разработчиков необходимо разделить на две группы: опытные разработчики и начинающие. Идея методики состоит в том, чтобы код, написанный опытными разработчиками, просматривали начинающие и наоборот. Таким образом, с одной стороны, у начинающих разработчиков будет пример, как нужно писать хороший код, и, с другой стороны, написанный ими код будет проверен и оценен более опытными коллегами.

Для автоматизации процесса разрабатывается программное средство, которое позволит подобрать проверяющего для опубликованного кода по нескольким критериям (соответствие технологий, занятость, уровень мастерства и другие), а также будет предлагать различные инструменты обратной связи (комментарии под любой из строчек кода, email-оповещение сразу после того, как код будет просмотрен).

Литература:

1. Макконел, С. Совершенный код. Практическое руководство по разработке программного обеспечения. – СПб.:Питер, 2007. – 896 с.

УДК 629.11

Управление движением мобильной машины нейроконтроллером на основе модели авторегрессии со скользящим средним

Гурский Н.Н., Нажжарин М., Радкевич А.С. Белорусский национальный технический университет

При проведении исследований с целью достижения требуемых динамических показателей транспортных средств, в частности, большегрузных машин, необходимы математические и компьютерные модели динамики механических систем, силовых модулей, а также контроллеров управления такими системами.

Обычно на разных уровнях и для управления отдельными элементами и узлами наиболее широко используются PID-регуляторы. Вместе с тем, реальные элементы и узлы обладают нелинейными параметрами и характеристиками. В этом случае PID-регуляторы либо обеспечивают работу системы не в полной мере, либо вообще не обеспечивают работу системы. Наиболее приемлемым аппаратом для управления такими объектами могут служить искусственные нейронные сети [1]. В основе нейроинтеллекта лежит нейронная организация искусственных систем, которая имеет биологические предпосылки. Способность биологических систем к обучению, самоорганизации и адаптации обладает большим преимуществом по сравнению с современными вычислительными системами.

В данной работе рассматриваются модели поступательного прямолинейного движения мобильной машины, силового модуля — двигателя и приводится сравнительный анализ управления движением данного объекта с помощью трех контроллеров: NC-нейроконтроллера на основе искусственной нейронной сети, PID-контроллера и контроллера, синтезированного на основе эталонной модели с использованием принципов решения обратных задач динамики.

Литература:

1. Гурский, Н.Н. Моделирование и оптимизация колебаний многоопорных машин: монография / Н.Н. Гурский, Р.И. Фурунжиев. – Минск: БНТУ, 2008. – 296 с.

УДК 681.51.033.26

Обеспечение заданных показателей качества интервальной динамической системы

Несенчук А.А.

Объединенный институт проблем информатики НАН Беларуси

Опишем динамику системы характеристическим полиномом вида

$$p(s) = s^{n} + a_{I}s^{n-I} + \dots + a_{n-I}s + a_{n},$$
 (1)

где a_{j} – вещественные коэффициенты, $j=\overline{1,n}$, $s=\sigma+i\omega$

Рассматривается задача размещения семейства корней характеристического уравнения динамической системы порядка n с неопределенностью в заданной области качества Q в плоскости корней s. Область Q ограничивает запас устойчивости системы и задается границами β_1 , β_2 , β_{n-2} равной степени устойчивости в зависимости от степени полинома (1). С целью вычисления искомых коэффициентов (1), обеспечивающих заданное расположение семейства корней используется расширенный корневой годограф [1] системы. Каждый коэффициент a_j вычисляется на основе j-го уравнения расширения (1), начиная с j=1.

Запишем расширение E_n полинома p(s):

$$E_n = \{ p_k(s) = s^k + a_I s^{k-I} + \dots + a_{k-I} s + a_k \},$$
 (2)

$$e \partial e = \overline{1, n}, \qquad p_n(s) = p(s) u p_{k-1}(s) = p_k(s) - a_k. \tag{3}$$

Выражение (3) является уравнением начальных точек свободного годографа $p_k(s)$. На основе (3) сформулируем следующие утверждения.

Утверждение 1. Корневой годограф полинома $p_{k-1}(s)$ относительно любого из его коэффициентов a_j представляет собой траектории (геометрическое место) начальных точек свободного годографа $p_k(s)$.

Утверждение 2. Если полином $p_{k-1}(s)$, который является *порождающим* по отношению к полиному $p_k(s)$, асимптотически