О ВЛИЯНИИ МАГНИТНОГО ПОЛЯ НА ФОРМЫ СВОБОДНЫХ КОЛЕБАНИЙ ТРЕХСЛОЙНОЙ ЦИЛИНДРИЧЕСКОЙ ПАНЕЛИ, СОДЕРЖАЩЕЙ МАГНИТОРЕОЛОГИЧЕСКИЙ ЭЛАСТОМЕР

асп. ¹Маевская С.С., д.ф.-м.н. ²Михасев Г.И.

¹Витебский государственный университет им. П.М. Машерова, Витебск ²Белорусский государственный университет, Минск

Тонкостенные слоистые элементы (оболочки, панели, пластины, балки) широко применяются во многих инженерных сооружениях, таких как воздушные и космические транспортные средства, подводные объекты, автомобили и т.п. ([1], [2]). Применяя новые материалы с различными физическими свойствами, можно конструировать «сэндвич-структуры», удовлетворяющие всем современным требованиям, включая высокую жесткость, безопасность и безшумность.

Одной из актуальных проблем, решаемых сегодня, является виброзащита тонкостенных конструкций, испытывающих внешние колебательные нагрузки. Новые возможности для решения данной проблемы открывают многофункциональные материалы с активными и адаптивными свойствами (так называемые «интеллектуальные» материалы). Магнитореологический эластомер (МРЭ) – это «интеллектуальный» материал, упругие свойства которого изменяются в зависимости от величины приложенного магнитного поля ([3], [4]). Благодаря возможности управления вязкоупругими свойства МРЭ в широком диапазоне можно ожидать, что материал, имеющий встроенный МРЭ между упругих слоев обеспечит для «сэндвича» широкий спектр реологических свойств. В виду этого можно говорить о возможности эффективного использования МРЭ в различных устройствах виброзащиты.

Большинство работ, в которых рассматривается гашение вибраций многослойных тонкостенных конструкции, было сделано для случаев, когда являющийся прослойкой «интеллектуальный» материал был жидкостью ([5], [6], [7], [8]). Однако эластомеры имеют значительное преимущество по сравнению с жидкостями, поскольку они способны сохранять геометрическую форму при низком уровне магнитного поля.

При том, что достаточно много работ посвящено изучению свойств МРЭ и эластомеров (см., например, [4], [9], [7]), лишь только некоторые из них посвящены исследованиям динамического расчета адаптивных «сэндвич» балок, пластин и оболочек, содержащих в качестве вязкоупругого наполнителя МРЭ. Объяснить это можно тем, что реакция композитной конструкции, содержащей МРЭ существенно зависит от соотношения масштаба времени реакции МРЭ и динамических характеристик контролируемой конструкции ([10], [11]). Поэтому большинство авторов изучали адаптивную структуру «сэндвича» в случаях, когда приложенное магнитное поле было стационарным.

К настоящему времени известно лишь несколько работ, посвященных исследованиям динамического расчета «сэндвич-оболочек» с ядром чувствительным к действию магнитного или электрического поля. В [8], была разработана аналитическая модель, адаптированная к дискретному методу конечных элементов, для исследования вибрации и демпфирующих характеристик трехслойной ортотропной цилиндрической оболочки с электрореологической ядром. Свободные колебания тонких круговых слоистых цилиндров с однородными магнитореологическими слоями при различных уровнях приложенного магнитного поля были исследованы в [12]. Одна из последних работ [13] показала, что применение постоянного магнитного поля может привести к сильному искажению мод, соответствующих низким частотам. В частности, если круговой цилиндрический «сэндвич», имеющий сильно поляризованное магнитореологическое ядро, подвергается воздействию однородного стационарного магнитного поля, силовые линии которого образуют различные углы с намагничиваемыми частицами в МРЭ, то моды, соответствующие наименьшим частотам, локализуются вблизи линий, где приведенный модуль сдвига достигает экстремального значения. Работы, посвященные исследованию влияния магнитного поля на собственные частоты и диссипативные свойства слоистых магнитореологических панелей на данный момент отсутствуют.

Целью данной работы является исследование возможности эффективного воздействия постоянного магнитного поля на формы свободных колебаний трехслойной цилиндрической панели, содержащей МРЭ.

Постановка задачи. Рассмотрим трехслойную цилиндрическую панель, внешние слои которой не восприимчивы к магнитному полю, а внутренний представляет собой магнитореологический эластомер (см. рис 1). Каждый из слоев панели характеризуется толщиной h_k , плотностью ρ_k , модулем Юнга E_k и коэффициентом Пуассона v_k , k = 1, 2, 3. Систему координат α_1 , α_2 , α_3 свяжем с серединной плоскостью заполнителя (МРЭ). Здесь L_1 – длина панели, L_2 – ширина панели, φ_1 – угол раствора, h_1 , h_3 толщины несущих слоев, h_2 – толщина МРЭ. Направления координатных осей указаны на рис. 1.

Рис. 1. Трехслойная цилиндрическая панель, содержащая магнитореологический эластомер

Принимаем, что для панели справедливы гипотезы теории слоистых оболочек, сформулированные в работе [14] Э.И. Григолюком и Г.М. Куликовым.

Для исследования движения цилиндрической панели используем уравнения, описывающие движения многослойной цилиндрической оболочки, приведенные в работе [14].

$$\frac{Eh^{3}\eta_{3}}{12(1-\nu^{2})}\left(1-\frac{\theta h^{2}}{\beta}\Delta\right)\Delta^{2}\chi + \frac{1}{R}\frac{\partial^{2}\Phi}{\partial\alpha_{1}^{2}} + \rho h\frac{\partial^{2}}{\partial t^{2}}\left(1-\frac{h^{2}}{\beta}\Delta\right)\chi = q_{n}(\alpha_{1},\alpha_{2},t),$$

$$\Delta^{2}\Phi - \frac{Eh}{R}\frac{\partial^{2}}{\partial\alpha_{1}^{2}}\left(1-\frac{h^{2}}{\beta}\Delta\right)\chi = 0,$$

$$w = \left(1-\frac{h^{2}}{\beta}\Delta\right)\chi,$$
(1)

где $\Delta = \frac{\partial^2}{\partial \alpha_1^2} + \frac{\partial^2}{\partial \alpha_2^2}$ – оператор Лапласа в криволинейной системе координат; *E*, v – осредненные модуль Юнга и коэффициент Пуассона, $h = h_1 + h_2 + h_3$ – суммарная толщина панели, $h_1 = h_3$ – толщины несущих упругих слоев, h_2 – толщина внутреннего вязкоупругого слоя, изготовленного из МРЭ, ρ – приведенная плотность «сэндвича», Φ , χ – функции напряжений и перемещений, *w* – нормальный прогиб, *t* – время, θ , β – параметры, зависящие от индукции магнитного поля и характеризующие приведенную жесткость панели.

В нашем случае η₃, θ, β – комплексные параметры, зависящие от индукции *В* внешнего магнитного поля [13], определяемые по формулам [14]:

$$\begin{split} \theta &= 1 - \frac{\eta_2^2}{\eta_1 \eta_3}, \ \beta = \frac{12(1-v^2)g_{44}}{Eh\eta_1}, \ \rho = \sum_{k=1}^N \rho_k \varsigma_k, \ h = \sum_{k=1}^N h_k, \ E = \frac{1-v^2}{h} \sum_{k=1}^N \frac{E_k h_k}{1-v_k^2}, \\ v &= \sum_{k=1}^N v_k \frac{E_k h_k v_k}{1-v_k^2} \left(\sum_{k=1}^N \frac{E_k h_k}{1-v_k^2} \right)^{-1}, \ h \varsigma_k = h_k, \ \eta_1 = \sum_{k=1}^N \varsigma_k^{-1} \pi_{1k} \gamma_k - 3c_{12}^2, \ \eta_2 = \sum_{k=1}^N \varsigma_k^{-1} \pi_{2k} \gamma_k - 3c_{13}c_{12}, \\ \eta_3 &= 4 \sum_{k=1}^N (\varsigma_k^2 + 3\varsigma_{k-1} \varsigma_k) \gamma_k - 3c_{13}^2, \ h \varsigma_n = \delta_n, \ \gamma_k = \frac{E_k h_k}{1-v_k^2} \left(\sum_{k=1}^N \frac{E_k h_k}{1-v_k^2} \right)^{-1}, \ c_{12} = \sum_{k=1}^N \varsigma_k^{-1} \pi_{3k} \gamma_k, \\ c_{13} &= \sum_{k=1}^N (\varsigma_{k-1}^2 + \varsigma_k) \gamma_k, \ q_{44} = \frac{\left[\sum_{k=1}^N \left(\lambda_k - \frac{\lambda_{k0}^2}{\lambda_{kk}} \right) \right]^2}{\sum_{k=1}^N \left(\lambda_k - \frac{\lambda_{k0}^2}{\lambda_{kk}} \right) G_k^{-1}} + \sum_{k=1}^N \frac{\lambda_{k0}^2}{\lambda_{kk}} G_k, \ G_k = \frac{E_k}{2(1+v_k)}, \ \lambda_k = \frac{\delta_k}{\delta_{k-1}} f_0(z) dz \\ \lambda_{kn} &= \frac{\delta_k}{\delta_{k-1}} f_k(z) f_n(z) dz, \ \frac{1}{12} h^3 \pi_{1k} = \frac{\delta_k}{\delta_{k-1}} g^2(z) dz, \ g(z) = \int_0^z f_0(z) dz, \ \frac{1}{12} h^3 \pi_{2k} = \frac{\delta_k}{\delta_{k-1}} zg(z) dz \\ \frac{1}{2} h^2 \pi_{3k} = \frac{\delta_k}{\delta_{k-1}} (z - \delta_0) (\delta_N - z), \ f_k(z) = \frac{1}{h_k^2} (z - \delta_{k-1}) (\delta_k - z). \end{split}$$

В качестве граничных условий рассмотрим условия шарнирного опирания:

$$\chi = \Delta \chi = \Delta^2 \chi = \Phi = \Delta \Phi = 0; \quad \alpha_1 = 0, L_1; \quad \alpha_2 = 0, L_2.$$
(2)

Рассмотрим свободные колебания, для которых в (1) положим $q_n(\alpha_1, \alpha_2, t) = 0$. С учетом граничных условий (2) собственные формы колебаний задаются функциями:

$$\chi = \chi_A \exp(i\Omega t) \sin \frac{\pi n \alpha_1}{L_1} \sin \frac{\pi n \alpha_2}{L_2},$$

$$\Phi = \Phi_A \exp(i\Omega t) \sin \frac{\pi n \alpha_1}{L_1} \sin \frac{\pi n \alpha_2}{L_2},$$
(3)

где n, m – число волн в продольном и окружном направлении соответственно, $\Omega = \omega + i\alpha$ – искомая комплексная собственная частота колебаний, L_1 – длина панели, L_2 – ширина панели.

Подставив вид решения (3) в систему уравнений (2) получили соотношение для комплексной собственной частоты колебаний:

$$\Omega^{2} = \frac{E}{\rho R^{2}} \left[\frac{\eta h_{*}^{2}}{12} \Delta_{nm}^{2} \frac{\left[1 + \theta K \Delta_{nm} \right]}{\left[1 + K \Delta_{nm} \right]} + \frac{R^{4} n^{4}}{L_{1}^{4} \Delta_{nm}^{2}} \right], \tag{4}$$

где

$$K = \frac{\pi^2 h_*^2}{\beta}, \ \eta = \frac{\pi^4 \eta_3}{(1 - \nu^2)}, \ \Delta_{nm} = \left(\frac{Rn}{L_1}\right)^2 + \left(\frac{Rm}{L_2}\right)^2.$$

Анализ результатов и примеры. В качестве примера рассмотрим цилиндрическую трехслойную панель с параметрами R = 0,5 м; $L_1 = 1$ м, $\varphi_1 = 30^\circ$; 60° ; 90° , внешние слои которой характеризуются параметрами $h_1 = h_3 = 0,5$ мм; $v_1 = v_3 = 0,4$; $E_1 = E_3 = 1,5 \cdot 10^9$ Па; $\rho_1 = \rho_3 = 1,4 \cdot 10^3$ кг/м³, а для МРЭ-ядра параметрами: $\rho_2 = 2,65 \cdot 10^3$ кг/м³, $v_2 = 0,42$, $h_2 = 5$; 8; 11 мм. Для определения E_2 и G_2 были использованы результаты экспериментально установленных зависимостей этих параметров от индукции магнитного поля [13]. Зависимость действительной (G', E') и мнимой (G'; E'') частей модуля сдвига G_2 и модуля Юнга E_2 для МРЭ от индукции магнитного поля B представлена следующими формулами [13]:

$$G_{MP} = (4,500 + 14,978 \cdot B) \kappa \Pi a, G'_{MP} = (17,000 + 3,680 \cdot B) \kappa \Pi a,$$

$$E_{MP} = 13,230 + 45,040 \cdot B \kappa \Pi a, E'_{MP} = 50,000 + 10,920 \cdot B \kappa \Pi a.$$
 (5)

На рис 2 представлены зависимости действительной и мнимой частей собственной частоты колебаний от индукции магнитного поля *B* для трех толщин внутреннего слоя h_2 с углом раствора $\varphi_1 = 90^0$ при n = 1, m = 6.

Из рисунка 2 (а) видно, что увеличение индукции магнитного поля до уровня B = 200 мTл приводит к быстрому увеличению значений собственных частот колебаний ω_{nm} . Дальнейшее увеличение не оказывает существенного влияния на значения собственных частот ω_{nm} . Заметно, что для меньших толщин ($h_2 = 5$; 8 мм) возрастание собственных частот колебаний выражено менее явно, чем для толщины $h_2 = 11 \text{ мм}$, что объясняется слабой зависимостью действительной части приведенного модуля упругости «сэндвича» с меньшей толщиной МРЭ от магнитного поля. Рисунок 2 (б) показывает, что на отрезке от B = 0 мTл до B = 300 мTл происходит увеличение значений декремента α_{nm} , однако дальнейшее увеличение интенсивности магнитного поля приводит к зна-

чительному снижению значений декремента α_{nm} , что объясняется «насыщением» МРЭ [15].

На рис 3 представлены зависимости действительной и мнимой частей собственной частоты колебаний от индукции магнитного поля *B* для трех углов раствора $\varphi_1 = 30^0$; 60^0 ; 90^0 при толщине внутреннего слоя $h_2 = 11$ мм.

Из рисунка 3 видно, что чем меньше угол раствора панели, тем быстрее увеличиваются значения собственных частот ω_{nm} и декрементов α_{nm} . Заметно, что для больших углов раствора ($\varphi_1 = 60^0$; 90⁰) возрастание собственных частот и декрементов колебаний выражено менее явно, чем для угла $\varphi_1 = 30^0$.

РЕЗЮМЕ

Рассматриваются свободные колебания цилиндрической трехслойной панели, содержащей магнитореологический эластомер. Анализируется влияние внешнего постоянного магнитного поля на собственные частоты и декремент колебаний при различных толщинах магнитореологического ядра и различных углах раствора панели.

ЛИТЕРАТУРА

- Korjakin, A. Analysis of free damped vibrations of laminated composite conical shells / A. Korjakin, R. Rikards, A. Chate, H. Altenbach //Composite Structures. - 1998. - №41. - P. 39-47.
- Qatu, M.S. Recent research advances on the dynamic analysis of composite shells / M.S. Qatu // Composite Structures. - 2010. - № 93(1). - P. 14-31.
- Jolly, M.R. Properties and applications of comerciaal magnetorheological fluids / M.R Jolly, J.W. Bender, D.J. Carlson // Journal of Intelligent Material Systems and Structures. 1999. – №10. – P 5–13.
- Ginder, G.M. Rheology controlled by magnetic fields / G.M Ginder // Encyclopedia of Applied Physics. – 1996. – Vol.16. – P. 487–503.
- Park, D.W. Shape control of an electrorheological fluid based smart plate / D.W. Park, S.B. Choi, S.B. Jung // Proc. SPIE. 3329. – 1998. – P. 824–835.

- Shaw, J. Hybrid control of cantilevered ER sandwich beam for vibration suppression. / J. Shaw // Journal of Intelligent Material Systems and Structures. – 2000. – № 11. – P. 26– 31.
- Yalcintas, M. Magnetoreological and electroreological materials in adaptive structures and their perfomance comparision / M. Yalcintas, H. Dai // Smart Materials and Structures. – 1999. – № 8. – P. 560–573.
- Yeh, J.-Y. Vibration and damping analysis of orthotropic cylindrical shells with electrorheological core layer / J.-Y. Yeh // Aerospace Science and Technology. – 2008 doi:10.1016/j.jsv.2008.02.012.
- Korobko, E.V. Rheological properties of magnetoelectrorheological fluids with complex disperse phase / E.V. Korobko, M.A. Zhurauski, Z.A. Novikova, V.A. Kuzmin // Journal of Physics: Conference Series. – 2009. – № 149. – P. 12–65.
- Choi, Y.T. Assessment of time response characteristics of electrorheological and magnetorheological dampers / Y.T. Choi, N.M. Werely // Proc. SPIE. 4331 – 2001. P. 92– 102.
- Mikhasev, G.I., On suppression of vibrations of three-layered beam containing magnitorheological composite / G.I. Mikhasev, E.V. Korobko, Z.A. Novikova //. Mechanics of Machines, Mechanisms and Materials. – 2010 – № 4(13). – P. 49–53.
- Mikhasev G.I. Theory of Thin Adaptive Laminated Shells Based on Magnetorheological Materials and its Application in Problems on Vibration Suppression. / G.I. Mikhasev, M.G. Botogova, E.V. Korobko // Shelllike Structures / Advanced Structured Materials; Eds. H. Altenbach and V. Eremeyev. – Springer, 2011. – Vol. 15, Chapter 48. – P. 727-750.
- Mikhasev, G.I., On the influence of the magnetic field on the eigenmodes of thin laminated cylindrical shells containing magnetorheological elastomer / G.I. Mikhasev, H. Altenbach, E.A. Korchevskaya // Composite Structures. – July, 2014. – Vol. 113. – P. 186-196.
- 14. Григолюк, Э.И. Многослойные армированные оболочки: Расчет пневматических шин / Э.И. Григолюк, Г.М. Куликов. М.: Машиностроение, 1988. 288с.
- Korobko, E.V. On Damping Vibrations of Three Layered Beam Containing Magnetorheological Elastomer / E.V. Korobko, G.I. Mikhasev, Z.A. Novikova, M.A. Zhurauski // Journal of Intelligent Material Systems and Structures. – 2012. – Vol. 23, №. 9. – P. 1019 – 1023.

SUMMARY

Free vibrations of a cylindrical sandwich panel containing magnetorheoligical elastomer are considered. The influence of the external stationary magnetic field on the natural frequencies and damping ratio for different thicknesses of the MRE-core and different opening angles of the panel is analyzed.

E-mail: <u>svetlanamaevsckaya@yandex.ru</u> <u>mikhasev@bsu.by</u>

Поступила в редакцию 23.10.2015