ crystals // J. Lumin. – 2016. - Vol. 170. - P. 1-7. 4. A.S. Yasyukevich, V.G. Shcherbitskii, V.É. Kisel', A.V. Mandrik, N.V. Kuleshov. Integral method of reciprocity in the

spectroscopy of laser crystals with impurity centers // J. Appl. Spectr. – 2004. – Vol. 71, No. 2. – P. 202-208.

Рисунок 1 - Кристалл 0.4 at.% Eu:LiMgMo

По данным рентгеноструктурного анализа, структура кристалла Eu:LiMgMo соответствует ромбической сингонии (структурный тип лионсита, пр. гр. *Рпта*, параметры решетки: a = 5.085 Å, b = 10.482 Å, c = 17.614 Å, Z = 4, V = 938.799 Å³), см. рис. 2. Поперечное сечение кристалической були имеет прямоугольную форму, вытянутую вдоль оси [100].

Рисунок 2 – Рентгенограмма порошка кристалла 0.4 at.% Eu:LiMgMo

Концентрация Еи в шихте составила 10 at.%. По данным метода Energy Dispersive X-ray (EDX) Spectroscopy, концентрация Еи в кристалле составила 0.4 at.% (по отношению к ионам Mg^{2+} , которые преимущественно замещаются ионами Eu³⁺). Низкий коэффициент сегрегации для