

Thermodynamic analysis of the processes of hydrogen bubbles formation on the crystallizing phases and Al_2O_3 formation at hardening of silumins is given. It is shown that the most efficient centers of creation and growth of hydrogen bubbles are more plain surfaces of crystals of α and β -phase.

В. Ю. СТЕЦЕНКО, ИТМ НАН Беларуси

УДК 621.74:669.714

ВЛИЯНИЕ ОБРАЗОВАНИЯ ПУЗЫРЬКОВ ВОДОРОДА ПРИ ЗАТВЕРДЕВАНИИ СИЛУМИНОВ НА МИКРОСТРУКТУРУ ОТЛИВОК

При затвердевании силуминов происходит значительное пересыщение расплава водородом, что приводит к интенсивному выделению пузырьков газа. Принято считать, что их центрами гетерогенного образования являются шероховатые поверхности неметаллических включений Al₂O₃ [1, 2]. Отсюда следует, что процесс выделения водорода при затвердевании силуминов не влияет на кристаллизацию фаз, поскольку пузырьки не мешают их росту. Это вытекает из постулата Б. Чалмерса о том, что поверхности основных кристаллизующихся фаз не являются эффективными центрами зарождения и роста пузырьков газа, выделяющегося при затвердевании металлов и сплавов [3]. Б. Чалмерс сделал такое заключение исходя из капельной аналогии в соответствии с уравнением смачиваемости Юнга. Известно, что в этой зависимости фигурируют только межфазные поверхностные натяжения и краевой угол. Однако визуальное наблюдение за поведением пузырьков при нагревании воды показывает, что их контактные углы и размеры в процессе образования и роста совершенно различны и меняются при неизменных межфазных поверхностных натяжениях.

Гетерогенное формообразование пузырька водорода в расплаве силумина при его затвердевании будет определяться в основном внутренним давлением *P*:

$$P \ge P_1 + P_2 + P_3, \tag{1}$$

где P_1 , P_2 , P_3 – соответственно внешнее, гидростатическое и лапласовское давления. Знак в уравнении (1) соответствует зарождению (равно) или росту (более) пузырька. При P_1 = const и P_2 = const давление P будет соответствовать P_3 . Оно, как известно, определяется радиусом кривизны r межфазной поверхности между пузырьком и расплавом и их межфазным поверхностным натяжением σ_{12} .

Рассмотрим случай образования пузырька водорода на плоской (гладкой) подложке (рис. 1). Свободная энергия G₁ этого процесса будет равна 1/3 суммарной межфазной поверхностной энергии П₁:

$$\Pi_1 = \sigma_{12} S_{11} + \sigma_{23} S_{12} , \qquad (2)$$

где σ_{23} – межфазное поверхностное натяжение на границе газ-подложка; S_{11} и S_{12} – площади межфазных поверхностей между пузырьком и расплавом и между пузырьком и плоской подложкой. Они определяются следующими уравнениями [4]:

$$S_{11} = 2\pi r^2 (1 - \cos \alpha),$$

$$S_{12} = \pi r^2 \sin^2 \alpha,$$
(3)

где α – половина сегментного угла межфазной поверхности газовый пузырек – расплав. Тогда свободная энергия G_1 с учетом (2) и (3):

$$G_{1} = \frac{1}{3} \Big[\sigma_{12} 2\pi r^{2} (1 - \cos \alpha) + \sigma_{23} \pi r^{2} \sin^{2} \alpha \Big].$$
 (4)

Рис. 1. Пузырек водорода на плоской подложке: *I* – расплав силумина; *2* – пузырек; *3* – подложка

Уравнение (4) определяет вероятность зарождения пузырьков газа на плоской подложке. Аналогичное уравнение для свободной энергии гомогенного образования газового пузырька G_0 имеет вид:

$$G_0 = \frac{4}{3}\pi r^2 \sigma_{12} \,. \tag{5}$$

Разделив G_1 на G_0 , получим:

$$\frac{G_1}{G_0} = \frac{1 - \cos\alpha}{2} + \frac{\sigma_{23}}{\sigma_{12}} \frac{\sin^2 \alpha}{4}.$$
 (6)

Если $\frac{G_1}{G_0} > 1$, то пузырьки газа будут гомогенно зарождаться и расти в расплаве. При $\frac{G_1}{G_0} \le 1$ газовые пузырьки предпочитают образовываться и расти на подложке.

Значения σ_{23} и σ_{12} определяются следующим образом [5]:

$$\sigma_{23} = kL_{C3}, \sigma_{12} = k(L_{C1} - L_{\pi}),$$
(7)

где L_{C3} и L_{C1} – молярные теплоты сублимации материала подложки и сплава; k – константа; L_{π} – теплота плавления сплава. Поскольку $L_{\pi} << L_{C1}$, то можно принять, что $\sigma_{12} = kL_{C1}$ [6]. С учетом этого значения, подставляя (7) в (6), получаем:

$$\frac{G_1}{G_0} = \frac{1 - \cos \alpha}{2} + \frac{L_{C3}}{L_{C1}} \frac{\sin^2 \alpha}{4}.$$
 (8)

Значение L_{C3} для α -фазы (Al), β -фазы (Si) и Al₂O₃ составляет соответственно 329 кДж/моль, 451 и 828 кДж/моль [6, 7]. Принимаем, что для доэвтектических силуминов $L_{C1} = 329$ кДж/моль. Тогда $\frac{L_{C3}}{L_{C1}}$ для Al, Si и Al₂O₃ соответственно равны 1,0; 1,37 и 2,52. Подставляя эти значения в уравнение (8), определяем зависимости $\frac{G_1}{G_0}$ от α

Рис. 2. Влияние α и материала подложки на отношение свободных энергий гетерогенного и гомогенного образования пузырьков водорода: *1* – на кристаллах α-фазы; *2* – на кристаллах β-фазы; *3* – на Al₂O₃

в процессе затвердевания расплава силумина при образовании пузырьков водорода на кристаллах α-, β-фазы и Al₂O₃ (рис. 2).

Из рисунка следует, что поверхности кристаллов алюминиевой и кремниевой фаз являются наиболее эффективными центрами зарождения пузырьков водорода, а частицы Al₂O₃ менее предпочтительны для образования и роста газовых пузырьков при затвердевании силумина.

Из рис. 1 и формулы (4) также следует, что образование и развитие пузырьков с увеличением ΔG_1 идет до $\alpha = 90^0$. Далее происходит самопроизвольное уменьшение свободной энергии и отрыв пузырька от подложки. Исходя из этого и уравнения (8), находим следующее условие гетерогенного зарождения пузырьков водорода на плоской подложке:

$$\frac{L_{C3}}{L_{C1}} \le 2.$$
 (9)

Соотношение (9) выполняется для алюминиевой и кремниевой фаз, кристаллизующихся из расплава силумина. Поэтому при его затвердевании происходит только гетерогенное зарождение пузырьков водорода. Для подложек из Al_2O_3 условие (9) не выполняется. Поэтому они не могут быть эффективными центрами образования и роста пузырьков водорода при затвердевании силуминов.

Рассмотрим случай образования газового пузырька на выпуклой подложке (рис. 3). Свободная энергия этого процесса G_2 будет равна:

$$G_3 = \frac{1}{3} (\sigma_{12} S_{31} + \sigma_{23} S_{32}), \qquad (10)$$

Рис. 3. Пузырек водорода на выпуклой подложке: *1* – расплав силумина; *2* – пузырек; *3* – подложка

66 / ALOTES IS ANGTONATOPICA

где S_{21} и S_{22} – площади межфазных поверхностей между пузырьком и расплавом и между пузырьком и выпуклой подложкой. Они определяются следующими уравнениями [4]:

$$S_{31} = 2\pi r^2 (1 - \cos \alpha),$$

$$S_{32} = 2\pi R^2 (1 - \cos \beta).$$
(11)

где R – радиус кривизны подложки; β – половина сегментного угла межфазной поверхности газовый пузырек – подложка (рис. 3). Подставляя (11) в (10) и, разделив G_2 на G_0 , учитывая, что $R \sin \beta = r \sin \alpha$, а $\sigma_{12} = kL_{C1}$ и $\sigma_{23} = kL_{C3}$, получаем:

$$\frac{G_2}{G_0} = \frac{1 - \cos\alpha}{2} + \frac{L_{C3}}{L_{C1}} \frac{R^2}{2r^2} \left(1 - \sqrt{1 - \frac{r^2}{R^2} \sin^2 \alpha} \right).$$
(12)

Анализ уравнения (12) показывает, что при $R \ge 5r$ реализуется процесс зарождения пузырьков на плоской подложке. При R = r и $\alpha = 90^0$ уравнения (8) и (12) преобразуются в уравнения

$$\frac{G_1}{G_0} = \frac{2L_{C1} + L_{C3}}{4L_{C1}},$$

$$\frac{G_2}{G_0} = \frac{L_{C1} + L_{C3}}{2L_{C1}}.$$
(13)

Из (13) следует, что при R = r наиболее предпочтительно образование газовых пузырьков на более плоской подложке, где интенсивность выделения газа тоже выше, что будет влиять на дендритную морфологию кристаллизующихся фаз. Аналогичным образом можно показать, что при R < 5r для зарождения и роста газовых пузырей наиболее предпочтительной является более плоская (гладкая) поверхность фаз.

Рассмотрим случай образования газового пузырька на вогнутой подложке (рис. 4). Свободная энергия этого процесса G₃ будет равна:

$$G_3 = \frac{1}{3}(\sigma_{12}S_{31} + \sigma_{23}S_{32}), \qquad (14)$$

где S₃₁ и S₃₂ – площади межфазных поверхностей между пузырьком и расплавом и между пузырьком и вогнутой подложкой. Они определяются следующими уравнениями [4]:

$$S_{31} = 2\pi r^2 (1 - \cos \alpha),$$

$$S_{32} = 2\pi R^2 (1 - \cos \beta).$$
(15)

Подставляя (15) в (14) и, разделив G_3 на G_0 , учитывая, что $R \sin \beta = r \sin \alpha$, а $\sigma_{12} = kL_{C1}$ и $\sigma_{23} = kL_{C3}$, получаем:

Рис. 4. Пузырек водорода на вогнутой подложке: *1* – расплав силумина; *2* – пузырек; *3* – подложка

$$\frac{G_3}{G_0} = \frac{1 - \cos\alpha}{2} + \frac{L_{C3}}{L_{C1}} \frac{R^2}{2r^2} \left(1 - \sqrt{1 - \frac{r^2}{R^2} \sin^2 \alpha} \right).$$
(16)

Уравнение (16) идентично уравнению (12). Это означает, что из анализа (16) и (8) следуют те же выводы, что и из (12) и (8). Следовательно, при R < 5r наиболее предпочтительной для образования и роста газовых пузырьков является не шероховатая, а гладкая подложка.

Полученные результаты о влиянии подложек на образование, рост и удаление пузырьков были проверены экспериментами по нагреву воды. Для этого выбирали три идентичных стакана из термостойкого, химически инертного к воде стекла с гладкой внутренней поверхностью. Емкость стакана и его внутренний диаметр дна составляли соответственно 150 см² и 5,6 см. Донные части двух стаканов выполняли шероховатыми. На внутреннюю поверхность одного из них был нанесен тонкий слой технического вазелина марки ОКБ 122-7. Все стаканы заполняли дистиллированной водой до отметки 100 см³ и подвергали нагреванию на одной электроплите. Интенсивность образования и удаления пузырьков фиксировали визуально и по убыли массы воды за время кипения 35 мин. Было установлено, что наиболее интенсивно образование и удаление пузырьков происходило на гладкой смачиваемой донной поверхности стакана. Менее всего - на его несмачиваемой поверхности, покрытой техническим вазелином. Здесь процесс кипения начался на 4 мин позже, чем на гладком гидрофильном дне стакана. На нем процесс кипения происходил путем образования

и удаления относительно крупных пузырей пара. Несмачиваемая поверхность дна стакана создавала более мелкие пузыри пара. Установлено, что интенсивность образования и удаления пузырьков на гладкой смачиваемой поверхности была на 18 и 5% выше, чем на несмачиваемой и шероховатой поверхностях. Аналогичные опыты проводили со стеклянными лабораторными стаканами емкостью по 400 см³ и внутренним диаметром дна 68 мм. Количество нагреваемой дистиллированной воды составляло 150 см³ для каждой емкости. Было установлено, что интенсивность образования и удаления пузырьков пара на гладкой смачиваемой поверхности была на 27% выше, чем на несмачиваемой поверхности дна стакана. При этом его гидрофобность способствовала формированию более мелких пузырьков пара. Следовательно, при прочих равных условиях нагрева воды интенсивность образования и удаления пузырьков на гладкой смачиваемой поверхности немного выше, чем на аналогичной шероховатой и значительно больше, чем на несмачиваемой поверхности. Следовательно, результаты данных экспериментов подтверждают основные выводы из проведенных термодинамических расчетов.

При образовании и росте пузырьков газа на кристаллах α- и β-фазы в зависимости от пересыщения расплава силумина водородом он будет задерживать развитие (разветвления) этих дендритных фаз и огрублять микроструктуру отливки. Уменьшение содержания водорода в сплавах либо связывание его в гидриды в процессе образования и развития пузырьков будет приводить к модифицированию структуры отливки. Для этого в качестве модификаторов в основном используют такие

<u>ANTES IS METRAAMETICS / 67</u> 4 (53), 2009 / 67

элементы, как Na, Ti и Zr. Последние два, растворяясь в силумине, служат только как гидридообразующие элементы. Натрий не растворим в жидком алюминии и не образует с ним никаких соединений. Следовательно, Na не является поверхностноактивным элементом для межфазной границы кристалл α-фазы – расплав. Поверхностное натяжение жидкого натрия меньше, чем у жидкого алюминия, поэтому при затвердевании расплава силумина Na будет находиться в виде эмульсии. Уменьшение поверхностного натяжения при обработке жидкого силумина натрием объясняется тем, что его L_{C3} меньше, чем для Al и Si. Это также приводит к тому, что на натриевой эмульсии будет происходить более интенсивное образование пузырьков водорода при затвердевании алюминиевокремниевого расплава. Следовательно, Na как модификатор алюминиево-кремниевой эвтектики не только рафинирует межфазные поверхности дендритов α- и β-фазы, но и защищает их от блокирующего действия пузырьков молекулярного водорода. Аналогичным образом действует стронций. Это можно объяснить тем, что удельный вес Sr и силумина почти одинаковый. Плотность Na значительно меньше, чем алюминиевых сплавов. Поэтому в расплаве силумина устойчивость стронциевой эмульсии выше, чем натриевой. Экспериментально установлено, что уменьшение содержания водорода в доэвтектическом силумине приводит к измельчению микроструктуры отливок [8].

Таким образом, следует полагать, что образование пузырьков водорода при затвердевании силуминов оказывает существенное влияние на микроструктуру отливок.

Литература

1. Добаткин В. И., Габидуллин Р. М., Колачев Б. А., Макаров Г. С. Газы и окислы в алюминиевых деформируемых сплавах. М.: Металлургия, 1976.

2. Чернега Д. Ф., Бялик О. М., Иванчук Д. Ф., Ремизов Г. А. Газы в цветных металлах и сплавах. М.: Металлургия, 1982.

3. Чалмерс Б. Теория затвердевания. М.: Металлургия, 1968.

4. Выгодский М.Я. Справочник по элементарной математике. М.: Наука, 1967.

5. А дамсон А.А. Физическая химия поверхностей. М.: Мир, 1970. - 568 с.

6. Свойства элементов. Ч. 1. Физические свойства. Справочник. М.: Металлургия, 1976.

7. Физико-химические свойства окислов: Справ. / Под ред. Г. В. Самсонова М.: Металлургия, 1978.

8. К и л и н А. Б. Влияние элетрического тока на дегазацию и модифицирование алюминиевых сплавов // Литейное производство. 2002. № 8. С. 21–22.