

The influence of steel mold wall thickness on its mode of deformation at heat cycling is studied. The formula for determination of optimal wall thickness is given.

В. Ф. БЕВЗА, Е. И. МАРУКОВИЧ, В. А. ПОПКОВСКИЙ, ИТМ НАН Беларуси

УДК 621.74

РАСЧЕТ НАПРЯЖЕНИЙ И УПРУГОПЛАСТИЧЕСКИХ ДЕФОРМАЦИЙ В СТАЛЬНОМ КРИСТАЛЛИЗАТОРЕ ПРИ ЦИКЛИЧЕСКОМ ТЕПЛОВОМ НАГРУЖЕНИИ

В ИТМ НАН Беларуси разработан новый высокоэффективный процесс литья полых заготовок без применения стержня: метод непрерывно-циклического литья намораживанием (НЦЛН). Как и в других методах непрерывного литья, одной из основных проблем при НЦЛН является обеспечение работоспособности кристаллизатора в течение длительного времени. Его стойкость определяет качество получаемых заготовок, стабильность и эффективность технологического процесса. Стойкость характеризуется способностью максимально долго сохранять рабочие свойства и определяется числом заливок, которые кристаллизатор выдерживает до выхода из строя.

Кристаллизаторы, как и другие металлические формы (кокили, изложницы, формы для литья под давлением и др.), выходят из строя в основном по трем причинам: термоусталости, формоизменению и износу. Обеспечение постоянства размеров и формы рабочей полости — одно из основных требований, предъявляемых к ним. Их работоспособность зависит от многих факторов: тепловых, механических, химических, гидродинамических, диффузионных и других явлений. Однако решающим является напряженно-деформированное состояние (НДС) рабочей втулки, определяемое температурными условиями ее работы.

Характер теплового нагружения кристаллизатора при НЦЛН имеет существенные особенности. В отличие от других непрерывных способов литья при НЦЛН он подвергается циклическим тепловым воздействиям от жидкого металла по всей высоте рабочей втулки в течение всей кампании разливки с периодом, равным времени затвердевания отливки. Поэтому многократность циклического теплового нагружения определяется не только количеством пусковых циклов, но в основном количеством отлитого через кристаллизатор металла. При этом изменение температуры рабочей поверхности в процессе разливки происходит по всей ее высоте в диапазоне повышенных температур ($T_{2n} = 200-500$ °C). Температурный режим работы определяет величину и характер напряжений и деформаций рабочей втулки кристаллизатора и соответственно его стойкость.

Цель настоящей работы — исследование напряженно-деформированного состояния стального кристаллизатора в условиях непрерывно-циклического литья полых чугунных заготовок без применения стержня и определение на этой основе оптимальной толщины стенки рабочей втулки. Без знания параметров этого состояния трудно найти пути совершенствования конструкции кристаллизатора и повышения эффективности технологического процесса.

Задачу определения температур и напряжений (деформаций) в стенке кристаллизатора рассматривали как несвязанную квазистационарную задачу термопластичности [1]. Решали ее в два этапа: на первом — рассчитывали температурное поле стенки рабочей втулки [2, 3], на втором — термические напряжения и упругопластические деформации.

Анализ НДС рабочей втулки кристаллизатора производили на основании использования теории пластического течения [1, 4]. Задачи термопластичности относятся к разряду физически нелинейных. Нелинейность обусловлена изменяющимся во времени и в пространстве температурным полем, а также упругопластическим деформированием материала изделия. Подобные задачи чаще всего решаются численными методами: методом начальных деформаций, переменной жесткости, начальных напряжений, дополнительных деформаций. В настоящей работе, исходя из соображений апробированности, простоты и экономии машинного времени, предпочтение было отдано методу дополнительных деформаций [5].

Расчет напряжений и деформаций в стенке рабочей втулки кристаллизатора осуществляли методом конечных элементов. При формировании конечно-элементной модели учитывали осесимметричное температурное нагружение втулки и ее НДС. Анализ проводили с использованием пакета прикладных программ COSMOS, в котором реализован алгоритм метода конечных элементов, при этом учитывали зависимость механических свойств материала рабочей втулки кристаллизатора от температуры [6, 7]. При проведении

44 / AMTLE IN ANGTRAASPECIA

анализа определяющей характеристикой механических свойств материала кристаллизатора служил предел текучести стали (σ₋).

На рис. 1 показаны конечно-элементная модель втулки, используемая при расчете, и конечный элемент PLANE 2D, включающий в себя четыре узловые точки с двумя "степенями свободы" в каждом узле.

Исследования проводили для кристаллизаторов с различной толщиной стенки (X_2), которая варьировалась от 7 до 28 мм при фиксированном внутреннем диаметре $D_1 = 116$ мм, а также при изменении диаметра кристаллизатора от 100 до 190 мм. Полезная высота рабочей втулки составляла 235 мм.

Исходные данные по температурному полю кристаллизатора были взяты из работ [2, 3]. Как уже указывалось, при НЦЛН рабочая поверхность кристаллизатора при каждом цикле извлечения отливки испытывает тепловой удар со стороны жидкого металла, в результате чего происходит резкое повышение ее температуры (рис. 2). Затем в период выдержки в результате образования и роста затвердевающей корки температура рабочей поверхности понижается до момента извлечения очередной отливки. Потом цикл повторяется. При заданном режиме литья циклы повторяются примерно в одном и том же интервале температур с постоянным периодом (частотой), т. е. изменение температуры рабочей поверхности стенки кристаллизатора в процессе разливки носит стационарно-периодический характер. В связи с этим для оценки термонапряженного состояния рабочей втулки достаточно рассмотреть величину и изменение напряжений и деформаций в течение одного цикла. Температуру водоохлаждаемой поверхности кристаллизатора принимали постоянной и равной 80 °С. В промежуточных узловых точках конечно-элементной модели распределение температуры по толщине стенки при проведении расчетов определяли на основании линейной интерполяции.

PLANE2D Element

Рис. 1. Конечно-элементная модель рабочей втулки кристаллизатора (a) и конечный элемент (b), используемый для описания осесимметричного напряженного состояния

Расчеты показали, что при использовании рабочей втулки с толщиной стенки $X_2=28$ мм интенсивность напряжений на рабочей поверхности практически в течение всего цикла (времени формирования отливки) превышает предел текучести стали в среднем на 30-40 %. Это связано с тем, что при $X_2=28$ мм температура рабочей поверхности кристаллизатора в процессе разливки достигает 800°С. При этих температурах предел текучести стали составляет менее 50 МПа, а величина интенсивности напряжений на рабочей поверхности находится в пределах 55-80 МПа. В средней зоне по толщине стенки эти напряжения превышают 105 МПа. В связи с этим в стенке рабочей втулки при каждом цикле возникают остаточные деформации (около 0,04 мм на диаметр за цикл), которые накапливаются в процессе разливки и приводят к ее короблению и выходу кристаллизатора из строя. Причем максимальная величина интенсивности напряжений имеет место на водоохлаждаемой поверхности и в средней зоне по толщине стенки рабочей втулки, в этой зоне фиксируются и максимальные остаточные напряжения за цикл. При этом наибольший вклад в величину остаточных

antes a metraaspras / 15

напряжений вносят нормальные напряжения, действующие в направлении оси кристаллизатора. Таким образом, для литья заготовок из чугуна использование стальных кристаллизаторов с большой толщиной стенки нецелесообразно в связи с их короблением и быстрым появлением сетки разгара.

Следует отметить, что интенсивность напряжений является интегральным показателем, учитывающим все шесть компонент напряжений, действующих в точке тела, и наиболее информативным с точки зрения фиксации момента наступления пластического деформирования объекта. Величину интенсивности напряжений определяли по выражению:

$$\sigma_{i} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{x} - \sigma_{y})^{2} + (\sigma_{y} - \sigma_{z})^{2} + (\sigma_{z} - \sigma_{x})^{2} + 6(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2})} .$$
(1)

Уменьшение толщины стенки втулки приводит к снижению интенсивности напряжений на рабочей поверхности (с 209 МПа при $X_2 = 17$ мм до 157 МПа при X₂= 7 мм) (рис. 3) и соответственно к уменьшению остаточных напряжений (рис. 4) и деформаций (рис. 5). На рис. 4 перемещение от точки к точке по сечению стенки осуществляется от рабочей поверхности к водоохлаждаемой. Точки, в которых рассчитывали напряжения, отмечены белыми крапинками. На рис. 5 также белыми крапинками обозначены точки, для которых определены радиальные деформации. Горизонтальная ось этого графика соответствует высоте рабочей втулки, при этом начало координат принято в верхней точке рабочей поверхности втулки, т. е. перемещение от точки к точке осуществляется сверху вниз.

При $X_2 = 17$ мм максимальная радиальная деформация в момент времени, соответствующий максимальному перепаду температур по толщине стенки, составляет 0,074–0,116 мм на диаметр, а остаточные деформации (в конце цикла) не превышают 0,005 мм.

При этом существенным образом изменяется характер распределения интенсивности напряжений по толшине

Рис. 2. Изменение температуры стенки кристаллизатора в течение одного цикла на удалении 0,5 мм от рабочей поверхности: $1 - X_2 = 28$ мм; 2 - 17; 3 - 9; $4 - X_2 = 7$ мм

стенки рабочей втулки (см. рис. 3) и соответственно остаточные напряжения, т. е. напряжения в конце цикла. При $X_2 = 17$ мм и меньше наибольшие остаточные напряжения сосредоточены на внутренней поверхности рабочей втулки (см. рис. 4). В большую сторону изменяется и величина максимальных радиальных деформаций. Изменяется также характер развития интенсивности напряжений в течение цикла (см. рис. 3) и осевых нормальных напряжений по сечению рабочей втулки (рис. 6).

Во всех случаях в процессе разливки рабочая (внутренняя) поверхность кристаллизатора испытывает напряжения сжатия, а водоохлаждаемая — растяжения. Причем эти напряжения в течение цикла изменяются в значительных пределах и имеют максимальное значение в момент времени, соответствующий наибольшему перепаду температур по толщине стенки (рис.6). Чтобы качественно представить картину напряженного состояния рабочей втулки, рассмотрим ее как полый цилиндр, состоящий из большого числа заключенных один в другой цилиндров с очень тонкими стенками, т. е. как "слоистую оболочку" [6]. Первый слой рабочей поверхности втулки, получив тепловую нагрузку, стремится расшириться, но окружающие его слои на дают ему этой возможности. В результате в первом слое возникают напряжения сжатия, а во втором — растяжения, т.е. первый слой действует на второй, третий и т.д. слои как некоторое внутреннее давление и одновременно является источником тепла. В следующий момент времени второй слой прогревается, напряжения растяжения в нем уменьшаются, передаваясь следующему, третьему слою и т. д. Таким образом, от слоя к слою

Рис. 3. Кинетика изменения интенсивности напряжений в течение цикла в различных точках по толщине стенки кристаллизатора: $a - X_2 = 17$ мм; $\delta - X_2 = 7$ мм

передаются растягивающие напряжения и их максимум перемещается к наружной поверхности. На внутренней же поверхности происходит накопление напряжений сжатия, где они достигают максимального значения. При этом значения температуры и напряжений по толщине стенки изменяются волнообразно.

В том случае, когда величина термических напряжений превышает предел текучести материала, происходит коробление втулки. В процессе коробления по высоте втулки могут образовываться зоны, в которых лежащие выше сечения приобретают меньший размер, чем лежащие ниже. Это может вызвать обрыв затравочной части отливки и прекращение процесса литья. Для исключения подобных явлений внутреннюю полость кристаллизатора выполняют в виде усеченного конуса с большим основанием в верхней части. При этом величину конусности следует выбирать с учетом термодеформационных изменений рабочей втулки и затвердевающей отливки. Кроме того, в каждом конкретном случае необходимо решить задачу минимизации перепада температур по толщине стенки и определить ее оптимальную величину, которая должна обеспечить необходимую интенсивность теплоотвода от затвердевающей отливки, обладать достаточной работоспособность.

Рис. 4. Распределение интенсивности напряжений по сечению стенки в конце цикла: *t*=20 с, *X*₂=17 мм

жесткостью и сохранять длительную Рис. 5. Распределение радиальных деформаций рабочей поверхности по высоте работоспособность. кристаллизатора в конце цикла: *t*=20 с, X₂=17 мм

Следует отметить, что, как и в других методах непрерывного литья [9, 10], наибольший скачок аеформаций втулки происходит в начальный период ее эксплуатации. Затем деформации накапливаются постепенно.

Анализ показал, что при $X_2 \le 10$ мм остаточные напряжения и деформации к концу цикла практически отсутствуют, а значения максимальных деформаций в течение цикла заметно возрастают (рис. 7). Причем величина деформаций и их колебания в течение цикла возрастают с увеличением диаметра кристаллизатора.

Результаты расчетов напряженнодеформированного состояния рабочих втулок различных диаметров и толщины стенки приведены в таблице. Основным критерием, который принимался во внимание при проведении анализа, были остаточные напряжения, фиксируемые в стенке втулки к концу цикла. Было установлено, что величина остаточных напряжений хорошо коррелирует с жесткостью рабочей втулки (X_2/D_1) и максимальным градиентом температуры по толщине стенки $(\Delta T_{2,y}/X_2)$.

На рис. 8, *а* изображена поверхность, построенная по данным таблицы в координатах $\sigma_{ocr} - X_2/D_1 - \Delta T_{2-3}/X_2$. Линии равных напряжений, принадлежащие этой поверхности, приведены на рис. 8, *б*. Анализ показал, что линия, описывающая нулевые напряжения, практически не отличается от прямой (рис. 8, *б*).

		2-3 =		· 1·		· 2 -	
<i>D</i> 1, мм	Х2, ММ	<i>P</i> , c	ΔT_{2-3} , °C	$\Delta T_{2-3}/X_2$	X_2/D_1	σ _{ост} , МПа	
116	7	20	100	14,3	0,06	0	
116	9	25	210	23,3	0,078	0	
116	17	20	330	19,4	0,147	42	
116	28	20	720	25,7	0,24	100	
140	12,5	29	400	32	0,09	230	
190	12,5	36	380	30,4	0,065	152	
190	11,4	36	320	28,1	0,06	13	
190	10,4	36	270	26	0,055	5	

Установлено также, что зависимость перепада температур ΔT_{2-3} (между рабочей и водоохлаждаемой поверхностями) от толщины стенки X_2 в области малых значений X_2 также носит линейный характер. Учитывая это обстоятельство, была получена формула, определяющая взаимосвязь толщины стенки и диаметра кристаллизатора:

$$X_2 = kD_1 \left[\left(0,0025 + \frac{1,6}{D_1} \right)^{0.5} - 0,05 \right],$$
(2)

где k = 1,25-1,30.

48/*Alatus la Metra Aleria*

Рис. 8. Зависимость интенсивности максимальных остаточных напряжений $\sigma_i(a)$ и распределения линий равных напряжений (б) от жесткости втулки X_2/D_1 и градиента температур по толщине стенки кристаллизатора $\Delta T_{2-3}/X_2$

Значения D_1 следует принимать в миллиметрах. Выражение (2) получено на основе анализа термонапряженного состояния кристаллизатора при условии, что остаточные напряжения в стенке в конце каждого цикла равны нулю. Это выражение может применяться для расчета оптимальной толщины стенки кристаллизаторов из низкоуглеродистой стали при непрерывно-циклическом литье заготовок из чугуна диаметром 50–220 мм методом намораживания. Использование разработанных рекомендаций при изготовлении рабочих втулок кристаллизаторов позволило существенно повысить их работоспособность. Например, стойкость рабочей втулки диаметром 145 мм с $X_2 = 12,5$ мм из низкоуглеродистой стали составила более 8000 заливок, что в несколько раз превышает ресурс работы кристаллизатора с $X_2 = 15$ мм из стали 40.

Таким образом, проведенный анализ показал, что использование стальных рабочих втулок с большой толщиной стенки ($X_2 \ge 18$ мм) неприемлемо как с точки зрения тепловых условий работы (не обеспечивается необходимая интенсивность теплоотвода от затвердевающей отливки) [2], так и с точки зрения их работоспособности. Кристаллизаторы с $X_2 < 8$ мм выходят из строя преимущественно вследствие недостаточной цилиндрической жесткости. В то же время рабочие втулки из низкоуглеродистой стали с оптимальной толщиной стенки могут с успехом применяться при непрерывноциклическом литье чугуна методом намораживания, т.е. в условиях циклических тепловых нагрузок. Полученные результаты позволят также провести оптимизацию профиля рабочей поверхности кристаллизатора, что повысит надежность работы и стабильность процесса литья.

Литература

1. Боли Б., Уэйнер Дж. Теория температурных напряжений: Пер. с англ. М.: Мир, 1964.

2. Бевза В.Ф., Бодяко А.М. Температурное поле кристаллизатора при непрерывно-циклическом литье намораживанием //Литье и металлургия. 2002. № 4. С. 96-98.

3. Бевза В.Ф., Бодяко А.М. Параметры и условия работы кристаллизатора при непрерывно-циклическом литье // Металлургия машиностроения. 2002. № 4(7). С. 46-48.

4. Ильюшин А.А. Пластичность. М.; Л., 1948.

5. Биргер И.А., Шорр Б.М. Термопрочность деталей машин. М.: Машиностроение, 1975.

6. Справочник. Материалы в машиностроении / Под общ. ред. И.В.Кудрявцева. Т. 2. Конструкционная сталь / Под ред. Е.П.Могилевского. М.: Машиностроение, 1967.

7. Справочник конструктора-машиностроителя / Под ред. В.И.Анурьева. М.: Машиностроение, 1968.

8. Христиченко П.И. О нестационарной теплопроводности и термоупругих напряжениях в полом цилиндре // ИФЖ. 1963. Т. 6. № 7. С. 76-82.

9. Качан А.Д. Стойкость кристаллизаторов полунепрерывной отливки // Тр. конф. молодых инженеров трубной промсти. М.: Металлургия, 1968. С. 167–173.

10. Поручиков Ю.П., Мысик Р.К., Головешко В.Ф., Кандарюк В.В. Исследование процесса деформации кристаллизаторов // Науч. тр. гос. науч-исслед. и проект. ин-та сплавов и обработки цветных металлов. 1980. № 63. С. 74–83.