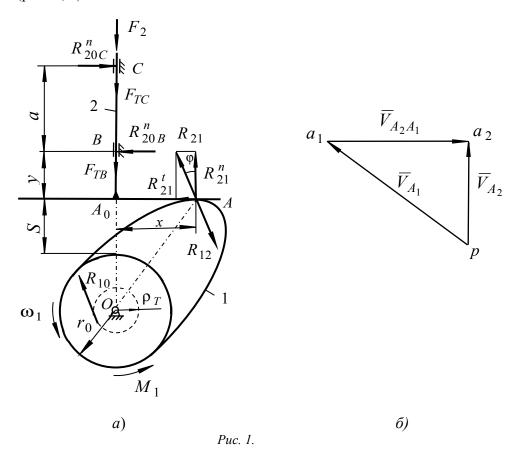
О ВОЗМОЖНОСТИ ЗАКЛИНИВАНИЯ В КУЛАЧКОВОМ МЕХАНИЗМЕ С ТАРЕЛЬЧАТЫМ ТОЛКАТЕЛЕМ

Анципорович П.П., Акулич В.К., Дубовская Е.М.

The article is devoted to the research of influence of a friction and of geometrical sizes of the cam mechanism on its working capacity.

В кулачковом механизме с тарельчатым толкателем угол давления равен нулю во всех положениях механизма. Однако условия передачи сил могут оказаться неблагоприятными и в таком механизме, что может повлечь за собой заклинивание (самоторможение). Это, как будет показано далее, в первую очередь определяется величиной $x = A_0 A$ (рис. 1, a).



Рассмотрим картину силового нагружения механизма. При этом учитываем силы трения скольжения в поступательной и высшей парах. Вследствие перекоса толкатель 2 касается направляющих в точках B и C. К толкателю приложены следующие силы: F_2 — равнодействующая силы полезного сопротивления, упругости пружины, силы тяжести и силы инерции толкателя, R_{20B}^n и R_{20C}^n — нормальные реакции со стороны направляющих в точках B и C, F_{TB} и F_{TC} — силы трения скольжения, R_{21} — реакция со стороны кулачка 1. Для учета трения скольжения в высшей

паре реакция R_{21} отклонена от нормали на угол трения ϕ в сторону, противоположную относительной скорости $\overline{V}_{A_2A_1}$. Следовательно,

$$R_{21} = \sqrt{\left(R_{21}^{n}\right)^{2} + \left(R_{21}^{t}\right)^{2}}$$
.

Уравнения равновесия толкателя представим в следующем виде (при этом его толщиной пренебрегаем):

$$\sum M_B = R_{21} x \cos \varphi - R_{21} y \sin \varphi - R_{20C}^n a = 0,$$

откуда

$$R_{20C}^{n} = \frac{R_{21}\cos\varphi\left(x - ytg\varphi\right)}{a};\tag{1}$$

$$\sum M_C = R_{21}x\cos\varphi - R_{21}(a+y)\sin\varphi - R_{20B}^n a = 0$$
,

откуда

$$R_{20B}^{n} = \frac{R_{21}\cos\varphi \left[x - (a + y)tg\varphi\right]}{a};$$
 (2)

$$\sum F_{v} = R_{21} \cos \varphi - F_{TB} - F_{TC} - F_{2} = 0, \qquad (3)$$

причем

$$F_{TB} = f R_{20B}^n, \qquad F_{TC} = f R_{20C}^n,$$
 (4)

где f – коэффициент трения скольжения в поступательной паре.

Из подобия плана скоростей pa_1a_2 (рис. 1, б) и треугольника OA_0A следует, что расстояние x равно аналогу скорости толкателя, т.е. $x=\frac{dS}{d\,\phi_K}$, где $S\left(\phi_K\right)$ – функция перемещения толкателя, ϕ_K – угол поворота кулачка (обобщенная координата механизма).

Фактическое направление нормальных реакций R_{20B}^n и R_{20C}^n может отличаться от показанного на рис. 1, a. Это зависит от соотношения геометрических параметров механизма. Если при определении указанных сил по формулам (1) и (2) получится знак «плюс», то выбранные направления являются правильными. Если же для какой-либо силы получится знак «минус», то направление этой силы следует, как обычно, изменить на противоположное и, кроме того, необходимо еще заново составить уравнения равновесия. Это связано с тем, что при изменении знака нормальной реакции изменится и знак силы трения, определяемой по формуле (4). В действительности сила трения своего направления не изменяет, так как она всегда направлена противоположно относительной скорости движения.

Возможны 3 случая решения задачи.

1) $x < ytg \varphi$. В этом случае направления R_{20B}^n и R_{20C}^n изменяются на противоположные, так как согласно формулам (1) и (2) $R_{20B}^n < 0$ и $R_{20C}^n < 0$. Тогда реакция R_{21} , определяемая из уравнения (3), находится из зависимости

$$R_{21} = \frac{F_2}{\cos \varphi \left(1 + \frac{2f x}{a}\right) - f \sin \varphi \left(1 + \frac{2y}{a}\right)}.$$
 (5)

При $x = y t g \phi$ $R_{20C}^n = 0$.

2) $ytg \, \phi < x < (a+y)tg \, \phi$. Направление R_{20B}^{n} изменяется на противоположное, а направление R_{20C}^{n} не изменяется. Реакция R_{21} определяется из зависимости

$$R_{21} = \frac{F_2}{\cos \varphi - f \sin \varphi} \,. \tag{6}$$

При $x = (a + y) tg \varphi$ $R_{20B}^n = 0$.

3) x > (a + y) tg ϕ . В этом случае направления R_{20B}^n и R_{20C}^n не изменяются и реакция R_{21} определяется из зависимости

$$R_{21} = \frac{F_2}{\cos\varphi\left(1 - \frac{2fx}{a}\right) + f\sin\varphi\left(1 + \frac{2y}{a}\right)}.$$
 (7)

Анализ зависимостей (5), (6), (7) показывает, что заклинивание толкателя, когда $R_{21} \to \infty$, может иметь место только в случае $x > (a+y)tg \varphi$. Полагая знаменатель в выражении R_{21} (7) равным нулю, получим условие незаклинивания в следующем виде:

$$x < \frac{a}{2f} + tg \, \phi \left(\frac{a}{2} + y \right).$$

Уравновешивающий (движущий) момент M_1 , приложенный к кулачку 1 и определяемый из условия статического равновесия ($\sum M_O = 0$) без учета его силы тяжести, выражается формулой

$$M_1 = R_{10} \rho_T + R_{12}^n x + R_{12}^t (r_0 + S)$$

где ρ_T – радиус круга трения, $R_{12}^n=R_{21}\cos\varphi$, $R_{12}^t=R_{21}\sin\varphi$, причем $\overline{R}_{12}=-\overline{R}_{21}$. $\rho_T=f^{'}r$, где $f^{'}$ – приведенный коэффициент трения во вращательной паре O, r - радиус цапфы вращательной пары.

Реакции R_{10} и R_{12} образуют пару сил, поэтому $R_{10} = R_{12}$.

В случае заклинивания уравновешивающий (движущий) момент M_1 стремится к бесконечности.

ЛИТЕРАТУРА

- 1. Баранов, Г.Г. Курс теории механизмов и машин / Г.Г. Баранов. 5-е изд. М.: Машиностроение, 1975. 494 с.
- 2. Юдин, В.А. Теория механизмов и машин / В.А. Юдин, Л.В. Петрокас. 2-е изд., перераб. и доп. М.:Высш. шк., 1977. 527 с.