Термические напряжения в лазерном кристалле Nd:YVO₄ при диодной накачке

Лойко П.А., Юмашев К.В. Белорусский национальный технический университет

Объектом исследования работы является тетрагональный кристалл иттриевого ванадата YVO_4 , активированный ионами неодима Nd^{3+} . Рассматривается две вырезки данного кристалла для распространения излучения в направлении кристаллографических осей [100] и [001]. Данный кристалл является оптически одноосным, его оптическая ось параллельна оси [001]. В работе определены компоненты тензоров термических напряжений и деформаций в лазерном диске из $Nd:YVO_4$ в приближении плоского напряжения, которое достаточно хорошо описывает случай продольной диодной накачки диска. Для этого использован метод функции напряжений Эйри.

Показано, что нормальные напряжения $\sigma_{\rm r}$ и σ_{θ} характеризуются только радиальной зависимостью, а компонента касательных напряжений $\tau_{\rm r\theta}$ равна нулю для обеих вырезок кристалла. Радиальная компонента напряжений $\sigma_{\rm r} < 0$ во всем объеме диска за исключением его границы, где $\sigma_{\rm r} = 0$. Тангенциальная же компонента σ_{θ} отрицательна в центре диска и положительна на его границе. Таким образом, центральная часть диска испытывает сжатие. Кристалл, вырезанный вдоль [100], характеризуется большими напряжениями, чем кристалл, ориентированный вдоль оси [001]. На рисунке 1 показаны значения напряжений при толщине диска 1 мм и поглощенной мощности накачки 1 Вт.

Полученная информация важна для конструирования мощных лазеров с диодной накачкой на основе кристалла $Nd:YVO_4$.

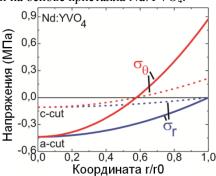


Рисунок 1 – Зависимость нормальных напряжений в плоскости лазерного диска Nd:YVO₄ от радиальной координаты