УДК 681.785.554

РАЗРАБОТКА ПРОЦЕДУРЫ СПЕКТРАЛЬНОЙ КАЛИБРОВКИ МОНОХРОМАТОРА ИЗОБРАЖЕНИЯ С ВЫЧИТАНИЕМ ДИСПЕРСИИ

Гулис И.М., Купреев А.Г., Демидов И.Д. Белорусский государственный университет Минск, Республика Беларусь

Подход к получению мультиспектральных изображений пространственной области, предложенный в работе [1], основывается на вычитании дисперсии при обратном прохождении через ту же оптическую систему. Спектральная фильтрация обеспечивается пространственным выделением части дисперсионного изображения протяженного входного окна и устранением посредством вычитания дисперсии суперпозиции пространственно-спектральной информации. Преимуществами подхода являются взаимная независимость пространственного и спектрального разрешения, повышенный спектральный контраст [2], при разработке схемных решений могут быть использованы простые оптические элементы (сферические и плоские зеркала, плоская отражательная дифракционная решетка), разработан малоаберрационный вариант оптической системы.

Как показано в [2], границы спектрального интервала, в котором точка объекта изображается системой, зависят от положения этой точки в проекции на направление дисперсии, причем смещение интервала является линейной функцией координаты. Для полного охвата спектрального интервала может потребоваться серия измерений при различных положениях (углах наклона) дифракционной решетки. Таким образом, в результате будет зарегистрирован массив данных вида $A(x", y", \alpha)$, где x'', y'' – координаты точки на детекторе, α – угол поворота дифракционной решетки. Для практических целей необходимо иметь возможность получить из этого массива спектральную информацию для набора точек (x_0, y_0) входного окна $I(x_0, y_0, \lambda)$. При этом спектральное разрешение не будет превышать

$$\Delta \lambda = \frac{b \cos \beta_0}{k f_{cam}} \Delta d , \qquad (1)$$

где *b* – постоянная решетки, *k* – порядок дифракции, Δd – ширина отверстия в маске в направлении дисперсии, f_{cam} – фокусное расстояние камерного объектива монохроматора. Отсчет координат в плоскости объекта и изображения проводится от осевого луча, который проходит через центры объективов, падает на дифракционную решетку под углом α_0 , а дифрагирует под углом β_0 .

В первом приближении можно считать, что при регистрации сигнала $I_0(x, y, \lambda)$ на детекторе он модулируется функцией пропускания системы $\psi(x", y", \lambda, x, y, \alpha)$ и функцией пропускания детектора $\xi(x, y, \lambda)$.

$$A(x", y", \alpha) = \psi(x", y", \lambda, x, y, \alpha) \cdot \\ \cdot \xi(x, y, \lambda) I_0(x, y, \lambda)$$
(2)

Чтобы из этого массива данных получить оценку оригинальной пространственно-спектральной информации, необходимо использовать калибровочную функцию к, которая отображает каждую точку куба данных $A(x", y", \alpha)$ в точку

• >

куба данных
$$I(x_0, y_0, \lambda)$$

$$\kappa: (x", y", \alpha) \to (x_0, y_0, \lambda).$$
(3)

В пренебрежении искажениями изображения входного окна на детектор функция к учитывает только описанное выше соотношение между положением спектральной полосы и координатой точки на детекторе

$$\lambda = \kappa(x", \alpha). \tag{4}$$

При существенной величине аберраций (в том числе, дисторсии) необходимо использовать более общий вид (3), включающий вторую пространственную координату.

Для построения калибровочной функции можно воспользоваться полученными в [2] соотношениями для границ выделяемой спектральной полосы:

$$\begin{cases} \lambda \ge \frac{b}{kq} \left(x'_1 + \frac{q}{p} x'' + qC \right) \\ \lambda \le \frac{b}{qk} \left(x'_2 + \frac{q}{p} x'' + qC \right) \end{cases}, \quad (5)$$

где
$$p = \frac{f_{col}}{\cos \alpha_0}, q = \frac{f_{cam}}{\cos \beta_0}, C = \sin \alpha_0 + \sin \beta_0, f_{col} -$$

фокусное расстояние коллиматорного объектива монохроматора.

Отсюда следует, что калибровочная функция может быть представлена в виде

$$\lambda = \frac{b}{k} \left(\sin \alpha_0 \left(1 + \cos \psi \right) - \sin \psi \cos \alpha_0 \right)$$

$$+ \frac{b}{k f_{cam}} x'_m + \frac{b}{k f_{col}} x'' \cos \alpha_0,$$
(6)

где x'_m - координата центра отверстия маски в промежуточной плоскости изображения, также для удобства вместо угла β_0 введен угол $\psi = \alpha_0 - \beta_0$. Этот угол является параметром системы (угол между оптической осью системы перед падением на дифракционную решетку и после дифракции), поэтому более предпочтителен для использования в калибровочных расчетах. Формула получена при рассмотрении в качестве длины волны λ центральной длины волны спектральной полосы. При калибровке определить положение центра спектральной полосы возможно только для полос, которые целиком помещаются на детекторе, то есть при достаточно узкой щели в промежуточной плоскости изображения. К примеру, при численном моделировании процедуры калибровки использована решетка с b = 1200 штр./мм, ширина маски составляет 0.33 мм, при этом ширина изображения на детекторе при монохроматическом излучении с λ = 500 нм составляет 0.9 мм. В первом приближении можно считать, что расширение отверстия в маске не приведет к искажениям калибровочной функции, так что можно использовать полученные результаты для измерений при другой ширине.

При проведении реальных измерений углы и координаты в формуле (6) могут быть измерены с ограниченной точностью. Поэтому представляет интерес возможность их приблизительного задания с последующей корректировкой посредством процедур нелинейной аппроксимации. В таком случае можно ввести следующие параметры: α_p – базовый угол падения на дифракционную решетку, x''_p – базовая координата в плос-

кости детектора, $B = \frac{b}{kf_{cam}} x'_m$, так что формула

(6) примет вид

$$\lambda = \frac{b}{k} (\sin(\alpha_p + \alpha)(1 + \cos\psi) - - \sin\psi \cos(\alpha_p + \alpha)) + B +$$
(7)
$$+ \frac{b}{kf_{col}} \cos(\alpha_p + \alpha)(x_p "+ x).$$

Представляет интерес получение величин параметров α_p , ψ , x''_p , B при проведении калибровки, включение их в калибровочную функцию и дальнейшее использование при обработке результатов измерений. При таком подходе устраняется необходимость точного измерения углов α (фактически, угла поворота дифракционной решетки) и ψ в системе, что представляет собой достаточно трудоемкую задачу при массовом изготовлении спектральных приборов.

Получение величин указанных параметров может быть проведено посредством построения нелинейной регрессии с оценкой разброса результатов при помощи МНК. В общем виде для данной процедуры желательно использование весовых коэффициентов или параметризации для уравнивания вкладов отдельных параметров в общий результат.

На первом этапе была проведена оценка вклада слагаемых в формуле (6) и влияния ошибок измерения угловых величин и линейных координат на результат оценки длины волны. Вклад первого слагаемого существенно превалирует, что будет учтено при построении регрессии. Была построена нелинейная регрессия, позволяющая восстановить только параметры x''_p , *B* при фиксированных параметрах α_p , ψ .

- Гулис, И. М. Двойной монохроматор изображения с вычитанием дисперсии / И. М. Гулис, А. Г. Купреев, А. Г. Костюкевич // Вестник Белорусского государственного университета. Серия 1. – 2011. – № 2. – С. 19–23.
- Гулис, И. М. Спектральная селекция в монохроматоре изображения с вычитанием дисперсии / И. М. Гулис, А. Г. Купреев // Вестник Белорусского государственного университета. Серия 1. 2014. № 3. С. 3–7